首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To evaluate the use of xylazine and ketamine for total i.v. anesthesia in horses. ANIMALS: 8 horses. PROCEDURE: Anesthetic induction was performed on 4 occasions in each horse with xylazine (0.75 mg/kg, i.v.), guaifenesin (75 mg/kg, i.v.), and ketamine (2 mg/kg, i.v.). Intravenous infusions of xylazine and ketamine were then started by use of 1 of 6 treatments as follows for which 35, 90, 120, and 150 represent infusion dosages (microg/kg/min) and X and K represent xylazine and ketamine, respectively: X35 + K90 with 100% inspired oxygen (O2), X35 + K120-(O2), X35 + K150-(O2), X70 + K90-(O2), K150-(O2), and X35 + K120 with a 21% fraction of inspired oxygen (ie, air). Cardiopulmonary measurements were performed. Response to a noxious electrical stimulus was observed at 20, 40, and 60 minutes after induction. Times to achieve sternal recumbency and standing were recorded. Quality of sedation, induction, and recovery to sternal recumbency and standing were subjectively evaluated. RESULTS: Heart rate and cardiac index were higher and total peripheral resistance lower in K150-(O2) and X35 + K120-air groups. The mean arterial pressure was highest in the X35 + K120-air group and lowest in the K150-(O2) group (125 +/- 6 vs 85 +/- 8 at 20 minutes, respectively). Mean Pa(O2) was lowest in the X35 + K120-air group. Times to sternal recumbency and standing were shortest for horses receiving K150-(O2) (23 +/- 6 minutes and 33 +/- 8 minutes, respectively) and longest for those receiving X70 + K90-(O2) (58 +/- 28 minutes and 69 +/- 27 minutes, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: Infusions of xylazine and ketamine may be used with oxygen supplementation to maintain 60 minutes of anesthesia in healthy adult horses.  相似文献   

2.
OBJECTIVE: To evaluate concomitant propofol and fentanyl infusions as an anesthetic regime, in Greyhounds. ANIMALS: Eight clinically normal Greyhounds (four male, four female) weighing 25.58 +/- 3.38 kg. DESIGN: Prospective experimental study. METHODS: Dogs were premedicated with acepromazine (0.05 mg/kg) by intramuscular (i.m.) injection. Forty five minutes later anesthesia was induced with a bolus of propofol (4 mg/kg) by intravenous (i.v.) injection and a propofol infusion was begun (time = 0). Five minutes after induction of anesthesia, fentanyl (2 microg/kg) and atropine (40 microg/kg) were administered i.v. and a fentanyl infusion begun. Propofol infusion (0.2 to 0.4 mg/kg/min) lasted for 90 minutes and fentanyl infusion (0.1 to 0.5 microg/kg/min) for 70 minutes. Heart rate, blood pressure, respiratory rate, end-tidal carbon dioxide, body temperature, and depth of anesthesia were recorded. The quality of anesthesia, times to return of spontaneous ventilation, extubation, head lift, and standing were also recorded. Blood samples were collected for propofol and fentanyl analysis at varying times before, during and after anesthesia. RESULTS: Mean heart rate of all dogs varied from 52 to 140 beats/min during the infusion. During the same time period, mean blood pressure ranged from 69 to 100 mm Hg. On clinical assessment, all dogs appeared to be in light surgical anesthesia. Mean times (+/- SEM), after termination of the propofol infusion, to return of spontaneous ventilation, extubation, head lift and standing for all dogs were 26 +/- 7, 30 +/- 7, 59 +/- 12, and 105 +/- 13 minutes, respectively. Five out of eight dogs either whined or paddled their forelimbs in recovery. Whole blood concentration of propofol for all eight dogs ranged from 1.21 to 6.77 microg/mL during the infusion period. Mean residence time (MRTinf) for propofol was 104.7 +/- 6.0 minutes, mean body clearance (Clb) was 53.35 +/- 0.005 mL/kg/min, and volume of distribution at steady state (Vdss) was 3.27 +/- 0.49 L/kg. Plasma concentration of fentanyl for seven dogs during the infusion varied from 1.22 to 4.54 ng/mL. Spontaneous ventilation returned when plasma fentanyl levels were >0.77 and <1.17 ng/mL. MRTinf for fentanyl was 111.3 +/- 5.7 minutes. Mean body clearance was 29.1 +/- 2.2 mL/kg/min and Vdss was 2.21 +/- 0.19 L/kg. CONCLUSION AND CLINICAL RELEVANCE: In Greyhounds which were not undergoing any surgical stimulation, total intravenous anesthesia maintained with propofol and fentanyl infusions induced satisfactory anesthesia, provided atropine was given to counteract bradycardia. Despite some unsatisfactory recoveries the technique is worth investigating further for clinical cases, in this breed and in mixed breed dogs.  相似文献   

