首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study was performed to evaluate the sedative and analgesic effects of xylazine (X) and tramadol (T) intravenously (IV) administered to horses. Six thoroughbred saddle horses each received X (1.0 mg/kg), T (2.0 mg/kg), and a combination of XT (1.0 and 2.0 mg/kg, respectively) IV. Heart rate (HR), respiratory rate (RR), rectal temperature (RT), indirect arterial pressure (IAP), capillary refill time (CRT), sedation, and analgesia (using electrical stimulation and pinprick) were measured before and after drug administration. HR and RR significantly decreased from basal values with X and XT treatments, and significantly increased with T treatment (p < 0.05). RT and IAP also significantly increased with T treatment (p < 0.05). CRT did not change significantly with any treatments. The onset of sedation and analgesia were approximately 5 min after both X and XT treatments; however, the XT combination produced a longer duration of sedation and analgesia than X alone. Two horses in the XT treatment group displayed excited transient behavior within 5 min of drug administration. The results suggest that the XT combination is useful for sedation and analgesia in horses. However, careful monitoring for excited behavior shortly after administration is recommended.  相似文献   

3.
Xylazine (XYL) administration in horses is accompanied by significant cardiovascular depression characterized by a 25-35% decrease in cardiac output (CO) which is likely to compromise tissue oxygen delivery (DO2), and usually vagally mediated bradycardia is an important cause of this reduced cardiovascular performance. To examine the possible benefit of preventing the bradycardiac response, 6 healthy horses were treated with intravenous (IV) saline (SAL) or 2.5 micrograms/kg glycopyrrolate (GLY) in a blinded, randomized, crossover trial. Fifteen minutes later, 1 mg/kg XYL was administered IV and systolic, diastolic and mean blood pressures (SBP, DBP, and MBP, respectively), central venous pressure (CVP), mean pulmonary artery pressure, heart rate (HR), CO, and arterial and mixed venous blood gases were measured at the following times: baseline, 2, 5, and 10 min post-SAL or GLY; and 2, 5, 10, 15, 30, 45 and 60 min post-XYL. Determination of cardiac index (CI), stroke index (SI), left ventricular work, systemic vascular resistance (SVR), DO2, oxygen uptake, and oxygen extraction ratio were made at the same time. Gastrointestinal (GI) motility was evaluated by four-quadrant auscultation for 24 h post-XYL. Statistical analysis of continuous variables was carried out using ANOVA for repeated measures and Wilcoxon's rank-sum test for non-parametric data. In GLY treated horses, HR, SBP, MBP, DBP, CI, DO2 and mixed venous oxygen tension were significantly higher up to 30 min after XYL (P < or = 0.02) while CVP and SI were significantly lower 2 and 5 min post-XYL, respectively. In both groups, GI motility as assessed by auscultation was virtually abolished for an hour, with a non-significant tendency for the decrease in motility to last longer in the GLY/XYL group. None of the treated horses developed abdominal discomfort. No significant difference was observed in the other variables. The study shows that 2.5 micrograms/kg GLY premedication reduces the cardiovascular depression caused by 1 mg/kg XYL, without adversely affecting GI motility.  相似文献   

4.
OBJECTIVE: To assess the sedative and cardiopulmonary effects of medetomidine and xylazine and their reversal with atipamezole in calves. ANIMALS: 25 calves. PROCEDURES: A 2-phase (7-day interval) study was performed. Sedative characteristics (phase I) and cardiopulmonary effects (phase II) of medetomidine hydrochloride and xylazine hydrochloride administration followed by atipamezole hydrochloride administration were evaluated. In both phases, calves were randomly allocated to receive 1 of 4 treatments IV: medetomidine (0.03 mg/kg) followed by atipamezole (0.1 mg/kg; n = 6), xylazine (0.3 mg/kg) followed by atipamezole (0.04 mg/kg; 7), medetomidine (0.03 mg/kg) followed by saline (0.9% NaCl; 6) solution (10 mL), and xylazine (0.3 mg/kg) followed by saline solution (10 mL; 6). Atipamezole or saline solution was administered 20 minutes after the first injection. Cardiopulmonary variables were recorded at intervals for 35 minutes after medetomidine or xylazine administration. RESULTS: At the doses evaluated, xylazine and medetomidine induced a similar degree of sedation in calves; however, the duration of medetomidine-associated sedation was longer. Compared with pretreatment values, heart rate, cardiac index, and PaO(2) decreased, whereas central venous pressure, PaCO(2), and pulmonary artery pressures increased with medetomidine or xylazine. Systemic arterial blood pressures and vascular resistance increased with medetomidine and decreased with xylazine. Atipamezole reversed the sedative and most of the cardiopulmonary effects of both drugs. CONCLUSIONS AND CLINICAL RELEVANCE: At these doses, xylazine and medetomidine induced similar degrees of sedation and cardiopulmonary depression in calves, although medetomidine administration resulted in increases in systemic arterial blood pressures. Atipamezole effectively reversed medetomidine- and xylazine-associated sedative and cardiopulmonary effects in calves.  相似文献   

