首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to evaluate the effects of a constant rate infusion (CRI) of xylazine or xylazine in combination with lidocaine on nociception, sedation, and physiologic values in horses. Six horses were given intravenous (IV) administration of a loading dose (LD) of 0.55 mg/kg of xylazine followed by a CRI of 1.1 mg/kg/hr. The horses were randomly assigned to receive three treatments, on different occasions, administered 10 minutes after initiation of the xylazine CRI, as follows: control, physiologic saline; lidocaine low CRI (LLCRI), lidocaine (LD: 1.3 mg/kg, CRI: 0.025 mg/kg/min); and lidocaine high CRI (LHCRI), lidocaine (LD: 1.3 mg/kg, CRI: 0.05 mg/kg/min). A blinded observer assessed objective and subjective data for 50 minutes during the CRIs. In all treatments, heart and respiratory rates decreased, end-tidal carbon dioxide concentration increased, and moderate to intense sedation was observed, but no significant treatment effect was detected in these variables. Ataxia was significantly higher in LHCRI than in the control treatment at 20 minutes of infusion. Compared with baseline values, nociceptive threshold increased to as much as 79% in the control, 190% in LLCRI, and 158% in LHCRI. Nociceptive threshold was significantly higher in LLCRI (at 10 and 50 minutes) and in LHCRI (at 30 minutes) than in the control treatment. The combination of CRIs of lidocaine with xylazine produced greater increases in nociceptive threshold compared with xylazine alone. The effects of xylazine on sedation and cardiorespiratory variables were not enhanced by the coadministration of lidocaine. The potential to increase ataxia may contraindicate the clinical use of LHCRI, in combination with xylazine, in standing horses.  相似文献   

2.
The cardiovascular changes associated with anesthesia induced and maintained with romifidine/ketamine versus xylazine/ ketamine were compared using 6 horses in a cross over design. Anesthesia was induced and maintained with romifidine (100 microg/kg, IV)/ketamine (2.0 mg/kg, IV) and ketamine (0.1 mg/kg/min, IV), respectively, in horses assigned to the romifidine/ ketamine group. Horses assigned to the xylazine/ketamine group had anesthesia induced and maintained with xylazine (1.0 mg/kg, IV)/ketamine (2.0 mg/kg, IV) and a combination of xylazine (0.05 mg/kg/min, IV) and ketamine (0.1 mg/kg/min, IV), respectively. Cardiopulmonary variables were measured at intervals up to 40 min after induction. All horses showed effective sedation following intravenous romifidine or xylazine and achieved recumbency after ketamine administration. There were no significant differences between groups in heart rate, arterial oxygen partial pressures, arterial carbon dioxide partial pressures, cardiac index, stroke index, oxygen delivery, oxygen utilization, systemic vascular resistance, left ventricular work, or any of the measured systemic arterial blood pressures. Cardiac index and left ventricular work fell significantly from baseline while systemic vascular resistance increased from baseline in both groups. The oxygen utilization ratio was higher in the xylazine group at 5 and 15 min after induction. In conclusion, the combination of romifidine/ketamine results in similar cardiopulmonary alterations as a xylazine/ketamine regime, and is a suitable alternative for clinical anesthesia of the horse from a cardiopulmonary viewpoint.  相似文献   

3.
Standing surgical procedures are performed commonly in horses under sedation. The use of a xylazine and remifentanil combination has not been investigated in horses. We proposed to evaluate behavioral and cardiopulmonary effects of an intravenous (IV) infusion of xylazine with remifentanil for sedation in horses. Xylazine (0.8 mg/kg IV) followed in 3 minutes by remifentanil (0.0005 mg/kg IV), and a constant rate infusion of xylazine and remifentanil (0.65 mg/kg/h; 0.0225 mg/kg/h, respectively) was administered in three horses. Heart rate, respiratory rate (RR), arterial blood pressures, quality of sedation, pH, partial pressure of arterial CO2 (PaCO2), partial pressure of arterial O2 (PaO2), ataxia, sedation, and sedation overall outcome were assessed. Heart rate and RR remained within normal values during sedation without significant changes from baseline. Systolic, mean, and diastolic arterial blood pressures were increased during sedation. There were no significant changes in pH, PaCO2, and PaO2. Sedation developed immediately after injection of xylazine in the three horses but did not increase after remifentanil bolus or IV infusion of both drugs. None of the mares had ataxia. Adverse effects during and after sedation were present: excitement, increase in locomotor activity, and decrease in the gastrointestinal motility. The combination of xylazine and remifentanil sedation protocol produces adverse effects. This protocol cannot be recommended for clinical conditions, at the described doses.  相似文献   