3.
OBJECTIVE: To compare detomidine hydrochloride and romifidine as premedicants in horses undergoing elective surgery. ANIMALS: 100 client-owned horses. PROCEDURE: After administration of acepromazine (0.03 mg/kg, IV), 50 horses received detomidine hydrochloride (0.02 mg/kg of body weight, IV) and 50 received romifidine (0.1 mg/kg, IV) before induction and maintenance of anesthesia with ketamine hydrochloride (2 mg/kg) and halothane, respectively. Arterial blood pressure and blood gases, ECG, and heart and respiratory rates were recorded. Induction and recovery were timed and graded. RESULTS: Mean (+/- SD) duration of anesthesia for all horses was 104 +/- 28 minutes. Significant differences in induction and recovery times or grades were not detected between groups. Mean arterial blood pressure (MABP) decreased in both groups 30 minutes after induction, compared with values at 10 minutes. From 40 to 70 minutes after induction, MABP was significantly higher in detomidine-treated horses, compared with romifidine-treated horses, although more romifidine-treated horses received dobutamine infusions. In all horses, mean respiratory rate ranged from 9 to 11 breaths/min, PaO2 from 200 to 300 mm Hg, PaCO2 from 59 to 67 mm Hg, arterial pH from 7.33 to 7.29, and heart rate from 30 to 33 beats/min, with no significant differences between groups. CONCLUSIONS AND CLINICAL RELEVANCE: Detomidine and romifidine were both satisfactory premedicants. Romifidine led to more severe hypotension than detomidine, despite administration of dobutamine to more romifidine-treated horses. Both detomidine and romifidine are acceptable alpha2-adrenoceptor agonists for use as premedicants before general anesthesia in horses; however, detomidine may be preferable when maintenance of blood pressure is particularly important.  相似文献   

4.
25 horses which entered the clinic for minor surgery, received ketamine (2.2 mg/kg i.v.) for induction of anesthesia after previous sedation with xylazine (1.1 mg/kg i.v.). As soon as the horses were in the lateral recumbency, the benzodiazepine derivate climazolam was administered at a dose of 0.1 mg/kg i.v. (10 horses) or 0.2 mg/kg i.v. (15 horses). The anesthesia was maintained with repeated injections of ketamine (1.1 mg/kg i.v. every 9-12 minutes). At the end of the surgery, 20 minutes after the last ketamine injection, Ro 15-3505, a benzodiazepine antagonist, was injected at a dose of 0.01 mg/kg i.v. or 0.02 mg/kg i.v. Climazolam successfully suppressed the adverse reactions of ketamine, such as poor muscle relaxation, hyperacusis and convulsions. The benzodiazepine antagonist Ro 15-3505 allowed good control of the duration of anesthesia and--in most cases--a smooth, predictable recovery period was the result.  相似文献   

