首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was conducted to determine the genetic variation among diploid perennial ryegrass (Lolium perenne L.) varieties for sward structural characteristics considered to be important for intake by cattle. Assessments were made between June and September in 2000 and 2001. Six varieties (Abergold, Respect, Agri, Herbie, Barezane and Barnhem) were subjected to a cutting experiment where swards were cut after 3 to 4 weeks of regrowth during the growing season. The variables, measured in three 2‐week periods, were herbage mass of dry matter (DM), sward surface height (SSH), bulk density, proportion of green leaf, tiller density, tiller weight, extended tiller height, length of sheath and length of leaf blade. Significant differences among varieties were found in both years for herbage mass of DM, SSH, bulk density, proportion of green leaf, tiller density, tiller weight and length of sheath. The results show that there is significant genetic variation among diploid perennial ryegrass varieties for sward characteristics important for intake during grazing.  相似文献   

2.
There is scope of increasing the nitrogen (N) efficiency of grazing cattle through manipulation of the energy and N concentrations in the herbage ingested. Because of asymmetric grazing by cattle between individual plant parts, it has not yet been established how this translates into the concentrations of N and water‐soluble carbohydrates (WSC) in the herbage ingested. A model is described with the objective of assessing the efficacy of individual tools in grassland management in manipulating the WSC and N concentrations of the herbage ingested by cattle under strip‐grazing management throughout the growing season. The model was calibrated and independently evaluated for early (April), mid‐ (June, regrowth phase) and late (September) parts of the growing season. There was a high correlation between predicted and observed WSC concentrations in the ingested herbage (R2 = 0·78, P < 0·001). The correlation between predicted and observed neutral‐detergent fibre (NDF) concentrations in the ingested herbage was lower (R2 = 0·49, P < 0·05) with a small absolute bias. Differences in the N concentration between laminae and sheaths, and between clean patches and fouled patches, were adequately simulated and it was concluded that the model could be used to assess the efficacy of grassland management tools for manipulating the WSC and N concentrations in the ingested herbage. Model application showed that reduced rates of application of N fertilizer and longer rotation lengths were effective tools for manipulating herbage quality in early and mid‐season. During the later part of the growing season, the large proportion of area affected by dung and urine reduced the effect of application rate of N fertilizer on herbage quality. In contrast, relative differences between high‐sugar and low‐sugar cultivars of perennial ryegrass were largest during this period. This suggests that high‐sugar cultivars may be an important tool in increasing N efficiency by cattle when risks of N losses to water bodies are largest. The model output showed that defoliation height affects the chemical composition of the ingested herbage of both the current and the subsequent grazing period.  相似文献   

3.
The fatty acid (FA) concentration of herbage and lipid metabolism in silage, mainly oxidation and lipolysis, of different species (perennial ryegrass, red clover and white clover) and three cultivars of white and red clover at three cutting dates in the growing season (April, July and October) were studied. FA concentration and composition was strongly affected by species and cutting date. Perennial ryegrass had lower concentrations of C16:1, C18:0, C18:1 and C18:2 than red and white clover. Within red and white clover, the effect of cultivar was small. Oxidation of C18:3 during wilting was different between species and cutting date despite similar wilting conditions. Lipolysis in silage was also influenced by cutting date, species and to some extent by cultivar. Furthermore, in some cuts silages of red and white clover displayed a lower lipolysis than silage of perennial ryegrass. On average, over the three cutting dates proportionately 0·903, 0·864 and 0·857 of the membrane lipids in perennial ryegrass, red clover and white clover were hydrolysed during ensiling. In red clover this could be due to the lipid-protecting properties of polyphenol oxidase (PPO) activity. This was not observed in perennial ryegrass or white clover. Nevertheless, differences in lipolysis in silage between cultivars of red clover were not correlated with PPO activity.  相似文献   

