首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
The relative importance of N fixation, organic material inputs and nutrient inputs in litterfall, as justifications for including shade trees in plantations of coffee or cacao, is discussed. According to existing data, N fixation by leguminous shade trees does not exceed 60 kg.N/ha/a. However, these trees contribute 5,000–10,000 kg. organic material/ha/a.Comparisons are made between the leguminous shade tree Erythrina poeppigiana and the non-leguminous timber tree Cordia alliodora. The former, when pruned 2 or 3 times/a., can return to the litter layer the same amount of nutrients that are applied to coffee plantations via inorganic fertilizers, even at the highest recommended rates for Costa Rica of 270 kg.N, 60 kg.P, 150 kg.K/ha/a. The annual nutrient return in this litterfall represents 90–100 percent of the nutrient store in above-ground biomass of E. poeppigiana, and hence the consequences of competition with the crop should not be a serious limitation. In the case of C. alliodora, which is not pruned, nutrient storage in the tree stems, especially of K, is a potential limiting factor to both crop and tree productivity.It is concluded that, in fertilized plantations of cacao and coffee, litter productivity is a more important shade tree characteristic than N fixation.An early version of this review was presented at the CATIE-IUFRO meeting Los Arboles de Uso Multiple en Sistemas Agroforestales, June 1985, Turrialba, Costa Rica.  相似文献   

2.
Sap flows of coffee (Coffea arabica L. cv ‘Costa Rica 95’) and associated timber trees (Eucalyptus deglupta or Terminalia ivorensis) or leguminous tree (Erythrina poeppigiana) were measured simultaneously during 12 months in 4-year-old coffee agroforestry systems in sub-optimal ecological conditions of Costa Rica. In the wet period, coffee and shade tree transpiration followed the daily patterns of photosynthetic photon flux density (PPFD) and reference evapotranspiration (ETo) while their transpiration was restricted at higher air VPD values (>1.5 kPa) registered during the dry period. Coffee transpired more per unit leaf area in full sun than under shade, an indication of higher environmental coffee stress in non shaded conditions. Nonetheless, coffee daily water consumption per hectare was generally higher under shade than in full sun due higher vegetative growth of shade-grown coffee plants. Minimum and maximum daily transpiration were 0.74 and 4.08 mm for coffee, 0.35 and 1.06 mm for E. deglupta, 0.70 and 2.10 mm for T. ivorensis and 0.13 and 0.79 mm for E. poeppigiana. Estimation of the annual combined water transpiration by coffee and shade trees was 20–250% higher than that of coffee grown in full sun. Nevertheless, there was no evidence that water use by associated trees decreased soil water availability for coffee and hence limited coffee transpiration in the dry season due to its relatively short length (3 months) and the high annual rainfall (over 3100 mm). In the sub-optimal, low altitude conditions of this experiment, E. deglupta was the optimum shade species as it maintained a more constant shade level throughout the year and ensured a better protection to coffee underneath than T. ivorensis and E. poeppigiana which underwent a complete defoliation during the adverse meteorological conditions of the dry period.  相似文献   

3.
Acetylene reduction activity by root nodules of the legumeErythrina poeppigiana, growing as shade tree in a Costa Rican coffee plantation, was estimated. The mean activity found was 15.7 nmole C2H4 · mg (dry weight)–1 · h–1. Root nodules collected at different distances from theErythrina stem showed the same activity per dry weight unit. However, as the biomass of the nodules was highest near the stem, was the acetylene reduction activity (expressed per soil volume) maximal near theErythrina stem and declined with distance.  相似文献   

4.
The impact of Erythrina poeppigiana on soil characteristics, at three different positions relative to the shade tree and from three different soil depths, was evaluated in pairs of comparable Costa Rican coffee farms (organic and conventional) in 2000 and 2004. In the conventional system at 0–5 cm, higher C and N concentrations were found close to the shade tree versus the positions 2 m from the trunk (5.04 vs. 4.18%). This positive effect could influence only 20% of the farm area when high population of E. poeppigiana were used. This finding highlighted the importance of E. poeppigiana in maintaining SOM levels. In contrast, the organic system showed similar C and N concentrations for all positions probably due to an even distribution of pruning residues and to the use of organic amendments. A trend to higher total C and N concentrations for organic farms in comparison to conventional farms was found. No significant temporal changes in soil C or N concentrations were found between 2000 and 2004.  相似文献   