5.
Eight horses were anesthetized three times, by intravenous administration of xylazine (1.1 mg/kg) and ketamine (2.2 mg/kg), detomidine (0.02 mg/kg) and tiletamine-zolazepam (1.1 mg/kg), or detomidine (0.04 mg/kg) and tiletamine-zolazepam (1.4 mg/kg). The sequences were randomized. The duration of analgesia and the times to sternal and standing positions were recorded. Heart rate, arterial pressure, pHa, PaCO2, and PaO2 were measured before and during anesthesia. The duration of analgesia with the two doses of detomidine-tiletamine-zolazepam, 26 +/- 4 minutes and 39 +/- 11 minutes, respectively, was significantly longer than the 13 +/- 6 minutes obtained with xylazine-ketamine. Bradycardia occurred after administration of detomidine, but heart rates returned to baseline values 5 minutes after administration of tiletamine and zolazepam. Arterial pressure was significantly higher and PaO2 significantly lower during anesthesia with detomidine-tiletamine-zolazepam than with xylazine-ketamine. Some respiratory acidosis developed with all anesthetic combinations. The authors conclude that detomidine-tiletamine-zolazepam can provide comparable anesthesia of a longer duration than xylazine and ketamine, but hypoxemia will develop in some horses.  相似文献   

6.
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine.  相似文献   

7.
Objective-To compare the anesthetic and cardiorespiratory effects of total IV anesthesia with propofol (P-TIVA) or a ketamine-medetomidine-propofol combination (KMP-TIVA) in horses. Design-Randomized experimental trial. Animals-12 horses. Procedure-Horses received medetomidine (0.005 mg/kg [0.002 mg/lb], IV). Anesthesia was induced with midazolam (0.04 mg/kg [0.018 mg/lb], IV) and ketamine (2.5 mg/kg [1.14 mg/lb], IV). All horses received a loading dose of propofol (0.5 mg/kg [0.23 mg/lb], IV), and 6 horses underwent P-TIVA (propofol infusion). Six horses underwent KMP-TIVA (ketamine [1 mg/kg/h {0.45 mg/lb/h}] and medetomidine [0.00125 mg/kg/h {0.0006 mg/lb/h}] infusion; the rate of propofol infusion was adjusted to maintain anesthesia). Arterial blood pressure and heart rate were monitored. Qualities of anesthetic induction, transition to TIVA, and maintenance of and recovery from anesthesia were evaluated. Results-Administration of KMP IV provided satisfactory anesthesia in horses. Compared with the P-TIVA group, the propofol infusion rate was significantly less in horses undergoing KMP-TIVA (0.14 +/- 0.02 mg/kg/min [0.064 +/- 0.009 mg/lb/min] vs 0.22 +/- 0.03 mg/kg/min [0.1 +/- 0.014 mg/lb/min]). In the KMP-TIVA and P-TIVA groups, anesthesia time was 115 +/- 17 minutes and 112 +/- 11 minutes, respectively, and heart rate and arterial blood pressure were maintained within acceptable limits. There was no significant difference in time to standing after cessation of anesthesia between groups. Recovery from KMP-TIVA and P-TIVA was considered good and satisfactory, respectively. Conclusions and Clinical Relevance-In horses, KMP-TIVA and P-TIVA provided clinically useful anesthesia; the ketamine-medetomidine infusion provided a sparing effect on propofol requirement for maintaining anesthesia.  相似文献   