5.
6.
Objective  We hypothesized that propofol can produce rapidly-reversible, dose-dependent standing sedation in horses.
Study design  Prospective randomized, blinded, experimental trial.
Animals  Twelve healthy horses aged 12 ± 6 years (mean ± SD), weighing 565 ± 20 kg, and with an equal distribution of mares and geldings.
Methods  Propofol was administered as an intravenous bolus at one of three randomized doses (0.20, 0.35 and 0.50 mg kg−1). Cardiovascular and behavioral measurements were made by a single investigator, who was blinded to treatment dose, at 3 minute intervals until subjective behavior scores returned to pre-sedation baseline values. Continuous data were analyzed over time using repeated-measures anova and noncontinuous data were analyzed using Friedman tests.
Results  There were no significant propofol dose or temporal effects on heart rate, respiratory rate, vertical head height, or jugular venous blood gases (pHv, PvO2, PvCO2). The 0.35 mg kg−1 dose caused mild sedation lasting up to 6 minutes. The 0.50 mg kg−1 dose increased sedation depth and duration, but with increased ataxia and apparent muscle weakness.
Conclusions and clinical relevance  Intravenous 0.35 mg kg−1 propofol provided brief, mild sedation in horses. Caution is warranted at higher doses due to increased risk of ataxia.  相似文献   

7.
OBJECTIVE: To investigate the effects of buprenorphine on cardiopulmonary variables and on abdominal auscultation scores in horses. ANIMALS: 6 healthy adult horses. PROCEDURES: Horses were restrained in stocks and allocated to 2 treatments in a randomized crossover design, with 1-week intervals between each treatment. Saline (0.9% NaCl) solution was administered IV as a control, whereas buprenorphine (10 mug/kg, IV) was administered to the experimental group. Cardiopulmonary data were collected for 120 minutes after buprenorphine or saline solution administration. Abdominal auscultation scores were monitored for 2 and 12 hours after drug administration in the control and experimental groups, respectively. RESULTS: Following control treatment, horses remained calm while restrained in the stocks and no significant changes in cardiopulmonary variables were observed throughout the study. Buprenorphine administration caused excitatory phenomena (restlessness and head shaking). Heart rate, cardiac index, and arterial blood pressure were significantly increased after buprenorphine administration until the end of the observational period (120 minutes). Minimal changes were found in arterial blood gas tensions. Abdominal auscultation scores decreased significantly from baseline for 4 hours after buprenorphine administration. CONCLUSIONS AND CLINICAL RELEVANCE: Buprenorphine induced excitement and hemodynamic stimulation with minimal changes in arterial blood gas tensions. These effects may impact the clinical use of buprenorphine in horses. Further studies are indicated to investigate the effects of buprenorphine on gastrointestinal motility and fecal output.  相似文献   

8.
Cardiovascular effects of xylazine and detomidine in horses   总被引:6,自引:0,他引:6  
The cardiovascular effects of xylazine and detomidine in horses were studied. Six horses were given each of the following 5 treatments, at 1-week intervals: xylazine, 1.1 mg/kg, IV; xylazine, 2.2 mg/kg, IM; detomidine, 0.01 mg/kg, IV; detomidine, 0.02 mg/kg, IV; and detomidine, 0.04 mg/kg, IM. All treatments resulted in significantly decreased heart rate, increased incidence of atrioventricular block, and decreased cardiac output and cardiac index; cardiac output and cardiac index were lowest following IV administration of 0.02 mg of detomidine/kg. Mean arterial pressure was significantly reduced for various periods with all treatments; however, IV administration of 0.02 mg of detomidine/kg caused hypertension initially. Systemic vascular resistance was increased by all treatments. Indices of ventricular contractility and relaxation, +dP/dt and -dP/dt, were significantly depressed by all treatments. Significant changes were not detected in stroke volume or ejection fraction. The PCV was significantly reduced by all treatments. Respiratory rate was significantly decreased with all treatments, but arterial carbon dioxide tension did not change. Arterial oxygen tension was significantly decreased briefly with the 3 IV treatments only.  相似文献   

