首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cultivated sugarcane (Saccharum spp. hybrids, 2n = 100–130) is one crop for which interspecific hybridization involving wild germplasm has provided a major breakthrough in its improvement. Few clones were used in the initial hybridization event leading to a narrow genetic base for continued cultivar development. Molecular breeding would facilitate the identification and introgression of novel alleles/genes from the wild germplasm into cultivated sugarcane. We report the identification of molecular markers associated with sugar-related traits using an F1 population derived from a cross between S. officinarum ‘Louisiana Striped’ × S. spontaneum ‘SES 147B’, the two major progenitor species of cultivated sugarcane. Genetic linkage maps of the S. officinarum and S. spontaneum parents were produced using the AFLP, SRAP and TRAP molecular marker techniques. The mapping population was evaluated for sugar-related traits namely, Brix (B) and pol (P) at the early (E) and late (L) plant growing season in the plant cane (04) and first ratoon (05) crops (04EB, 04LB, 04LP, 05EB and 05EP). For S. officinarum, combined across all the traits, a total of 30 putative QTLs was observed with LOD scores ranging from 2.51 to 7.48. The phenotypic variation (adj. R2) explained by all QTLs per trait ranged from 22.1% (04LP) to 48.4% (04EB). For S. spontaneum, a total of 11 putative QTLs was observed with LOD scores ranging from 2.62 to 4.70 and adj. R2 ranging from 9.3% (04LP) to 43.0% (04LB). Nine digenic interactions (iQTL) were observed in S. officinarum whereas only three were observed in S. spontaneum. About half of the QTLs contributed by both progenitor species were associated with effects on the trait that was contrary to expectations based on the phenotype of the parent contributing the allele. Quantitative trait loci and their associated effects were consistent across crop-years and growing seasons with very few QTLs being unique to the early season. When the data were reanalyzed using the non-parametric discriminant analysis (DA) approach, significant marker-trait associations were detected for markers that were either identical to or in the vicinity of markers previously identified using the traditional QTL approach. Discriminant analysis also pointed to previously unidentified markers some of which remained unlinked on the map. These preliminary results suggest that DA could be used as a complementary approach to traditional QTL analysis in a crop like sugarcane for which saturated linkage maps are unavailable or difficult to obtain.  相似文献   

2.
The genetics of resistance to Cucumber mosaic virus (CMV) in Cucumis sativus var. hardwickii R. Alef, the wild progenitor of cultivated cucumber was assessed by challenge inoculation and by natural infection of CMV. Among the 31 genotypes of C. sativus var. hardwickii collected from 21 locations in India the lowest mean percent disease intensity (PDI) was recorded in IC-277048 (6.33%) while the highest PDI was observed in IC-331631 (75.33%). All the four cultivated varieties (DC-1, DC-2, CHC-1 and CHC-2) showed very high PDI and susceptible disease reaction. Based on mean PDI, 8 genotypes were categorized as resistant, 13 as moderately resistant, 9 as moderately susceptible and one as susceptible. A chi-square test of frequency distribution based on mean PDI in F2 progenies of six resistant × susceptible crosses revealed monogenic recessive Mendelian ratio 1(R):3(S) to be the best fit. This monogenic recessive model was further confirmed by 1(R):1(S) ratio as the best fit for back cross with resistant parent and no fit for either 3:1 or 1:1 in the back cross with the susceptible parent. The results revealed that CMV resistance in C. sativus var. hardwickii was controlled by a single recessive gene. Considering the cross compatibility between C. sativus var. hardwickii and cultivated cucumber, the resistance trait can be easily transferred to cultivated species through simple backcross breeding.  相似文献   