8.
OBJECTIVE: To evaluate sevoflurane as an inhalation anesthetic for thoracotomy in horses. ANIMALS: 18 horses between 2 and 15 years old. PROCEDURE: 4 horses were used to develop surgical techniques and were euthanatized at the end of the procedure. The remaining 14 horses were selected, because they had an episode of bleeding from their lungs during strenuous exercise. General anesthesia was induced with xylazine (1.0 mg/kg of body weight, IV) followed by ketamine (2.0 mg/kg, IV). Anesthesia was maintained with sevoflurane in oxygen delivered via a circle anesthetic breathing circuit. Ventilation was controlled to maintain PaCO2 at approximately 45 mm Hg. Neuromuscular blocking drugs (succinylcholine or atracurium) were administered to eliminate spontaneous breathing efforts and to facilitate surgery. Cardiovascular performance was monitored and supported as indicated. RESULTS: 2 of the 14 horses not euthanatized died as a result of ventricular fibrillation. Mean (+/- SD) duration of anesthesia was 304.9 +/- 64.1 minutes for horses that survived and 216.7 +/- 85.5 minutes for horses that were euthanatized or died. Our subjective opinion was that sevoflurane afforded good control of anesthetic depth during induction, maintenance, and recovery. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of sevoflurane together with neuromuscular blocking drugs provides stable and easily controllable anesthetic management of horses for elective thoracotomy and cardiac manipulation.  相似文献   

9.
Anaesthesia produced by xylazine (1.1 mg/kg IV) followed in 3–5 minutes by ketamine (2.2 mg/ kg IV) (X / K) was compared to anaesthesia produced by detomidine (0.02 mg/kg IV) followed in 15–25 minutes by ketamine (2.2 mg/kg IV) (D/K) in the same six horses. Quality of induction, recovery, muscle relaxation, coordination (before and after anaesthesia) and response to stimulus were subjectively evaluated. Heart rate, respiratory rate, mean blood pressure, hemoglobin saturation, arterial pH, CO2 and O2 were monitored. Recumbency time and number of attempts required to stand were recorded. Recumbency time was longer in all horses with X/K (median recumbency time of 27 min) than with D/K (median recumbency time of 22 min). No significant differences between treatments were seen for any other variable measured, although 2 horses did not appear to reach a surgical plane of anaesthesia with D/K.  相似文献   

10.
To evaluate clinical usefulness of xylazine (1.0 mg/kg)-midazolam (20 microg/kg)-propofol (3.0 mg/kg) anesthesia in horses, 6 adult Thoroughbred horses were examined. The quality of induction varied from poor to excellent and 5 out of 6 horses presented myotonus in the front half of the body. However, paddling immediately after induction observed in other reports of equine propofol anesthesia was not observed. Recovery time was 35.3 +/- 9.3 min and the quality of recovery was calm and smooth in all horses. Respiration rate decreased after induction and hypoxemia was observed during lateral recumbency. Heart rate also decreased after induction, however mean arterial blood pressure was maintained above approximately 100 mmHg.  相似文献   

11.
OBJECTIVE: To determine cardiorespiratory effects of a tiletamine/zolazepam-ketamine-detomidine (TZKD) combination in horses. ANIMALS: 8 healthy adult horses. PROCEDURE: Horses were instrumented for measurement of cardiorespiratory, acid-base, and electrolyte values. Each horse was given xylazine (0.44 mg/kg of body weight, IV) 10 to 15 minutes prior to induction of recumbency by administration of the TZKD combination. Cardiorespiratory, acid-base, and electrolyte values were measured at 5-minute intervals for > or =30 minutes. RESULTS: All horses became recumbent within 1 minute after IV administration of TZKD. Mean +/- SD duration of recumbency was 40+/-8 minutes. All horses regained standing position after < or =2 attempts. Quality of anesthesia and analgesia was determined to be satisfactory in all horses. Xylazine induced decreases in respiratory rate, heart rate, cardiac output, maximum rate of increase of right ventricular pressure, and rate pressure product. The PaCO2, right atrial pressure, and peripheral vascular resistance increased, whereas blood temperature, PO2, pHa, HCO3-, PCV, total solids, Na, and K values remained unchanged. Subsequent administration of TZKD caused right atrial pressure and PaCO2 to increase and PaO2 to decrease, compared with values obtained after xylazine administration. Remaining cardiorespiratory, acid-base, hematologic, and electrolyte values did not differ from those obtained after xylazine administration. CONCLUSION: IV administration of TZKD induces short-term anesthesia in horses. Potential advantages of this drug combination are the small volume of drug administered; minimal cardiorespiratory depression; quality of induction and maintenance of, and recovery from, anesthesia; and duration of drug effects.  相似文献   