5.
The potential of allye cropping systems to sustain a high productivity with low external inputs and the reduction of maize/weed competition through weed suppression in different alley cropping and sole-cropped mulched systems was studied in Costa Rica at CATIE. Data were recorded eight years after establishment of the experiment. Plant residues ofErythrina poeppigiana trees (10 t/ha dry matter) planted at 6 by 3 m reduced weed biomass by 52%, whileGliricidia sepium trees (12 t/ha dry matter) planted at 6 by 0.5 m reduced weed biomass by 28%, in comparison to controls.Erythrina had a considerable impact on grass weeds, whileGliricidia reduced the incidence of some dicot weeds. Weed competition significantly reduced maize yield in all systems. Nevertheless weed suppression contributed to the higher maize grain yield underErythrina andGliricidia alley cropping of 3.8 t per hectare as opposed to the unmulched control yield of 2.0 t per hectare.  相似文献   

6.
Predictive models were developed for Cordia alliodora branch and Theobroma cacao branch or leaf biomass,based on branch basal areas (r2 0.79) but the model of C. alliodora leaf biomass, although significant, was of very low accuracy (r2 = 0.09) due to annual leaf fall. At age 10 years, shade tree stem biomass accounted for 80% of the total above-ground biomass of either tree. However, between the ages of 6 and 10 years, the biomass increment of T. cacao branches (3–4t.ha–1.a–1) was similar to that of the shade tree stems. During the same period, the net primary productivity was 35 and 28 t.ha–1.a–1, for the Erythrina poepigiana and and C. alliodora systems, respectively.Cocoa production under either of the shade trees C. alliodora or E. poeppigiana was 1000 kg.ha–1.a–1 (oven-dry; ages 6–10 yr). During the same period, C. alliodora timber production was 9 m3.ha–1.a–1 whilst the leguminous shade tree E. poeppigiana does not produce timber. Litterfall over the same 5 years, including crop and/or shade tree pruning residues, averages 11 and 23 t.ha–1.a–1, respectively. The main difference was due to E. poeppigiana pruning residues (10t.ha–1.a–1).Soil organic material reserves (0–45 cm) increased over 10 years from 198 to 240 t.ha–1 in the E. poeppigiana plots and from 168–184 t.ha–1 in the C. alliodora plots. These values, together with the productivity indices presented, provide evidence that the systems are sustainable.For economic reasons, the use of C. alliodora is recommended under the experimental conditions. however, on less fertile soils without fertilization, the greater biomass and hence nutrient return to the soil surface under E. poeppigiana, might make this the preferable shade tree.  相似文献   

7.
Quality is an important attribute of coffee. Therefore it is important to understand the effect of overstory trees not only on the environment and long-term coffee production, but also on the quality of coffee grown underneath the trees. This study compared coffee quality of Coffea arabica L. vars. Caturra and Catimor 5175 under different levels of shade in a low-elevation, sub-optimal environment for coffee in Costa Rica. Fruit weight and bean size increased significantly when shade intensity was increased from 0% to more than 80% under unpruned Erythrina poeppigiana. While large beans (diameter > 6.7 mm) accounted for 49 and 43% of the coffee from unshaded Caturra and Catimor, respectively, these proportions increased to 69 and 72% under dense permanent shade. This suggested a stronger shade benefit for Catimor than for Caturra. The conversion percentages from fresh-weight coffee fruits to dry-weight green coffee for export were not affected by the treatments. A blind tasting experiment showed consistent shade-induced improvements in appearance of green and roasted coffee as well as in acidity and body of the brew for both varieties. The effect of shade on aroma of the brew was neutral for Caturra and slightly negative for Catimor. It is hypothesized that, in the sub-optimal (low-altitude) coffee-zone studied, shade promotes slower and more balanced filling and uniform ripening of berries, thus yielding a better-quality product than unshaded coffee plants. Shade experiments along environmental gradients should help to validate this conjecture and its relative importance in different coffee-zones.  相似文献   