3.
The genus Kalanchoe is currently divided into section Kalanchoe and section Bryophyllum, and there has been no successful report on the production of inter-sectional hybrids. Therefore, reciprocal crosses were made between Kalanchoe spathulata (sect. Kalanchoe) and K. laxiflora (sect. Bryophyllum) in order to obtain basic information on the reproductive barriers between these two sections. The seeds were aseptically germinated in vitro and the plants were grown in greenhouse till flowering. When K. spathulata was used as a maternal donor, 39 out of 80 plants showed intermediate characteristics between K. spathulata and K. laxiflora. In contrast, no plants were obtained in the reverse crosses. Hybridity of these plants was confirmed by flow cytometric analysis, chromosome numbers and RAPD analysis. Bulbil formation on the leaf margin as one of the conspicuous characteristics of K. laxiflora was not observed in the hybrids. Some of the hybrid lines showed some pollen fertility, but failed to yield viable seeds by self-pollination or backcross-pollination. Successful production of the inter-sectional hybrid between the two species suggests that they are not so distantly related as considered previously.  相似文献   

4.
This paper describes the relative efficiency of three marker systems, RAPD, ISSR, and AFLP, in terms of fingerprinting 14 rice genotypes consisting of seven temperatejaponica rice cultivars, three indica near-isogenic lines, three indica introgression lines, and one breeding line of japonica type adapted to high-altitude areas of the tropics with cold tolerance genes. Fourteen RAPD, 21 ISSR, and 8 AFLP primers could produce 970 loci, with the highest average number of loci (92.5) generated by AFLP. Although polymorphic bands in the genotypes were detected by all marker assays, the AFLP assay discriminated the genotypes effectively with a robust discriminating power (0.99), followed by ISSR (0.76) and RAPD (0.61). While significant polymorphism was detected among the genotypes of japonica and indica through analysis of molecular variance (AMOVA), relatively low polymorphism was detected within the genotypes of japonica rice cultivars. The correlation coefficients of similarity were significant for the three marker systems used, but only the AFLP assay effectively differentiated all tested rice lines. Fingerprinting of backcross-derived resistant progenies using ISSR and AFLP markers easily detected progenies having a maximum rate of recovery for the recurrent parent genome and suggested that our fingerprinting approach adopting the ‘undefined-element-amplifying’ DNA marker system is suitable for incorporating useful alleles from the indica donor genome into the genome of temperate japonica rice cultivars with the least impact of deleterious linkage drag.  相似文献   

5.
The Guinea yams, Dioscorea cayenensis Lam. and D. rotundata Poir. (D. cayenensisD. rotundata complex), represent a highly important crop, widely distributed in the humid and semi-humid tropics. The ploidy levels of 170 accessions of the core set of Guinea yams from West African countries was determined using flow cytometry with propidium iodide staining. One hundred and eight of the genotypes were found to be tetraploid, 47 were hexaploid and five were octoploid. One mixoploid individual containing tetraploid and hexaploid nuclei was also detected. A deeper analysis considering each separate taxon revealed that while for D. rotundata the majority of individuals were tetraploid, for D. cayenensis this ploidy level was not detected in any of the accessions. Also, no association between ploidy level and place of cultivation was found for the evaluated germplasm. The obtained data is highly valuable for breeding programs of Guinea yam, especially for the optimization of future hybridization experiments directed to the genetic improvement of this economically important crop.  相似文献   

6.
The presence of high levels of sinigrin in the seeds represents a serious constraint for the commercial utilisation of Ethiopian mustard (Brassica carinata A. Braun) meal. The objective of this research was the introgression of genes for low glucosinolate content from B. juncea into B. carinata. BC1F1 seed from crosses between double zero B. juncea line Heera and B. carinata line N2-142 was produced. Simultaneous selection for B. carinata phenotype and low glucosinolate content was conducted from BC1F2 to BC1F4 plant generations. Forty-three BC1F4 derived lines were selected and subject to a detailed phenotypic and molecular evaluation to identify lines with low glucosinolate content and genetic proximity to B. carinata. Sixteen phenotypic traits and 80 SSR markers were used. Eight BC1F4 derived lines were very close to N2-142 both at the phenotypic and molecular level. Three of them, with average glucosinolate contents from 52 to 61 micromoles g−1, compared to 35 micromoles g−1 for Heera and 86 micromoles g−1 for N2-142, were selected and evaluated in two additional environments, resulting in average glucosinolate contents from 43 to 56 micromoles g−1, compared to 29 micromoles g−1 for Heera and 84 micromoles g−1 for N2-142. The best line (BCH-1773), with a glucosinolate profile made up of sinigrin (>95%) and a chromosome number of 2n = 34, was further evaluated in two environments (field and pots in open-air conditions). Average glucosinolate contents over the four environments included in this research were 42, 31 and 74 micromoles g−1 for BCH-1773, Heera and N2-142, respectively. These are the lowest stable levels of glucosinolates reported so far in B. carinata.  相似文献   