4.
There are potential advantages and disadvantages associated with grazing spring perennial ryegrass swards designated for first‐cut silage. These may differ for intermediate‐heading (0·50 ear emergence in the second half of May) and late‐heading (0·50 ear emergence in the first half of June) cultivars. The interactions between cultivar type, spring‐grazing frequency, silage‐harvest date and year were examined in an experiment with a randomized complete block (n = 4) design with a factorial arrangement of treatments, conducted in Ireland. The factors were (i) two perennial ryegrass mixtures: intermediate‐ vs. late‐heading cultivars, (ii) three spring‐grazing regimes: no grazing, grazing in mid‐March or grazing in both mid‐March and mid‐April, (iii) four first‐cut silage‐harvest dates that were at c. 10‐d intervals from 19 May and (iv) 2 years (1998 and 1999). The effects of cultivar mixture on herbage mass of the swards in spring were small and not statistically significant. The late‐heading cultivars provided lower amounts of herbage dry matter for harvesting for first‐cut silage but herbage with higher in vitro organic digestibility values compared with intermediate‐heading cultivars. To achieve the same amount of herbage for silage, the late‐heading cultivars needed to be harvested 8 d later than the intermediate‐heading cultivars. Even with this delay in harvest date, the late‐heading cultivars had higher in vitro organic digestibility values than the intermediate‐heading cultivars. The late‐heading cultivars could be harvested up to 30 d later and produce a higher amount of herbage for first‐cut silage with similar digestibility values compared with the intermediate‐heading cultivars.  相似文献   

5.
The effect of three spring management treatments on the vertical distribution of dry‐matter (DM) yield and morphology of four cultivars of perennial ryegrass (Fennema, Corbet, Foxtrot, Melle) in mid‐season was investigated. The management treatments commenced with cuts on 15 February (Early), 1 March (Medium) and 29 March (Late), each followed by a 28‐day re‐growth period until the next cut and then further 21‐day re‐growth periods after each subsequent cut. This created four mid‐season measurement periods across the management treatments at cut 3 (5 April–17 May), cut 5 (17 May–28 June), cut 6 (7 June–19 July) and cut 7 (28 June–9 August). Tiller and sheath height and their ratio, and leaf lamina length, were measured prior to the four mid‐season cuts (cuts 3, 5, 6 and 7) when measurements of DM yield and proportions of leaf, stem and dead material in three herbage horizons (Lower, 0–8 cm; Middle, 8–15 cm; Upper, >15 cm) were made. There were significant responses in mid‐season to the management treatments involved complex interactions between management treatment and cutting date, which modified seasonal patterns in DM yield and leaf:stem ratio. There were significantly greater tiller heights, tiller:sheath ratios and leaf lamina lengths but lower sheath heights from the Early to Late management treatments. The greatest responses in morphological characteristics occurred in the Middle horizon compared with either the Lower (predominately stem and pseudo‐stem), or the Upper (predominately leafy) horizons. Distribution of DM yield between Middle and Lower horizons but not overall DM yields was significantly affected by management treatment. Morphological differences between cultivars were mostly in the Middle horizon and ranking of the cultivars was similar across the management treatments. The different responses of cultivars Fennema and Melle showed that genotype had a significant effect regardless of management. The leafiest mid‐season swards were achieved by delaying initial spring defoliation in the cultivar which had the lowest stem production.  相似文献   

6.
This 6‐year experiment quantified the impacts of management factors on red clover yield, persistence, nutritive value and ensilability, and compared these with perennial ryegrass receiving inorganic N fertilizer. Within a randomized complete block design, field plots were used to evaluate a 2 (cultivar, Merviot and Ruttinova) × 2 (alone and with perennial ryegrass) × 2 (0 and 50 kg fertilizer N ha?1 in mid‐March) × 2 (harvest schedule) combination of the factors relating to red clover, and a 2 (harvest schedule) × 4 (0, 50, 100 and 150 kg N ha?1 for each cut) combination of the factors relating to perennial ryegrass. The early and late harvest schedules both involved four cuts per year, but commenced a fortnight apart. Red clover treatments averaged 14 906 kg dry matter (DM) ha?1 per year, whereas perennial ryegrass receiving 600 kg inorganic N fertilizer per year averaged 14 803 kg DM ha?1 per year. There was no yield decline evident across years despite a decline in the proportion of red clover. The early harvest schedule and sowing ryegrass with red clover increased the herbage yield and digestibility. March application of fertilizer N to red clover treatments reduced the annual yield. Early harvest schedule increased and both fertilizer N and sowing with ryegrass decreased the proportion of red clover. Sowing with ryegrass improved the indices of ensilability, but reduced the crude protein content. Both red clover cultivars had similar performance characteristics. A selected red clover‐based treatment, considered to exhibit superior overall production characteristics, outyielded N‐fertilized perennial ryegrass in mid‐season. However, it had poorer digestibility and ensilability indices.  相似文献   