8.
A preliminary nutrient cycling study quantified total and temporal nutrient inputs via litterfall and pruning residues in two agroforestry systems: (1) Coffea arabica (perennial crop)-Erythrina poeppigiana (leguminous shade tree); and (2) C. arabica-E. poeppigiana-Cordia alliodora with emphasis on the effect of the timber tree C. alliodora. The total annual input of litterfall plus pruning residues was similar in both associations. Total annual input from E. poeppigiana was less than half in the association with C. alliodora than without, but the litterfall from this latter species compensated for the loss. Large differences in the total annual nutrient input of K, Ca and Mg was found between associations, but not for N or P. The amount of nutrients recycled by the associated trees reached the recommended level of fertilizer required for coffee production. The inclusion of C. alliodora within the C. arabica-E. poeppigiana association resulted in a more evenly distributed annual nutrient input.  相似文献   

9.
Fine root dynamics of shaded cacao plantations in Costa Rica   总被引:1,自引:0,他引:1  
Root turnover may contribute a significant proportion of recycled nutrients in agroforestry systems and competition between trees and crops for nutrients and water may depend on temporal fine root regrowth patterns. Fine root biomass ( 2 mm) and fine root productivity were measured during one year in plantations of cacao (Theobroma cacao) shaded by Erythrina poeppigiana or Cordia alliodora planted on a deep alluvial soil in Turrialba, Costa Rica. Fine root biomass of approximately 1.0 Mg ha–1 varied little during the year with maximum values at the beginning of the rainy season of 1.85 Mg ha–1 in the cacao-C. alliodora system compared to 1.20 Mg ha–1 for cacao-E. poeppigiana. Fine root productivity of C. alliodora and E. poeppigiana (maximum of 205 and 120 kg ha–1 4 week–1, respectively) was greatest at the end of the rainy season, while for cacao it was greatest at the beginning of the rainy season (34–68 kg ha–1 4 week–1), which suggests that if nutrient competition occurs between the shade trees and the cacao, it could be minimized by early fertilization during the beginning of the rains immediately after pruning the shade trees. Annual fine root turnover was close to 1.0 in both systems. Assuming that fine root biomass in these mature plantations was constant on an annual basis, nutrient inputs from fine root turnover were estimated as 23–24 (N), 2 (P), 14–16 (K), 7–11 (Ca) and 3–10 (Mg) kg ha–1 year–1, representing 6–13% and 3–6% of total nutrient input in organic matter in the C. alliodora and E. poeppigiana systems, respectively.  相似文献   

10.
The relationship of branch cross sectional area (CS) to leaf biomass (LM) and leaf area (LA) was studied in three agroforestry tree species,Calliandra calothyrsus Maissn.,Erythrina berteroana Urban andErythrina poeppigiana (Walpers) O.F. Cook, to develop a non-destructive method for the estimation of LM and LA for trees managed with periodic pruning. Variation in these relationships was observed according to the bifurcation level and, in theErythrina spp., by clone. All the relationships were linear except the CS-LM relation in small branches ofE. poeppigiana, where it was initially exponential. At main branch level the relationship of CS to LM and LA was linear in all cases but the regression parameter values varied between species and clones, with determination coefficient (R2) 0.88–0.99. It was concluded that the ratio of main branch CS to LM and LA can be used for non-destructive estimation of the latter variables. The method has the additional benefit that the regression parameter value reflects the allocation of dry matter within a tree and, consequently, may give indications about its possible uses in different agroforestry systems.Work carried out at the Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, Costa Rica.  相似文献   