7.
Interspecific hybrids Buddleja davidii × Buddleja weyeriana, Buddleja weyeriana × Buddleja davidii and Buddleja davidii × Buddleja lindleyana were generated using in vitro embryo rescue 10–11 weeks after manual pollination. The morphological variation within the F1 populations was limited. The F1 progeny of B. davidii × B. lindleyana was almost sterile and no F2 generation was obtained. From the other hybrids, F2 generations were made by self pollinations and back crosses. Hybrid nature of all F1 and F2 seedlings was confirmed by AFLP. Chromosome counting and genome size measurement for B. weyeriana (F2 selection of (diploid) B. globosa × (tetraploid) B. davidii) revealed a higher chromosome number (76 chromosomes) and genome size than expected, indicating 2n-gametes formation occurred during meiosis of B. globosa. The F1 hybrids B. weyeriana × B. davidii (76 chromosomes) had an intermediate genome size compared with the genome size of the parent plants, proving their hybrid nature. However, the F1 and F2 hybrids of B. davidii × B. weyeriana all had 76 chromosomes but had a lower genome size than expected, suggesting the occurrence of chromosome rearrangements in the genome of the hybrids. B. lindleyana had 38 chromosomes, while the F1 hybrids of B. davidii × B. lindleyana had 76 chromosomes. Also genome size measurements revealed that the F1 seedlings B. davidii × B. lindleyana had higher genome sizes than expected. Both the results of chromosome counting and genome size measurement indicate that 2n-gametes formation took place during meiosis of B. lindleyana.  相似文献   

8.
The germplasm with exotic genomic components especially from Sea Island cotton (Gossypium barbadense L. Gb) is the dominant genetic resources to enhance fiber quality of upland cotton (G. hirsutum L., Gh). Due to low efficiency of phenotypic evaluation and selection on fiber quality, genetic dissection of favorable alleles using molecular markers is essential. Genetic dissection on putative Gb introgressions related to fiber traits were conducted by SSR markers with mapping populations derived from a cross between Luyuan343 (LY343), a superior fiber quality introgression line (IL) with genomic components from Gb, and an elite Upland cotton cv. Lumianyan#22 (LMY22). Among 82 polymorphic loci screened out from 4050 SSRs, 42 were identified as putative introgression alleles. A total of 29 fiber-related QTLs (23 for fiber quality and six for lint percentage) were detected and most of which clustered on the putative Gb introgression chromosomal segments of Chr.2, Chr.16, Chr.23 and Chr.25. As expected, a majority of favorable alleles of fiber quality QTLs (12/17, not considering the QTLs for fiber fineness) came from the IL parent and most of which (11/12) were conferred by the introgression genomic components while three of the six (3/6) favorable alleles for lint percentage came from the Gh parent. Validation of these QTLs using an F8 breeding population from the same cross made previously indicated that 13 out of 29 QTLs showed considerable stability. The results suggest that fiber quality improvement using the introgression components could be facilitated by marker-assisted selection in cotton breeding program.  相似文献   