7.
Three experiments were carried out on perennial ryegrass‐dominant swards to provide a basis for recommendations for the limits to (a) building up and timing of utilization of a herbage ‘bank’ for out‐of‐season grazing and (b) duration and intensity of early spring grazing in the United Kingdom and Ireland. In experiment 1, the effect of regrowth interval (from 7 September, 20 October, 17 November or 15 December) in autumn on herbage accumulation, leaf turnover and on subsequent spring growth was investigated. Swards regrown from early September reached maximum herbage mass (about 3 t ha–1 DM) and leaf lamina content in mid‐November, by which time senescence rate exceeded rate of production of new leaves. New leaf production and senescence rates were greater in swards remaining uncut until December than in those cut in October or November. Time of defoliation up to December had no effect on spring herbage mass in the subsequent spring. Defoliating in March reduced herbage mass in late May by less than 20%. Experiment 2 investigated the progress in herbage growth and senescence in swards regrowing from different times in late summer and autumn to produce herbage for utilization beyond the normal grazing season. Treatments in a randomized block design with three replicates were regrowths from 19 July, 8 August, 30 August and 20 September. Based on a lower ceiling of leaf and total herbage mass being reached with progressively later regrowths, beyond which leaf senescence generally exceeded leaf production and herbage mass declined, it was concluded that currently recommended rotation lengths for this period should extend from 3 weeks in late July to 8 weeks for swards previously grazed in mid‐September. In both experiments, leaf senescence commenced earlier (by one leaf‐age category) than previously published estimates and so brought forward the time at which senescence rates balanced leaf growth rates. In experiment 3, designed to evaluate the effect of daily grazing period and intensity in early spring on herbage regrowth, dairy cows grazed successive plots (replicates) for 2 or 4 h each day at two intensities (target residual heights of 5 or 7 cm) in March to mid‐April. Regrowth rate was similar in all treatments including the ungrazed control, despite soil moisture content being relatively high on occasions. Tiller density was significantly reduced in May by grazing plots in early or mid‐April. It is concluded that in autumn there are limits to which rotation lengths should be extended to produce herbage for out‐of‐season grazing owing to attainment of ceiling yields. Although utilization in early spring may reduce herbage availability in spring, out‐of‐season utilization need not reduce herbage growth rates in early spring.  相似文献   

8.
Abstract Three experiments were conducted to evaluate the effect of a stay‐green trait in perennial ryegrass (Lolium perenne) on concentrations of fatty acids as well as their susceptibility to peroxidation during wilting and to biohydrogenation by rumen bacteria. Fatty acid concentrations were recorded in stay‐green and corresponding normal perennial ryegrass selection lines over eight cuts during 1998. There was a progressive increase in total fatty acid concentrations [from 20·8 to 34·6 g kg?1 dry matter (DM)] and the proportion of fatty acids as α‐linolenic acid (from 0·62 to 0·70 g g?1) from early to late season. A second study compared fatty acid concentrations in stay‐green and normal herbage that was wilted for up to 48 h. There was a loss of 0·2–0·3 g g?1 fatty acids during 48 h of wilting and a small reduction in the rate of loss of α‐linolenic acid in stay‐green perennial ryegrass compared with normal herbage (0·223 vs. 0·290 g g?1 lost after 48 h). Stay‐green and normal perennial ryegrasses were offered to grazing lambs in a third study. Higher concentrations of trans‐vaccenic acid and conjugated linoleic acid in plasma from lambs offered less mature grass in the pre‐experimental period than during the experiment are considered to reflect a greater supply of precursor (linoleic acid). There were higher concentrations of conjugated linoleic (0·0070 vs. 0·0039 g l?1) and linoleic (0·092 vs. 0·070 g l?1) acids, without an increase in trans‐vaccenic acid, in plasma from lambs grazing stay‐green perennial ryegrass than normal perennial ryegrass. This suggests that the stay‐green trait affected the rate of degradation of fatty acids in the rumen. These results demonstrate the potential for obtaining proportionately large differences in fatty acid profiles of ruminant products by altering grassland management.  相似文献   