11.
Models for cycles for organic matter and nutrients element (N, P, K, Ca and Mg) are presented for the agroforestry systems of cacao (Theobroma cacao) withCordia alliodora orErythrina poeppigiana in Turrialba, Costa Rica.For the models, system reserves (soil, humus, vegetation divided into leaves, branches, stems, fine roots, fruits) and transference between compartments (production and decomposition of litter residues) inputs (fertilizer, rainfall) and outputs (harvests) of the system are considered.The implications of the models are discussed in detail.Aspects of net primary production in the systems studied are considered.N fixation is calculated on the basis of balances. Analysis of soil water showed high variations that coincided with rainfall patterns and pruning of theE. poeppigiana.For part I see Vol. 4, No. 3, 1986 For part II see this issueAgroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesellschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

12.
Models for cycles for organic matter and nutrients element (N, P, K, Ca and Mg) are presented for the agroforestry systems of cacao (Theobroma cacao) withCordia alliodora orErythrina poeppigiana in Turrialba, Costa Rica. For the models, system reserves (soil, humus, vegetation divided into leaves, branches, stems, fine roots, fruits) and transference between compartments (production and decomposition of litter residues) inputs (fertilizer, rainfall) and outputs (harvests) of the system are considered. The implications of the models are discussed in detail. Aspects of net primary production in the systems studied are considered. N fixation is calculated on the basis of balances. Analysis of soil water showed high variations that coincided with rainfall patterns and pruning of theE. poeppigiana. For part I see Vol. 4, No. 3, 1986 For part II see this issue Agroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesellschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

13.
During 7 years (1979–1985) cacao harvests (beans and husks) have been recorded for the agroforestry systems ofTheobroma cacao underCordia alliodora andErythrina poeppigiana shade trees. The mean oven dry cacao yields were 626 and 712 kg.ha–1.a–1 cocoa beans underC. alliodora andE. poeppigiana respectively. Harvests have gradually increased over the years and the plantation has now reached maturity.Annual extraction of N, P, K, Ca and Mg in fruits, which is relatively small, was calculated on the basis of chemical analyses. The following average values were found (kg.ha–1.a–1): At the age of 8 years, theC. alliodora trees have reached 26.7 cm diameter (DBH) and 14.0 m in height. Mean annual growth (from age 5 to 7) is 14.6 m3.ha–1.a–1.Natural plant residue production has been measured for 4 years (Nov. 1981–Oct. 1985). UnderE. poeppigiana it has reached a value of 8.91 t.ha–1.a–1 and underC. alliodora 7.07 t.ha–1.a–1. The shade trees have contributed 57 and 47% respectively. Transference and decomposition rates are high and important in the nutrient cycles.The nutrient content of the litter was analysed and corresponding average yearly transfers were (kg.ha–1.a–1): For part I see Vol. 4, No. 3, 1986.Agroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesselschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

14.
During 7 years (1979–1985) cacao harvests (beans and husks) have been recorded for the agroforestry systems ofTheobroma cacao underCordia alliodora andErythrina poeppigiana shade trees. The mean oven dry cacao yields were 626 and 712 kg.ha−1.a−1 cocoa beans underC. alliodora andE. poeppigiana respectively. Harvests have gradually increased over the years and the plantation has now reached maturity. Annual extraction of N, P, K, Ca and Mg in fruits, which is relatively small, was calculated on the basis of chemical analyses. The following average values were found (kg.ha−1.a−1): At the age of 8 years, theC. alliodora trees have reached 26.7 cm diameter (DBH) and 14.0 m in height. Mean annual growth (from age 5 to 7) is 14.6 m3.ha−1.a−1. Natural plant residue production has been measured for 4 years (Nov. 1981–Oct. 1985). UnderE. poeppigiana it has reached a value of 8.91 t.ha−1.a−1 and underC. alliodora 7.07 t.ha−1.a−1. The shade trees have contributed 57 and 47% respectively. Transference and decomposition rates are high and important in the nutrient cycles. The nutrient content of the litter was analysed and corresponding average yearly transfers were (kg.ha−1.a−1): For part I see Vol. 4, No. 3, 1986. Agroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesselschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