9.
Three CMS lines, Ogu1A, Ogu2A and Ogu3A were selected among ten lines after BC7 based on superior commercial, floral and seed setting traits. Introgression of sterile Ogura cytoplasm in cauliflower nuclear background reduced the flower size but did not affect commercial and seed setting traits drastically. Line × Tester analysis was done by taking these three CMS lines free from floral deformities as female parent with nine diverse lines of snowball cauliflower as tester. The parent Ogu2A exhibited highest GCA effect for curd yield (4.51) and harvest index (1.97) while Ogu1A exhibited highest GCA for earliness (−2.73). The parent, Ogu2A exhibited significant GCA for curd length (0.39) while, none of the CMS lines showed significant GCA for curd diameter and depth. Heterosis for curd yield was highest in the hybrid, Ogu2A × Kt-22 (63.5%) followed by Ogu1A × WF (36.9%) and Ogu1A × Kt-15 was the best hybrid for earliness followed by Ogu3A × Kt-22 with heterosis of −14.4% and −11.7%. However, the number of heterotic hybrids for yield and earliness was low indicating narrow genetic base of the snowball cauliflower.  相似文献   

10.
New tri-species hybrids (GOS) in the genus Pennisetum involving the cultivated species pearl millet (P. glaucum L.) and two wild species, viz. P. squamulatum Fresen and P. orientale L. C. Rich, are reported. Six hybrid plants were recovered after crossing a backcross hybrid (2n = 3x = 23, GGO) between P. glaucum (2n = 2x = 14, GG) and P. orientale (2n = 2x = 18, OO) with F1s (2n = 6x = 42, GGSSSS) between P. glaucum (2n = 4x = 28, GGGG) and P. squamulatum (2n = 8x = 56, SSSSSSSS). The hybrids were perennial, morphologically intermediate to their parents, and represented characters from the three contributing species. The hybrids contained 2n = 44 chromosomes (GGGSSO) representing 21, 14 and nine chromosomes from P. glaucum, P. squamulatum and P. orientale, respectively. Meiotic and flow-cytometric analysis suggested origin of these hybrids from unreduced female and reduced male gametes. Average chromosome configuration (8.42I + 14.32II + 1.62III + 0.52IV) at Meiosis showed limited inter-genomic pairing indicating absence of significant homology between the three genomes. The hybrids were male sterile (except one) and highly aposporous. P. orientale was identified to induce apospory in hybrid background with P. glaucum at diploid and above levels, though it was quantitatively affected by genomic doses from sexual parent. A case of inducible and recurrent apospory is presented whereby a transition from Polygonum-type sexual embryo-sacs to Panicum-type aposporous embryo-sacs was observed in diploid interspecific hybrids. Results supported independent origin and partitioning of the three apomixis-components (apomeiosis, parthenogenesis, and functional endosperm development), reported for the first time in Pennisetum. Potential utilization of GOS hybrids in understanding genome interactions involved in complex traits, such as perenniality and apomixis, is discussed.  相似文献   

11.
Using three varieties of Brassica rapa, cv. Hauarad (accession 708), cv. Maoshan-3 (714) and cv. Youbai (715), as the maternal plants and one variety of B. oleracea cv. Jingfeng-1 (6012) as the paternal plant, crosses were made to produce interspecific hybrids through ovary culture techniques. A better response of seed formation was observed when ovaries were cultured in vitro at 9–12 days after pollination on the basal MS and B5 media supplemented with 6-benzylaminopurine (BA) and naphthylacetic acid (NAA). The best response was observed for cross 714×6012 with the rate of seeds per ovary reaching 43.0%. Seeds for cross 715×6012 showed the best germination response (66.7%) on the regeneration medium (MS+1.0 mg l–1 BA+0.05 mg l–1 NAA). In all three cross combinations, good response in terms of root number and length of plants was observed on the root induction medium (MS+1.0 mg l–1 BA+0.1 mg l–1 NAA). A better response was observed for the regenerated plants cultured for 14 days than for 7 days. The ovary-derived plants with well-developed root system were hardened for 8 days and their survival rate reached over 80%. Cytological studies showed that the chromosome number of all plants tested was 19 (the sum of both parents), indicating that these regenerated plants were all true hybrids of B. rapa (n = 10) × B. oleracea (n = 9). The regenerated plants were doubled with colchicine treatment, and the best response in the crosses 708×6012, 714×6012 and 715×6012 was observed when treated with 170 mg l–1 colchicine for up to 30 h and their doubling frequency reached 52, 56 and 62%, respectively.  相似文献   