9.
Four perennial ryegrass (Lolium perenne L.) cultivars were compared for differences in herbage production, nutritive value and herbage intake of dry matter (DM) during the summers of 2002 and 2003. Two paddocks were sown with pure stands of four cultivars in a randomized block design with three replicates. Each plot was subdivided into fourteen subplots (22 m × 6 m) which were grazed by one cow during 24 h. Twelve lactating dairy cows were assigned to one cultivar for a period of 2 weeks in a 4 × 4 Latin square experimental design; the experiment lasted 8 weeks in each year. Sward structure (sward surface height, DM yield, green leaf mass, bulk density and tiller density) and morphological characteristics were measured. The ash, neutral‐detergent fibre, acid‐detergent lignin, crude protein and water‐soluble carbohydrate concentrations, and in vitro digestibility of the herbage were measured. The sward was also examined for infestation by crown rust (Puccinia coronata f. sp. lolii). Herbage intake of dairy cows was estimated using the n‐alkane technique. Cultivar differences for all sward structural characteristics were found except for bulk density and tiller density in 2003. Cultivars differed for proportions of pseudostem, stem (in 2003 only) and dead material. The chemical composition of the herbage was different among cultivars, with the water‐soluble carbohydrate concentration showing large variation (>0·35). Cultivars differed in susceptibility to crown rust. Herbage intake differed among cultivars in 2002 (>2 kg DM) but not in 2003. Herbage intake was positively associated with sward height, DM yield and green leaf mass. Canopy morphology did not affect herbage intake. Crown rust affected herbage intake negatively. It was concluded that options for breeders to select for higher intake were limited. High‐yielding cultivars and cultivars highly resistant to crown rust were positively related with a high herbage intake.  相似文献   

10.
Milk fatty acids (FA) were compared in mid‐lactation dairy cows in four feeding systems combining grazing management and supplementation. The four treatments were factorial combinations of compressed herbage grazed to 3·7 or 4·6 cm post‐grazing height, with or without concentrate feeding (3·6 kg cow?1 d?1). Milk yield and composition were measured for four groups of eight Friesian × Jersey dairy cows over 3 weeks in mid‐lactation for cows that had grazed treatments for 64 d from early spring. Milk yield was higher in cows fed concentrate plus herbage (23·9 kg d?1 cow?1) than cows fed herbage only (20·3 kg d?1 cow?1). Milk fat percentage was higher in cows fed herbage only (5·5%) than that fed herbage plus concentrate (5·1%). Milk protein percentage was higher in cows fed herbage plus concentrate (4·0%) than that fed herbage only (3·7%). The concentrations of conjugated linoleic acids c9, t11, C18:0, C18:1 t11 and C18:2 t9, c12 FA were lower where concentrate was fed. The concentrations of C18:1 t10, C18:1 t5, t8 and C18:2 c9, c12 FA were higher where concentrate was fed. The concentrations of C18:1 c6, C18:1 c9, C18:1 t9 and C18:3 c6,9,15 were unaffected by concentrate feeding. Post‐grazing herbage height had no significant effect on milk yield or concentration of milk FA. Provided dairy cows are harvesting leafy material of similar nutrient and FA concentration, post‐grazing herbage height does not appear to alter milk FA and the supply of high energy concentrates is more influential on milk FA profiles.  相似文献   