15.
The advantages of associating shade trees in coffee agroforestry systems (AFS) are generally thought to be restricted mostly to poor soil and sub-optimal ecological conditions for coffee cultivation whereas their role in optimal conditions remains controversial. Thus, the objective of this study was to investigate, under the optimal coffee cultivation conditions of the Central Valley of Costa Rica, the impact of Inga densiflora, a very common shade tree in Central America, on the microclimate, yield and vegetative development of shaded coffee in comparison to coffee monoculture (MC). Maximum temperature of shaded coffee leaves was reduced by up to 5°C relative to coffee leaf temperature in MC. The minimum air temperature at night was 0.5°C higher in AFS than air temperature in MC demonstrating the buffering effects of shade trees. As judged by the lower relative extractable water (REW) in the deep soil layers during the dry season, water use in AFS was higher than in MC. Nevertheless, competition for water between coffee and associated trees was assumed to be limited as REW in the 0–150 cm soil layer was always higher than 0.3 in shaded coffee compared to 0.4 in monoculture. Coffee production was quite similar in both systems during the establishment of shade trees, however a yield decrease of 30% was observed in AFS compared to MC with a decrease in radiation transmittance to less than 40% during the latter years in the absence of an adequate shade tree pruning. As a result of the high contribution (60%) of shade trees to overall biomass, permanent aerial biomass accumulation in AFS amounted to two times the biomass accumulated in MC after 7 years. Thus provided an adequate pruning, Inga-shaded plantations appeared more advantageous than MC in optimal conditions, especially considering the fact that coffee AFS provides high quality coffee, farmers’ revenue diversification and environmental benefits.  相似文献   

16.
Diversity of hopper species (suborder Auchenorryncha) in coffee (Coffea arabica) plantations with no shade (C) was compared with the diversity in plantations with shade of either poró (Erythrina poeppigiana) (CP) or poró plus laurel (Cordia alliodora) (CPL) in Turrialba, Costa Rica. Species-abundance and rarefaction curves were plotted for each system, and indices of diversity (Shannon-Wiener), dominance (Simpson), species evenness, and similarity (Jaccard) were calculated. The majority of hopper species and individuals belonged to the Cicadellidae family. A particular species dominated in each system: Graphocephala sp. (C), Fusigonalia lativittata (CP) and Hebralebra nicaraguensis (CPL). The richness and diversity of hopper species were highest in the CP system, followed by the CPL and C systems. Species similarity was closest between the CP and CPL systems, but varied considerably according to plant component and geographic location of each plot. Even though hoppers have not been reported as coffee pests in Mesoamerica, some of them cause serious problems elsewhere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
We developed site-specific allometric models for Leucaena leucocephala × pallida var. KX2 trees in a shaded coffee agroecosystem in Hawaii to predict above- and belowground biomass and the regrowth potential of pollarded trees. Models were used to compare tree growth rates in an experimental agroforestry system with different pollarding frequencies and additions of tree pruning residues as mulch. For all allometric equations, a simple power model (Y = aXb) provided the optimal prediction of biomass or regrowth after pollarding. For aboveground biomass components (stem, branches, leaves, and seed and pods), stem diameter alone was the best predictor variable. Stump diameter provided the best prediction of coarse root biomass and aboveground regrowth after pollarding. Predictions of biomass from generalized allometric models often fell outside the 95% confidence intervals of our site-specific models, especially as biomass increased. The combination of pollarding trees once per year plus the addition of tree mulch resulted in the greatest aboveground regrowth rates as well as accumulation of biomass and C in the stump plus coarse roots. Although optimal prediction required the development of site-specific allometric relationships, a simple power model using stem or stump diameter alone can provide an accurate assessment of above- and belowground tree biomass, as well as regrowth potential under specific management scenarios.  相似文献   