12.
13.
Pharmacokinetics of flunixin meglumine in donkeys, mules, and horses   总被引:6,自引:0,他引:6  
OBJECTIVE: To compare serum disposition of flunixin meglumine after i.v. administration of a bolus to horses, donkeys, and mules. ANIMALS: 3 clinically normal horses, 5 clinically normal donkeys, and 5 clinically normal mules. PROCEDURE: Blood samples were collected at time zero (before) and 5, 10, 15, 30, and 45 minutes, and at 1, 1.25, 1.5, 1.75, 2, 2.5, 2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, and 8 hours after i.v. administration of a bolus of flunixin meglumine (1.1 mg/kg of body weight). Serum was analyzed in duplicate by the use of high-performance liquid chromatography for determination of flunixin meglumine concentrations. The serum concentration-time curve for each horse, donkey, and mule were analyzed separately to estimate noncompartmental pharmacokinetic variables RESULTS: Mean (+/-SD) area under the curve for donkeys (646 +/- 148 minute x microg/ml) was significantly less than for horses (976 +/- 168 minute x microg/ml) or for mules (860 +/- 343 minute x microg/ml). Mean residence time for donkeys (54.6 +/- 7 minutes) was significantly less than for horses (110 +/- 24 minutes) or for mules (93 +/- 30 minutes). Mean total body clearance for donkeys (1.78 +/- 0.5 ml/kg/h) was significantly different from that for horses (1.14 +/- 0.18 ml/kg/h) but not from that for mules (1.4 +/- 0.5 ml/kg/h). Significant differences were not found between horses and mules for any pharmacokinetic variable. CONCLUSION AND CLINICAL RELEVANCE: Significant differences exist with regard to serum disposition of flunixin meglumine in donkeys, compared with that for horses and mules. Consequently, flunixin meglumine dosing regimens used in horses may be inappropriate for use in donkeys.  相似文献   

14.
Objective—To determine the safety and efficacy of propofol, after detomidine-butorphanol premedication, for induction and anesthetic maintenance for carotid artery translocation and castration or ovariectomy in goats. Study Design—Case series. Animals—Nine 4-month-old Spanish goats (17.1 ± 2.6 kg) were used to evaluate propofol anesthesia for carotid artery translocation and castration or ovariectomy. Methods—Goats were premedicated with detomidine (10 μg/kg intramuscularly [IM]) and butorphanol (0.1 mg/kg IM) and induced with an initial bolus of propofol (3 to 4 mg/kg intravenously [IV]). If necessary for intubation, additional propofol was given in 5-mg (IV) increments. Propofol infusion (0.3 mg/kg/min IV) was used to maintain anesthesia, and oxygen was insufflated (5 L/min). The infusion rate was adjusted to maintain an acceptable anesthetic plane as determined by movement, muscle relaxation, ocular signs, response to surgery, and cardiopulmonary responses. Systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures, heart rate (HR), ECG, respiratory rate (RR), Spo2, and rectal temperature (T) were recorded every 5 minutes postinduction; arterial blood gas samples were collected every 15 minutes. Normally distributed data are represented as mean ± SD; other data are medians (range). Results—Propofol (4.3 ± 0.9 mg/kg IV) produced smooth, rapid (15.2 ± 6 sec) sternal recumbency. Propofol infusion (0.52 ± 0.11 mg/kg/min IV) maintained anesthesia. Mean anesthesia time was 83 ± 15 minutes. Muscle relaxation was good; eye signs indicated surgical anesthesia; two goats moved before surgery began; one goat moved twice during laparotomy. Means are reported over the course of the data collection period. Means during the anesthesia for pHa (arterial PH), Paco2, Pao2, HCO3, and BE (base excess) ranged from 7.233 ± 0.067 to 7.319 ± 0.026, 54.1 ± 4.6 to 65.3 ± 12.0 mm Hg, 133.1 ± 45.4 to 183.8 ± 75.1 mm Hg, 26.9 ± 2.6 to 28.2 ± 2.1 mEq/L, and -0.8 ± 2.9 to 1.4 ± 2.2 mEq/L. Means over time for MAP were 53 ± 12 to 85 ± 21 mm Hg. Mean HR varied over time from 81 ± 6 to 91 ± 11 beats/minute; mean RR, from 9 ± 8 to 15 ± 5 breaths/minute; Spo2, from 97 ± 3% to 98 ± 3%; mean T, from 36.0 ± 0.6±C to 39.1 ± 0.7±C. Over time, Spo2 and Sao2 did not change significantly; HR, RR, T, and Paco2 decreased significantly; SAP, DAP, MAP, pHa, Pao2, and BE increased significantly. HCO3 concentrations increased significantly, peaking at 45 minutes. Recoveries were smooth and rapid; the time from the end of propofol infusion to extubation was 7.3 ± 3 minutes, to sternal was 9.2 ± 5 minutes, and to standing was 17.7 ± 4 minutes. Median number of attempts to stand was two (range of one to four). Postoperative pain was mild to moderate. Conclusions—Detomidine-butorphanol-propofol provided good anesthesia for carotid artery translocation and neutering in goats. Clinical Relevance—Detomidine-butorphanol-propofol anesthesia with oxygen insufflation may be safely used for surgical intervention in healthy goats.  相似文献   