11.
To support the further development of grazing practices for dairy production systems based on perennial ryegrass (Lolium perenne L.), allometric relationships among leaf‐stage categories and pseudostem were derived for perennial ryegrass tillers sampled from swards each month, from July 2008 to January 2010, within a dairy grazing‐system experiment in south‐west Victoria, Australia. The relative lamina mass of the first leaf that emerged on tillers following grazing (denoted L3) and the subsequent leaf to emerge (L2) was used as an indicator of the trajectory of regrowth. L2 was consistently 30–40% heavier than L3 during the period July–September (mid‐winter to early spring), but thereafter the difference between leaf stages lessened, and disappeared altogether in late spring. No substantial lag was observed in the rate of herbage accumulation during the early stages of regrowth of perennial ryegrass swards from 1500 kg DM ha?1 post‐grazing. Therefore, grazing at any time in the period between emergence of the second and third leaves after the previous defoliation event should lead to high efficiency of pasture harvest under most conditions. The dry‐matter digestibility (DMD) and crude protein (CP) content of the most recently emerged leaf (denoted L1) declined sharply during spring, whereas the DMD and CP content of older leaves were more consistent. Decision rules for grazing management should include sufficient flexibility to account for interactions between leaf stage and time of year in relative lamina mass and nutritive value.  相似文献   

12.
A comparison was made of the fatty acid composition and nutritive value of twelve cultivars of perennial ryegrass ( Lolium perenne L.) differing in heading date and ploidy level. The cultivars were sown in triplicate plots and three sequential cuts of herbage were taken at 20-d intervals during the late spring and early summer to describe the fatty acid composition and other measurements of nutritive value. Differences between cultivars were recorded for DM content ( P  <   0·01) and concentrations of gross energy, neutral-detergent fibre (NDF) and ash ( P  <   0·05). Diploid cultivars had a higher DM content and concentration of NDF ( P  <   0·01) than tetraploid cultivars whilst late-heading date cultivars had the lower NDF ( P  <   0·05), ADF and ash ( P  <   0·01) concentrations. There was variation between cultivars in fatty acid composition. Diploid cultivars had a higher concentration of C18:0 ( P  <   0·01) and C18:1 ( P  <   0·05) than tetraploid cultivars and late-heading date cultivars had the highest concentrations of total fatty acids, C16:0, C18:2 and C18:3 ( P  <   0·05). This was predominantly due to the cultivar Tyrella which is a diploid, late-heading cultivar. The study showed that some variation exists between perennial ryegrass cultivars in concentrations of polyunsaturated fatty acids, which may present opportunities to select for this trait, but further research on the developmental stages and degree of leafiness of cultivars is first required.  相似文献   

13.
In a 2‐year field experiment, morphological development and measures of the nutritive value of herbage for livestock during primary growth in Meadow foxtail, Tall oatgrass, Cocksfoot, Perennial ryegrass and Yorkshire fog were investigated. All measured variables were affected significantly by both species and sampling date, and their interaction (P < 0·001), in the period of primary growth. Changes with time in mean stage weight for Meadow foxtail and Cocksfoot were different from the other species due to their indeterminate growth habits. Mean stage weight of Tall oatgrass and Yorkshire fog increased more rapidly than that of Perennial ryegrass with time. Changes in mean stage weight with time were described by linear, parabolic and sigmoid relationships. Crude protein (CP) concentration of herbage was higher for Cocksfoot and Meadow foxtail than for Perennial ryegrass. A parabolic relationship of CP concentration with time was typical for all the species. Concentrations of neutral‐detergent fibre (NDF) and acid‐detergent fibre (ADF) in herbage of the species differed most during the mid‐period of primary growth. Their increases with time showed curvilinear (sigmoid and parabolic) relationships. Perennial ryegrass had lower concentrations of both NDF and ADF in herbage than the other species. Differences between the in vitro dry matter (DM) digestibility among the grasses increased in mid‐ and late periods of primary growth. Perennial ryegrass had higher values for in vitro DM digestibility but the difference from other species was small in the early period of primary growth and from cocksfoot in the late period of primary growth. In vitro DM digestibility showed, in most cases, a sigmoid and, in others, a linear decrease with time. Principal component analysis showed that perennial ryegrass and meadow foxtail were the most distinctive of the species in characteristics relating to morphological development and the nutritive value of herbage to livestock.  相似文献   