9.
10.
The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine. KEY WORDS: cardiovascular effect, detomidine, equine, medetomidine, xylazine.  相似文献   

11.
Circulatory and respiratory effects of intravenously administered acetylpromazine (0.033 and 0.067 mg/kg) and xylazine (0.5 and 1.0 mg/kg) were studied in drug cross-over fashion in eight laterally recumbent horses anesthetized only with halothane (1.06%, end-tidal) in O2. Both doses of acetylpromazine caused a significant and sustained elevation in cardiac output via a rise in stroke volume. Xylazine produced an initial significant fall in cardiac output followed by a return to control levels. Halothane anesthesia did not prevent xylazine-related atrioventricular conduction block. All treatments caused a similar significant fall in arterial blood pressure (acetylpromazine, total peripheral resistance-related; xylazine, cardiac output-related). PaCO2 significantly increased after all treatments. PaCO2 decreased significantly only following xylazine treatment. One horse (not included in the tabulation) developed ventricular fibrillation and died 15 min after receiving its first injection (0.5 mg/kg) of xylazine.  相似文献   

12.
The sedative effects in horses of the new alpha 2 agonist medetomidine were compared with those of xylazine. Four ponies and one horse were treated on separate occasions with two doses of medetomidine (5 micrograms/kg bodyweight and 10 micrograms/kg bodyweight) and with one dose of xylazine (1 mg/kg bodyweight) given by intravenous injection. Medetomidine at 10 micrograms/kg was similar to 1 mg/kg xylazine in its sedative effect but produced more severe and more prolonged ataxia, and one animal fell over during the study. Medetomidine at 5 micrograms/kg produced less sedation but a similar degree of ataxia to 1 mg/kg xylazine.  相似文献   

13.
Objective To compare the anti‐nociceptive effects of extradural xylazine, fentanyl and a xylazine–fentanyl combination in sheep, and to measure the cardiopulmonary effects of the xylazine–fentanyl combination. Study design Prospective, randomized study. Animals Twenty‐five half‐merino ewes 2–4 years of age and body mass 54.2 ± 1.1 kg. Methods Six sheep in group 1 received 0.2 mg kg?1 xylazine by extradural injection, six in group 2 received fentanyl 1.5 µg kg?1 and 13 in group 3 received the combination of both treatments. In all groups, drugs were mixed with saline (0.15 mL kg?1 before injection). Pulmonary and carotid arterial catheters were placed in seven sheep of group 3 which were used to evaluate cardiopulmonary effects. Anti‐nociception was determined by the response to electrical stimulation (40 V for 1.5 milliseconds) of the left flank and by superficial and deep muscular ‘pinpricking’ stimulation of the pelvic and thoracic limbs and thoracolumbar region. Results Lack of response to electrical stimulation at the left flank was present in 10 ± 1.1 minutes (mean ± SEM) (group 1) and in 4.5 ± 0.5 minutes in group 3. The duration of lack of response to electrical stimulation at the left flank was 96 ± 6 minutes in group 1 and 315 ± 6 minutes in group 3. Responses persisted in group 3. Significant decreases (p < 0.05) in cardiac output 30, 45, 60 and 90 minutes after injection, and in cardiac work at 30 and 45 minutes were observed in the seven animals of group 3. Arterial blood pH was lowest at 90 minutes, arterial bicarbonate was lowest at 60 minutes and values for both arterial and mixed venous base excess increased significantly at 60 and 90 minutes. There was no significant change from baseline values in heart rate, mean arterial blood pressure, respiratory rate, body temperature, systemic vascular resistance, arterial and mixed venous PO2, PCO2, oxygen saturation, blood oxygen content, haemoglobin concentration, mixed venous blood bicarbonate and pH. Conclusions Fentanyl decreases the onset time and prolongs the duration of anti‐nociception produced by xylazine. The combination decreases cardiac output but is without significant respiratory effects. Clinical relevance Further studies are required to show that surgery is possible in sheep after extradural xylazine–fentanyl injection.  相似文献   