15.
OBJECTIVE: To characterize the effect of general anesthesia and minor surgery on renal function in horses. ANIMALS: 9 mares with a mean (+/- SE) age and body weight of 9+/-2 years and 492+/-17 kg, respectively. PROCEDURE: The day before anesthesia, urine was collected (catheterization) for 3 hours to quantitate baseline values, and serum biochemical analysis was performed. The following day, xylazine (1.1 mg/kg, IV) was administered, and general anesthesia was induced 5 minutes later with diazepam (0.04 mg/kg, IV) and ketamine (2.2 mg/kg, IV). During 2 hours of anesthesia with isoflurane, Paco2 was maintained between 48 and 52 mm Hg, and mean arterial blood pressure was between 70 and 80 mm Hg. Blood and urine were collected at 30, 60, and 120 minutes during and at 1 hour after anesthesia. RESULTS: Baseline urine flow was 0.92+/-0.17 ml/kg/h and significantly increased at 30 and 60 minutes after xylazine administration (2.14+/-0.59 and 2.86+/-0.97 ml/kg/h respectively) but returned to baseline values by the end of anesthesia. Serum glucose concentration increased from 12+/-4 to 167+/-8 mg/dl at 30 minutes. Glucosuria was not observed. CONCLUSIONS AND CLINICAL RELEVANCE: Transient hyperglycemia and an increase in rine production accompanies a commonly used anesthetic technique for horses. The increase in urine flow is not trivial and should be considered in anesthetic management decisions. With the exception of serum glucose concentration and urine production, the effect of general anesthesia on indices of renal function in clinically normal horses is likely of little consequence in most horses admitted for elective surgical procedures.  相似文献   