14.
Field indicators of forage nutritive value could help farmers with rapid management decisions to optimize timing and intensity of grazing and meet objectives regarding animal nutrition. The objective of this research was to evaluate the likely relationships among leaf blade nutritive value, herbage mass and leaf stage of pasture regrowth under different growing seasons and residual sward heights. Experiments were performed on perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) pastures during spring and summer of 2016. In both pastures, three residual sward height treatments (3, 6 and 12 cm) were imposed on plots arranged in a split plot design, replicated in three blocks. Sward plots were harvested 5–6 times at intervals spaced 7–10 days apart to measure herbage mass, plant morphology, neutral detergent fibre (NDF), and the 24-hr in vitro digestibility of NDF (NDFD) and dry matter (DMD) of leaf blades. Pastures showed strong (R2: .62 to .70), but variable, negative relationships between NDFD and herbage mass that varied with the rate at which pasture grew in each season of experimentation. Although there was a consistent NDFD decline as leaf stage of regrowth progressed (R2: .75 to .97), the NDFD also decreased as residual sward height increased, most notably in tall fescue. Additionally, findings indicate that the greater leaf length plasticity of tall fescue compared to residual sward heights may offer opportunities to manage both post- and pre-grazing targets to achieve tall fescue forages with a similar high nutritive value as perennial ryegrass. However, the evaluation of this hypothesis at the farm level and its impacts on animal intake and performance warrants further careful investigations.  相似文献   

15.
Plant breeding has developed perennial ryegrass varieties with increased concentrations of water‐soluble carbohydrates (WSCs) compared with conventional varieties. Water‐soluble carbohydrates are major metabolic and storage components in ryegrass. Therefore, if perennial ryegrass herbage is allowed to grow to greater heights it should contain higher water‐soluble carbohydrates concentrations, for example as under rotational grazing rather than continuous grazing by livestock. This study investigated this hypothesis and measured the performance of lambs grazed rotationally and continuously. Replicated plots of the variety AberDart (bred to express high WSC concentrations) or the variety Fennema were grazed by a core group of ten male Cheviot lambs for 10 weeks. Lambs were weighed and replicate forage samples were taken every 7 d. Concentrations of WSC in AberDart herbage were significantly (P < 0·05), but not substantially, higher than those in Fennema herbage. Rotational grazing did not increase the differential in WSC concentration between the AberDart and Fennema varieties. However, there was a tendency (P = 0·07) for lambs rotationally grazing the AberDart swards to have a higher final live weight than lambs grazing the Fennema swards. Overall, lamb performance was increased when either perennial ryegrass variety was rotationally rather than continuously grazed (P < 0·001).  相似文献   

16.
Grazed pastures based on ryegrass species provide most of the feed for dairy cattle in New Zealand. There are many cultivars of perennial (Lolium perenne), annual and Italian (L. multiflorum), and hybrid (L. boucheanum) ryegrasses available for dairy farmers to use in pasture renewal. This study describes an index which ranks ryegrass cultivars relative to a genetic base according to the estimated economic value (EV) of seasonal dry matter (DM) traits. A farm system model was used to derive EVs (Grazed pastures based on ryegrass species provide most of the feed for dairy cattle in New Zealand. There are many cultivars of perennial (Lolium perenne), annual and Italian (L. multiflorum), and hybrid (L. boucheanum) ryegrasses available for dairy farmers to use in pasture renewal. This study describes an index which ranks ryegrass cultivars relative to a genetic base according to the estimated economic value (EV) of seasonal dry matter (DM) traits. A farm system model was used to derive EVs ($ ha?1 calculated as change in operating profit divided by unit change of the trait) for additional DM produced in different seasons of the year in four regions. The EV of early spring DM was consistently high across all regions, whereas EV for late spring DM was moderate to low. Genotype × environment analysis revealed significant reranking of DM yield among ryegrass cultivars across regions. Hence, separate performance values (PVs) were calculated for two mega‐environments and then combined with the corresponding season and region EV to calculate the overall EV for twenty‐three perennial ryegrass and fifteen short‐term ryegrass cultivars. The difference in operating profit between the highest ranked and lowest ranked perennial ryegrass cultivar ranged from $556 ha?1 to $863 ha?1 year?1 depending on region. For short‐term ryegrasses used for winter feed, the corresponding range was $394 to $478 ha?1 year?1. Using PV for DM yield, it was estimated that plant improvement in perennial ryegrass has added $12–$18 ha?1 year?1 (depending on region) operating profit on dairy farms since the mid‐1960s.  相似文献   