18.
Allometric models for dominant shade tree species and coffee plants (Coffea arabica) were developed for coffee agroforestry systems in Matagalpa, Nicaragua. The studied shade tree species were Cordia alliodora, Juglans olanchana, Inga tonduzzi and I. punctata. The models predict aboveground biomass based on diameter at breast height (for trees), and the stem diameter at a height of 15 cm and plant height (for coffee plants). In addition, the specific gravity of the studied species was determined.The total aboveground biomass of the shade trees varied between 3.5 and 386 kg per tree, and between 0.005 and 2.8 kg per plant for coffee. The aboveground biomass components (foliage, branch, and stem) are closely related with diameter at breast height (r > 0.75). The best-fit models for aboveground biomass of the shade trees were logarithmic, with adjusted R 2 between 0.71 and 0.97. In coffee plants, a high correlation was found (r = 0.84) with the stem diameter at 15 cm height, and the best-fit model was logarithmic, as well. The mean specific gravity was 0.52 (± 0.11) for trees and 0.82 (± 0.06) for coffee plants.  相似文献   

19.
Coffee (Coffea canephora var robusta) is grown in Southwestern Togo under shade of native Albizia adianthifolia as a low input cropping system. However, there is no information on carbon and nutrient cycling in these shaded coffee systems. Hence, a study was conducted in a mature coffee plantation in Southwestern Togo to determine carbon and nutrient stocks in shaded versus open-grown coffee systems. Biomass of Albizia trees was predicted by allometry, whereas biomass of coffee bushes was estimated through destructive sampling. Above- and belowground biomass estimates were respectively, 140 Mg ha−1 and 32 Mg ha−1 in the coffee–Albizia association, and 29.7 Mg ha−1 and 18.7 Mg ha−1 in the open-grown system. Albizia trees contributed 87% of total aboveground biomass and 55% of total root biomass in the shaded coffee system. Individual coffee bushes consistently had higher biomass in the open-grown than in the shaded coffee system. Total C stock was 81 Mg ha−1 in the shaded coffee system and only 22.9 Mg ha−1 for coffee grown in the open. Apart from P and Mg, considerable amounts of major nutrients were stored in the shade tree biomass in non-easily recyclable fractions. Plant tissues in the shaded coffee system had higher N concentration, suggesting possible N fixation. Given the potential for competition between the shade trees and coffee for nutrients, particularly in low soil fertility conditions, it is suggested that the shade trees be periodically pruned in order to increase organic matter addition and nutrient return to the soil. An erratum to this article can be found at  相似文献   

20.
Forage and wood yield of Acacia cyanophylla, also known as Acacia saligna, was studied in a 300–400 mm precipitation zone in Tunisia. Yields were measured during and after drought. This short (2–8 m) evergreen leguminous tree is used as a forage drought reserve in frost free regions where mean annual precipitation exceeds 250 mm. The standing crop of leafy forage builds up year after year for at least four years or until the tree is cut. It rapidly regrows after cutting from coppice shoots. The leaves provide high protein forage for sheep and goats during the long dry summer season typical of the Mediterranean climate as well as emergency forage during drought. The tree is used to stabilize moving sand dunes, and as a windbreak to protect cropland. It also provides fuelwood and increasaes soil nitrogen by fixation. The need for supplemental irrigation during establishment is a major constraint. Research in the 350 mm precipitation zone of Tunisia found 3.2 year old trees to yield over 1400 kg of forage standing crop per hectare after a severe drought. Trees harvested at 2.5 years of age in May, during the worst drought in over 30 years, yielded a standing forage crop of 724 kg per hectare. Forage regrowth 8 months after cutting and 4 months after rains returned was 700 kg/ha. The forage standing crop for trees harvested only once during the 3.2 year period was double the amount of forage regrowth from trees harvested the previous year, but mean annual forage yield similar. This demonstrates that it is possible for forage to be conserved as a living forage reserve for later use during drought. Total wood yield was only 1621 kg/ha for trees cut twice compared to 3683 kg/ha for trees cut only once. Annual cutting will substantially reduce the amount of forage available during drought and reduce the production of fuelwood. It may also reduce the vigor, productivity and life of the tree. Acacia cyanophylla alley cropped on cereal farmland can protect the soil from erosion, protect the associated crop from wind damage, fix nitrogen, provide fuelwood and provide a reserve of high quality forage for use during drought. This work was supported by the Government of Tunisia and the U.S.A.I.D. Tunisia Range Development and Management Project (664-0312.8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号