16.
The anesthetic and cardiovascular effects of a combination of continuous intravenous infusion using a mixture of 100 g/L guaifenesin-4 g/L ketamine-5 mg/L medetomidine (0.25 ml/kg/hr) and oxygen-sevoflurane (OS) anesthesia (GKM-OS anesthesia) in horses were evaluated. The right carotid artery of each of 12 horses was raised surgically into a subcutaneous position under GKM-OS anesthesia (n=6) or OS anesthesia (n=6). The end-tidal concentration of sevoflurane (EtSEV) required to maintain surgical anesthesia was around 1.5% in GKM-OS and 3.0% in OS anesthesia. Mean arterial blood pressure (MABP) was maintained at around 80 mmHg under GKM-OS anesthesia, while infusion of dobutamine (0.39+/-0.10 microg/kg/min) was necessary to maintain MABP at 60 mmHg under OS anesthesia. The horses were able to stand at 36+/-26 min after cessation of GKM-OS anesthesia and at 48+/-19 minutes after OS anesthesia. The cardiovascular effects were evaluated in 12 horses anesthetized with GKM-OS anesthesia using 1.5% of EtSEV (n=6) or OS anesthesia using 3.0% of EtSEV (n=6). During GKM-OS anesthesia, cardiac output and peripheral vascular resistance was maintained at about 70% of the baseline value before anesthesia, and MABP was maintained over 70 mmHg. During OS anesthesia, infusion of dobutamine (0.59+/-0.24 microg/kg/min) was necessary to maintain MABP at 70 mmHg. Infusion of dobutamine enabled to maintaine cardiac output at about 80% of the baseline value; however, it induced the development of severe tachycardia in a horse anesthetized with sevoflurane. GKM-OS anesthesia may be useful for prolonged equine surgery because of its minimal cardiovascular effect and good recovery.  相似文献   

17.
OBJECTIVE: To determine the disposition of lidocaine after IV infusion in anesthetized horses undergoing exploratory laparotomy because of gastrointestinal tract disease. ANIMALS: 11 horses (mean +/- SD, 10.3 +/- 7.4 years; 526 +/- 40 kg). PROCEDURE: Lidocaine hydrochloride (loading infusion, 1.3 mg/kg during a 15-minute period [87.5 microg/kg/min]; maintenance infusion, 50 microg/kg/min for 60 to 90 minutes) was administered IV to dorsally recumbent anesthetized horses. Blood samples were collected before and at fixed time points during and after lidocaine infusion for analysis of serum drug concentrations by use of liquid chromatography-mass spectrometry. Serum lidocaine concentrations were evaluated by use of standard noncompartmental analysis. Selected cardiopulmonary variables, including heart rate (HR), mean arterial pressure (MAP), arterial pH, PaCO2, and PaO2, were recorded. Recovery quality was assessed and recorded. RESULTS: Serum lidocaine concentrations paralleled administration, increasing rapidly with the initiation of the loading infusion and decreasing rapidly following discontinuation of the maintenance infusion. Mean +/- SD volume of distribution at steady state, total body clearance, and terminal half-life were 0.70 +/- 0.39 L/kg, 25 +/- 3 mL/kg/min, and 65 +/- 33 minutes, respectively. Cardiopulmonary variables were within reference ranges for horses anesthetized with inhalation anesthetics. Mean HR ranged from 36 +/- 1 beats/min to 43 +/- 9 beats/min, and mean MAP ranged from 74 +/- 18 mm Hg to 89 +/- 10 mm Hg. Recovery quality ranged from poor to excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Availability of pharmacokinetic data for horses with gastrointestinal tract disease will facilitate appropriate clinical dosing of lidocaine.  相似文献   

18.
Sixteen 3- to 5-year-old African elephants were anesthetized one or more times for a total of 27 diagnostic and surgical procedures. Xylazine (0.1 +/- 0.04 mg/kg of body weight, mean +/- SD) and ketamine (0.6 +/- 0.13 mg/kg) administered IM induced good chemical restraint in standing juvenile elephants during a 45-minute transport period before administration of general anesthesia. After IM or IV administration of etorphine (1.9 +/- 0.56 micrograms/kg), the mean time to lateral recumbency was 20 +/- 6.6 and 3 +/- 0.0 minutes, respectively. The mean heart rate, systolic blood pressure, and respiration rate during all procedures was 50 +/- 12 beats/min, 106 +/- 19 mm of Hg, and 10 +/- 3 breaths/min, respectively. Cardiac arrhythmias were detected during 2 procedures. One elephant with hypotension responded to a decrease in the concentration of halothane and IV infusion of dobutamine HCl. Alterations in systolic blood pressure, ear flapping, and trunk muscle tone were useful for monitoring depth of anesthesia. Results indicated that halothane in oxygen was effective for maintenance of surgical anesthesia in juvenile African elephants after induction with etorphine.  相似文献   