17.
Poor persistence of perennial ryegrass swards is a common problem; however, there is a lack of long‐term studies to understand the mechanisms associated with poor persistence. This study describes an experiment to test the hypothesis that high ryegrass seeding rates (>18 kg seed per ha) reduce long‐term population persistence because of smaller plant size and poorer survival during the first year after sowing. Four cultivars, representing four functional types of perennial ryegrass, were sown at five seeding rates (equivalent to 6, 12, 18, 24 and 30 kg seed per ha) with white clover in three regions of New Zealand. Swards were monitored for 5 years. No evidence was found to indicate a lack of persistence of ryegrass‐based swards sown at higher seeding rates. During the first year, swards sown at higher seeding rates had greater herbage accumulation (except at the Waikato site), greater ryegrass tiller density and greater ryegrass content. This initial impact of high seeding rates had largely dissipated by the fourth year, resulting in swards with similar annual herbage accumulation, tiller density and botanical composition. Similarly, there were relatively few differences among cultivars for these variables. Although high seeding rates did not negatively impact sward persistence, geographical location did, with strong evidence of ryegrass population decline at the Waikato site for all treatment combinations, some decline in Northland, and stable populations in Canterbury. It is possible that productive perennial ryegrass pastures can only be sustained for 4–5 years in some situations, even when the best ryegrass technology and management practices are used.  相似文献   

18.
Three experiments were conducted to determine the association between leaf number per tiller at defoliation, water‐soluble carbohydrate (WSC) concentration and herbage mass of juvenile ryegrass plants when grown in a Mediterranean environment. Seedlings of ryegrass were grown in nursery pots arranged side‐by‐side and located outside in the open‐air to simulate a mini‐sward in Experiments 1 and 2, and a mixture of annual ryegrass and subterranean clover (Trifolium subterraneum L.) was grown in a small plot field study in Experiment 3. Swards were defoliated mechanically with the onset of defoliation commencing within 28 d of germination. Frequency of defoliation ranged from one to nine leaves per tiller, whilst defoliation height ranged from 30 mm of pseudostem height that removed all leaf laminae in Experiment 1, to 50 mm of pseudostem height with some leaf laminae remaining post‐defoliation in Experiments 2 and 3. A positive relationship between herbage mass of ryegrass, WSC concentration and leaf number per tiller at defoliation was demonstrated in all experiments. In Experiment 1, the herbage mass of leaf, pseudostem and roots of tillers defoliated at one leaf per tiller was reduced to 0·10, 0·09 and 0·06 of those tillers defoliated less frequently at six leaves per tiller. However, the reduction in herbage mass from frequent defoliation was less severe in Experiment 2 and coincided with a 0·20 reduction in WSC concentration of pseudostem compared with 0·80 measured during Experiment 1. In Experiment 3, the highest harvested herbage mass of ryegrass occurred when defoliation was nine leaves per tiller. Although the harvested herbage from this sward contained senescent herbage, the in vitro dry‐matter digestibility of the harvested herbage did not differ significantly compared with the remaining treatments that had been defoliated more frequently. Leaf numbers of newly germinated ryegrass tillers in a Mediterranean environment were positively associated with WSC concentration of pseudostem and herbage mass. A minimum period of two to three leaf appearances was required to restore WSC concentrations to levels measured prior to defoliation thereby avoiding a significant reduction in herbage mass. However, maximum herbage mass of a mixed sward containing ryegrass and subterranean clover was achieved when defoliation was delayed to nine leaves per tiller.  相似文献   