12.
Molecular markers have been successfully used in rice breeding however available markers based on Oryza sativa sequences are not efficient to monitor alien introgression from distant genomes of Oryza. We developed O. minuta (2n = 48, BBCC)-specific clones comprising of 105 clones (266–715 bp) from the initial library composed of 1,920 clones against O. sativa by representational difference analysis (RDA), a subtractive cloning method and validated through Southern blot hybridization. Chromosomal location of O. minuta-specific clones was identified by hybridization with the genomic DNA of eight monosomic alien additional lines (MAALs). The 37 clones were located either on chromosomes 6, 7, or 12. Different hybridization patterns between O. minuta-specific clones and wild species such as O. punctata, O. officinalis, O. rhizomatis, O. australiensis, and O. ridleyi were observed indicating conservation of the O. minuta fragments across Oryza spp. A highly repetitive clone, OmSC45 hybridized with O. minuta and O. australiensis (EE), and was found in 6,500 and 9,000 copies, respectively, suggesting an independent and exponential amplification of the fragment in both species during the evolution of Oryza. Hybridization of 105 O. minuta specific clones with BB- and CC-genome wild Oryza species resulted in the identification of 4 BB-genome-specific and 14 CC-genome-specific clones. OmSC45 was identified as a fragment of RIRE1, an LTR-retrotransposon. Furthermore this clone was introgressed from O. minuta into the advanced breeding lines of O. sativa.  相似文献   

13.
Genetic Analysis of Resistance to Soil-Borne Wheat Mosaic Virus Derived from Aegilops tauschii. Euphytica. Soil-Borne Wheat Mosaic Virus (SBWMV), vectored by the soil inhabiting organism Polymyxa graminis, causes damage to wheat (Triticum aestivum) yields in most of the wheat growing regions of the world. In localized fields, the entire crop may be lost to the virus. Although many winter wheat cultivars contain resistance to SBWMV, the inheritance of resistance is poorly understood. A linkage analysis of a segregating recombinant inbred line population from the cross KS96WGRC40 × Wichita identified a gene of major effect conferring resistance to SBWMV in the germplasm KS96WGRC40. The SBWMV resistance gene within KS96WGRC40 was derived from accession TA2397 of Aegilops taushcii and is located on the long arm of chromosome 5D, flanked by microsatellite markers Xcfd10 and Xbarc144. The relationship of this locus with a previously identified QTL for SBWMV resistance and the Sbm1 gene conferring resistance to soil-borne cereal mosaic virus is not known, but suggests that a gene on 5DL conferring resistance to both viruses may be present in T. aestivum, as well as the D-genome donor Ae. tauschii.  相似文献   

14.
Maize (Zea mays L.) is an important source of carbohydrates and protein in the diet in sub-Saharan Africa. The objectives of this study were to (i) estimate general (GCA) and specific combining abilities (SCA) of 13 new quality protein maize (QPM) lines in a diallel under stress and non-stress conditions, (ii) compare observed and predicted performance of QPM hybrids, (iii) characterize genetic diversity among the 13 QPM lines using single nucleotide polymorphism (SNP) markers and assess the relationship between genetic distance and hybrid performance, and (iv) assess diversity and population structure in 116 new QPM inbred lines as compared to eight older tropical QPM lines and 15 non-QPM lines. The GCA and SCA effects were significant for most traits under optimal conditions, indicating that both additive and non-additive genetic effects were important for inheritance of the traits. Additive genetic effects appeared to govern inheritance of most traits under optimal conditions and across environments. Non-additive genetic effects were more important for inheritance of grain yield but additive effects controlled most agronomic traits under drought stress conditions. Inbred lines CKL08056, CKL07292, and CKL07001 had desirable GCA effects for grain yield across drought stress and non-stress conditions. Prediction efficiency for grain yield was highest under optimal conditions. The classification of 139 inbred lines with 95 SNPs generated six clusters, four of which contained 10 or fewer lines, and 16 lines of mixed co-ancestry. There was good agreement between Neighbor Joining dendrogram and Structure classification. The QPM lines used in the diallel were nearly uniformly spread throughout the dendrogram. There was no relationship between genetic distance and grain yield in either the optimal or stressed environments in this study. The genetic diversity in mid-altitude maize germplasm is ample, and the addition of the QPM germplasm did not increase it measurably.  相似文献   