19.
This study provides baseline information on the potential use of propofol as a general anesthetic for horses. Using a Latin square design, propofol (2, 4, and 8 mg/kg) was administered intravenously on three separate occasions to six mature horses. Information about anesthetic induction, duration, and recovery was recorded along with results of rectal temperature, heart rate, respiratory rate, pHa, Paco2 and Pao2. Statistical analysis included a mixed model analysis of variance, a general linear model analysis and least square means test for post hoc comparisons. A P <.05 was considered significant. The quality of induction of anesthesia varied from poor to good. Two horses were not recumbent following the lowest dose of propofol. Brief paddling limb movements occurred occasionally and unpredictably after recumbency induced by all three doses. During recovery, horses were uniformly calm and coordinated in their moves to stand. Duration of recumbency (minutes) was dose related; 15.05 ± 1.58 (±±SD) following 2 mg/kg, 31.06 ± 5.56 following 4 mg/kg, and 47.85 ± 13.63 following 8 mg/kg. During recumbency at all doses, heart rate significantly increased from a predrug value of 40 ± 6 beats per minute. Substantial respiratory depression, characterized by a significant decrease in respiratory rate (from 11.7 ± 2.9 to 3.7 ± 1.6 breaths per minute) and increased Paco2 (from 44.5 ± 2.5 to 52.7 ± 8.0 mm Hg) was seen only after 8 mg/kg. A significant decrease in Pao2 was observed throughout the recumbency induced by 8 mg/kg, and also at 3 and 5 minutes following induction of anesthesia with 4 mg/ kg propofol. At 5 minutes after injection, Pao2 was 87.4 ± 13.8 and 58.1 ± 17.0 mm Hg after 4 and 8 mg/kg, respectively. The results of this study do not favor the routine use of propofol as a sole anesthetic in otherwise unmedicated horses.  相似文献   

20.
OBJECTIVE: To quantitate the dose- and time-related effects of IV administration of xylazine and detomidine on urine characteristics in horses deprived of feed and water. ANIMALS: 6 horses. PROCEDURE: Feed and water were withheld for 24 hours followed by i.v. administration of saline (0.9% NaCI) solution, xylazine (0.5 or 1.0 mg/kg), or detomidine (0.03 mg/kg). Horses were treated 4 times, each time with a different protocol. Following treatment, urine and blood samples were obtained at 15, 30, 60, 120, and 180 minutes. Blood samples were analyzed for PCV and serum concentrations of total plasma solids, sodium, and potassium. Urine samples were analyzed for pH and concentrations of glucose, proteins, sodium, and potassium. RESULTS: Baseline (before treatment) urine flow was 0.30 +/- 0.03 mL/kg/h and did not significantly change after treatment with saline solution and low-dose xylazine but transiently increased by 1 hour after treatment with high-dose xylazine or detomidine. Total urine output at 2 hours following treatment was 312 +/- 101 mL versus 4,845 +/- 272 mL for saline solution and detomidine, respectively. Absolute values of urine concentrations of sodium and potassium also variably increased following xylazine and detomidine administration. CONCLUSIONS AND CLINICAL RELEVANCE: Xylazine and detomidine administration in horses deprived of feed and water causes transient increases in urine volume and loss of sodium and potassium. Increase in urine flow is directly related to dose and type of alpha2-adrenergic receptor agonist. Dehydration in horses may be exacerbated by concurrent administration of alpha2-adrenergic receptor agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号