14.
15.
16.
17.
18.
This study determined the pharmacokinetics and compared the clinical effects of xylazine and dexmedetomidine in horses recovering from isoflurane anesthesia. Six healthy horses aged 8.5 ± 3 years and weighing 462 ± 50 kg were anesthetized with isoflurane for 2 hr under standard conditions on two occasions one-week apart. In recovery, horses received 200 μg/kg xylazine or 0.875 μg/kg dexmedetomidine intravenously and were allowed to recover without assistance. These doses were selected because they have been used for postanesthetic sedation in clinical and research studies. Serial venous blood samples were collected for quantification of xylazine and dexmedetomidine, and the pharmacokinetic parameters were calculated. Two individuals blinded to treatment identity evaluated recovery quality with a visual analog scale. Times to stand were recorded. Results (mean ± SD) were compared using paired t tests or Wilcoxon signed-ranked test with p < .05 considered significant. Elimination half-lives (62.7 ± 21.8 and 30.1 ± 8 min for xylazine and dexmedetomidine, respectively) and steady-state volumes of distribution (215 ± 123 and 744 ± 403 ml/kg) were significantly different between xylazine and dexmedetomidine, whereas clearances (21.1 ± 17.3 and 48.6 ± 28.1 ml/minute/kg), times to stand (47 ± 24 and 53 ± 12 min) and recovery quality (51 ± 24 and 61 ± 22 mm VAS) were not significantly different. When used for postanesthetic sedation following isoflurane anesthesia in healthy horses, dexmedetomidine displays faster plasma kinetics but is not associated with faster recoveries compared to xylazine.  相似文献   

19.
ObjectiveTo compare sedation and antinociception after oral transmucosal (OTM) and intramuscular (IM) administration of a dexmedetomidine-buprenorphine combination in healthy adult cats.Study designRandomized, ‘blinded’ crossover study, with 1 month washout between treatments.AnimalsSix healthy neutered female cats, weighing 5.3–7.5 kg.MethodsA combination of dexmedetomidine (40 μg kg?1) and buprenorphine (20 μg kg?1) was administered by either the OTM (buccal cavity) or IM (quadriceps muscle) route. Sedation was measured using a numerical rating scale, at baseline and at various time points until 6 hours after treatment. At the same time points, analgesia was scored using a dynamic and interactive visual analogue scale, based on the response to an ear pinch, and by the cat’s response to a mechanical stimulus exerted by a pressure rate onset device. Physiological and adverse effects were recorded, and oral pH measured. Signed rank tests were performed, with significance set at p < 0.05. Data are presented as median and range.ResultsThere were no differences in sedation or antinociception scores between OTM and IM dosing at any of the time points. Nociceptive thresholds increased after both treatments but without significant difference between groups. Buccal pH remained between 8 and 8.5. Salivation was noted after OTM administration (n = 2) and vomiting after both OTM (n = 4), and IM (n = 3) dosing.Conclusions and clinical relevanceIn healthy adult cats, OTM administration of dexmedetomidine and buprenorphine resulted in comparable levels of sedation and antinociception to IM dosing. The OTM administration may offer an alternative route to administer this sedative-analgesic combination in cats.  相似文献   

20.

Objective

To evaluate intravenous (IV) detomidine with methadone in horses to identify a combination which provides sedation and antinociception without adverse effects.

Study design

Randomized, placebo-controlled, blinded, crossover.

Animals

A group of eight adult healthy horses aged (mean ± standard deviation) 7 ± 2 years and 372 ± 27 kg.

Methods

A total of six treatments were administered IV: saline (SAL); detomidine (5 μg kg?1; DET); methadone (0.2 mg kg?1; MET) alone or combined with detomidine [2.5 (MLD), 5 (MMD) or 10 (MHD) μg kg?1]. Thermal, mechanical and electrical nociceptive thresholds were measured, and sedation, head height above ground (HHAG), cardiopulmonary variables and intestinal motility were evaluated at 5, 15, 30, 45, 60, 75, 90, 120 and 180 minutes. Normal data were analyzed by mixed-model analysis of variance and non-normal by Kruskal–Wallis (p < 0.05).

Results

Nociceptive thresholds in horses administered methadone with the higher doses of detomidine (MMD, MHD) were increased above baseline to a greater degree and for longer duration (MMD: 15–30 minutes, MHD: 30–60 minutes) than in horses administered low dose with methadone or detomidine alone (MLD, DET: 5–15 minutes). No increases in nociceptive thresholds were recorded in SAL or MET. Compared with baseline, HHAG was lower for 30 minutes in MMD and DET, and for 45 minutes in MHD. No significant sedation was observed in SAL, MET or MLD. Intestinal motility was reduced for 75 minutes in MHD and for 30 minutes in all other treatments.

Conclusions

Methadone (0.2 mg kg?1) potentiated the antinociception produced by detomidine (5 μg kg?1), with minimal sedative effects.

Clinical relevance

Detomidine (5 μg kg?1) with methadone (0.2 mg kg?1) produced antinociception without the adverse effects of higher doses of detomidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号