15.
A previously constructed introgression lines (ILs) population including 239 lines was used to evaluate the cold-tolerant ability. The ILs with strong cold tolerance which were identified in the present study were used for further cytological and microsatellite (SSR) marker analyses. The results showed that the IL5243 and IL5335 had strong cold-tolerant ability. Cytological analysis showed that the rate of pollen mother cells (PMCs) with normal meiotic behavior in the IL5243 and IL5335 was to 89.93 and 90.22 %, respectively, and finally formed normal mature pollen. And meanwhile, the low frequency of abnormal chromosome behavior was observed in the IL5243 and IL5335, such as univalent, 8-shape bivalent, multivalent at diakinesis. At anaphase I, one or two lagging chromosomes were observed in some PMCs (3.95–5.15 %). The results of SSR marker analysis further confirmed that partial alien DNA of common wild rice has been transferred into the IL5243 and IL5335. These results implied that the IL5243 and IL5335 might be excellent bridging germplasm for exploring and utilizing the cold-tolerant gene of common wild rice. In addition, IL5243 and IL5335 would provide a better experimental system for understanding some epigenetic phenomenon induced by alien gene introgression.  相似文献   

16.
Summary Cytogenetic evidence has shown that teosinte (Zea mays ssp. mexicana (Schrad.) Iltes) and maize (Zea mays L. ssp. mays) are conspecific. They hybridize readily and their offspring are generally fertile. Teosinte could not have originated as a byproduct of maize-Tripsacum hybridization. Such introgression gave rise to plants that are phenotypically maize or Tripsacum, depending on which parent was used as a pollen donor. Compartive morphological and genetical studies indicated that it is more probable that maize originated from a teosinte-like ancestor under domestication, than that a maize-like plant gave rise to teosinte through a series of mutations.Reseach supported financially by the Illinois Agricultural Experiment Station, and Grants GB-40136-X and BM573-01034 A02 from the National Science Foundation.  相似文献   

17.
Interspecific hybridization was carried out between Lilium longiflorum and L. lophophorum var. linearifolium by using the cut style method of pollination, as a contrast, intraspecific hybridization between L. longiflorum ‘Gelria’ and L. longiflorum was also made, but no mature seeds and offspring were obtained from the two combinations under in vivo condition. Ovules excised from each carpel 5–35 days after pollination (DAP) were cultured on B5 or half-strength B5 medium containing sucrose at different concentrations in vitro. In L. longiflorum × L. lophophorum var. linearifolium, only 1.17% of ovules excised at 10 DAP developed into seedlings, and in L. longiflorum ‘Gelria’ × L. longiflorum, only 0.99% of ovules excised at 25 DAP developed into seedlings; none of the ovules excised at other different DAP in the two cross combinations produced any seedlings. The results showed that interspecific hybridization had a more serious post-fertilization barrier than the intraspecific hybridization, and that a lower concentration (3%) of sucrose led to better embryo development and higher percentage of seedlings in ovule cultures. All hybrid seedlings obtained were successfully transplanted to soil and grew normally. The progenies investigated were identified as true hybrids based on inter-simple sequence repeat (ISSR) analysis.  相似文献   