19.
In a field experiment carried out over 3 years, the nitrate content of herbage from perennial ryegrass (Lolium perenne) swards increased exponentially with nitrogen application rate, but herbage nitrate content appeared to reach potentially dangerous concentrations only when nitrogen application rates were greater than those needed to stimulate dry-matter production. Thus, on average over all the harvests, maximum yield could be obtained with annual application rates of 400 kg N ha–1 (six applications of 67 kg N ha–1) for perennial ryegrass and 300 kg N ha–1 (six applications of 50 kg N ha–1) for perennial ryegrass/white clover (Trifolium repens) swards, whereas the mean nitrate concentrations were 3340 and 2929 mg NO3 kg–1 dry matter (DM) respectively. Nitrate content, however, varied considerably from harvest to harvest, reaching maxima of 9345 mg NO3 kg–1 DM at 400 kg N ha–1 for perennial ryegrass and 6255 mg NO3 kg–1 DM at 300 kg N ha–1 for perennial ryegrass/white clover. The nitrate content of herbage from perennial ryegrass/white clover swards was always greater than that of perennial ryegrass swards receiving the same rate of nitrogen application, even though in the herbage from the mixed sward the nitrate content of white clover was usually less than half that of the perennial ryegrass component. The physical environment did not have a clearly interpretable effect on nitrate content, although herbage harvested in May had a much lower nitrate content than that harvested at any other time of the season. It was not possible to find a single multiple regression equation relating herbage nitrate content to nitrogen application and to other environmental variables that explained more than 60% of the variance in herbage nitrate, but it is suggested that, by reducing the later-season nitrogen applications from 67 to 50 and finally to 33 kg N ha–1 for perennial ryegrass and from 50 to 33 kg N ha–1 for perennial ryegrass/white clover, it would be possible to achieve over 90% of the maximum yield while reducing average nitrate content to <40% of that at maximum yield, with no samples containing more than 2300 mg NO3 kg –1 DM.  相似文献   

20.
Limited availability of herbage during the cool season creates a problem of a supply of nutrients for livestock producers throughout the southern Great Plains of the USA and, particularly, on small farms where resource constraints limit possible mitigating strategies. Six cool‐season grasses were individually sown into clean‐tilled ground, no‐till drilled into stubble of Korean lespedeza [Kummerowia stipulacea (Maxim) Makino] or no‐till over‐sown into dormant unimproved warm‐season pastures. The dry matter (DM) yields of mixtures of cool and warm‐season herbage species were measured to test their potential for increasing cool‐season herbage production in a low‐input pasture environment. Only mixtures containing Italian ryegrass (Lolium multiflorum Lam) produced greater year‐round DM yields than undisturbed warm‐season pasture with all establishment methods. When cool‐season grass was no‐till seeded into existing warm‐season pasture, there was on average a 0·61 kg DM increase in year‐round herbage production for each 1·0 kg DM of cool‐season grass herbage produced. Sowing into stubble of Korean lespedeza, or into clean‐tilled ground, required 700 or 1400 kg DM ha?1, respectively, of cool‐season production before the year‐round DM yield of each species equalled that of undisturbed warm‐season pasture. Productive pastures of perennial cool‐season grasses were not sustained beyond two growing seasons with tall wheatgrass [Elytrigia elongata (Host) Nevski], intermediate wheatgrass [Elytrigia intermedia (Host) Nevski] and a creeping wheatgrass (Elytrigia repens L.) × bluebunch wheatgrass [Pseudoroegneria spicata (Pursh)] hybrid. Lack of persistence and low productivity limit the usefulness of cool‐season perennial grasses for over‐seeding unimproved warm‐season pasture in the southern Great Plains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号