18.
The objectives of this study were to quantify the components of genetic variance and the genetic effects, and to examine the genetic relationship of inbred lines extracted from various shrunken2 (sh2) breeding populations. Ten diverse inbred lines developed from sh2 genetic background, were crossed in half diallel. Parents and their F1 hybrids were evaluated at three environments. The parents were genotyped using 20 polymorphic simple sequence repeats (SSR). Agronomic and quality traits were analysed by a mixed linear model according to additive-dominance genetic model. Genetic effects were estimated using an adjusted unbiased prediction method. Additive variance was more important than dominance variance in the expression of traits related to ear aspects (husk ratio and percentage of ear filled) and eating quality (flavour and total soluble solids). For agronomic traits, however, dominance variance was more important than additive variance. The additive genetic correlation between flavour and tenderness was strong (r = 0.84, P < 0.01). Flavour, tenderness and kernel colour additive genetic effects were not correlated with yield related traits. Genetic distance (GD), estimated from SSR profiles on the basis of Jaccard’s similarity coefficient varied from 0.10 to 0.77 with an average of 0.56. Cluster analysis classified parents according to their pedigree relationships. In most studied traits, F1 performance was not associated with GD.  相似文献   

19.
Nicotiana wuttkei Clarkson and Symon discovered in the 1990s in Australia may be of potential interest to breeders as it carries resistance to Peronospora hyoscyami de Bary. The crossability between N. wuttkei (2n = 4x = 32) and three N. tabacum (2n = 4x = 48) cultivars (‘Puławski 66’, ‘Wiślica’ and ‘TN 90’) and the morphology and cytology of their amphihaploid hybrids (2n = 4x = 40) were studied. Seeds were produced only when N. wuttkei was used as the maternal parent, but under normal germination all seedlings died. Viable F1 hybrids of N. wuttkei × N. tabacum cv. ‘Puławski’ and N. wuttkei × N. tabacum cv. ‘Wiślica’ were obtained only by in vitro cotyledon culture. The amphihaploid plants were intermediate between the parents for most morphological traits. In 46.4% of the PMC’s, only univalents were present. The remainder of the cells had 1–5 bivalents and 1–2 trivalents. In spite of a detectable frequency of monads (2.6%), dyads (2.6%) and triads (4.5%), the hybrids were self and cross sterile.  相似文献   

20.
S. D. Basha  M. Sujatha 《Euphytica》2009,168(2):197-214
The present study aims at characterization of Jatropha species occurring in India using nuclear and organelle specific primers for supporting interspecific gene transfer. DNA from 34 accessions comprising eight agronomically important species (Jatropha curcas, J. gossypifolia, J. glandulifera, J. integerrima, J. podagrica, J. multifida, J. villosa, J. villosa. var. ramnadensis, J. maheshwarii) and a natural hybrid, J. tanjorensis were subjected to molecular analysis using 200 RAPD, 100 ISSR and 50 organelle specific microsatellite primers from other angiosperms. The nuclear marker systems revealed high interspecific genetic variation (98.5% polymorphism) corroborating with the morphological differentiation of the species used in the study. Ten organelle specific microsatellite primers resulted in single, discrete bands of which three were functional disclosing polymorphism among Jatropha species. The PCR products obtained with organelle specific primers were subjected to sequence analysis. PCR products from two consensus chloroplast microsatellite primer pairs (ccmp6 and 10) revealed variable number of T and A residues in the intergenic regions of ORF 77–ORF 82 and rp12rps19 regions, respectively in Jatropha. Artificial hybrids were produced between J. curcas and all Jatropha species used in the study with the exception of J. podagrica. Characterization of F1 hybrids using polymorphic primers specific to the respective parental species confirmed the hybridity of the interspecific hybrids. Characterization of both natural and artificially produced hybrids using chloroplast specific markers revealed maternal inheritance of the markers. While the RAPD and ISSR markers confirmed J. tanjorensis as a natural hybrid between J. gossypifolia and J. curcas, the ccmp primers (ccmp6 and 10) unequivocally established J. gossypifolia as the maternal parent. Evaluation of backcross interspecific derivatives of cross involving J. curcas and J. integerrima indicate scope for prebreeding and genetic enhancement of Jatropha curcas through interspecific hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号