4.
This study was performed to evaluate the sedative and analgesic effects of xylazine (X) and tramadol (T) intravenously (IV) administered to horses. Six thoroughbred saddle horses each received X (1.0 mg/kg), T (2.0 mg/kg), and a combination of XT (1.0 and 2.0 mg/kg, respectively) IV. Heart rate (HR), respiratory rate (RR), rectal temperature (RT), indirect arterial pressure (IAP), capillary refill time (CRT), sedation, and analgesia (using electrical stimulation and pinprick) were measured before and after drug administration. HR and RR significantly decreased from basal values with X and XT treatments, and significantly increased with T treatment (p < 0.05). RT and IAP also significantly increased with T treatment (p < 0.05). CRT did not change significantly with any treatments. The onset of sedation and analgesia were approximately 5 min after both X and XT treatments; however, the XT combination produced a longer duration of sedation and analgesia than X alone. Two horses in the XT treatment group displayed excited transient behavior within 5 min of drug administration. The results suggest that the XT combination is useful for sedation and analgesia in horses. However, careful monitoring for excited behavior shortly after administration is recommended.  相似文献   

5.
Xylazine and remifentanil in constant rate infusion (CRI) could be used for sedation in horses without adverse effects. The objective was to evaluate behavioral and cardiopulmonary effects of an intravenous (IV) infusion of xylazine and remifentanil for sedation in horses. Xylazine (0.8 mg/kg IV) followed after 3 minutes by a CRI of xylazine and remifentanil (0.65 mg/kg/h and 6 μg/kg/h, respectively) was administered in 10 healthy horses for 60 minutes. Sedation, ataxia, and cardiopulmonary, hematological, and blood gases variables were evaluated. Heart rate decreased significantly during the first 25 minutes after CRI of xylazine and remifentanil, whereas the respiratory rate showed a significant decrease at 20 minutes and remained significantly low until the endpoint. There were no statistically significant fluctuations in blood arterial pressure, blood pH, partial pressure of arterial carbon dioxide, lactate, creatinine, calcium, chlorine, and sodium, compared with baseline values. Blood partial pressure of arterial oxygen and bicarbonate values were significantly higher compared with baseline values, whereas potassium decreased. Sedation and ataxia developed immediately after the administration of xylazine in all horses. All horses recovered successfully within 10 minutes after interruption of the CRI of xylazine and remifentanil, with no ataxia. No adverse effects were observed. The use of a combination of xylazine and remifentanil as sedation protocol has no adverse effects at the described dosage.  相似文献   

6.
Xylazine and tiletamine-zolazepam anesthesia in horses   总被引:4,自引:0,他引:4  
The cardiopulmonary and anesthetic effects of xylazine in combination with a 1:1 mixture of tiletamine and zolazepam were determined in 6 horses. Each horse was given xylazine IV or IM, as well as tiletamine-zolazepam IV on 4 randomized occasions. Anesthetics were administered at the rate of 1.1 mg of xylazine/kg of body weight, IV, 1.1 mg of tiletamine-zolazepam/kg, IV (treatment 1); 1.1 mg of xylazine/kg, IV, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 2); 1.1 mg of xylazine/kg, IV, 2.2 mg of tiletamine-zolazepam/kg, IV (treatment 3); and 2.2 mg of xylazine/kg, IM, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 4). Tiletamine-zolazepam doses were the sum of tiletamine plus zolazepam. Xylazine, when given IV, was given 5 minutes before tiletamine-zolazepam. Xylazine, when given IM, was given 10 minutes before tiletamine-zolazepam. Tiletamine-zolazepam induced recumbency in all horses. Duration of recumbency in group 1 was 31.9 +/- 7.2 (mean +/- 1 SD) minutes. Increasing the dosage of tiletamine-zolazepam (treatments 2 and 3) significantly (P less than 0.05) increased the duration of recumbency. Xylazine caused significant (P less than 0.05) decreases in heart rate and cardiac output and significant (P less than 0.05) increases in central venous pressure and mean pulmonary artery pressure 5 minutes after administration. Respiratory rate was decreased. Arterial blood pressures increased significantly (P less than 0.05) after xylazine was administered IV in treatments 1 and 3, but the increases were not significant in treatment 2. Xylazine administered IM caused significant (P less than 0.05) increases in central venous pressure and significant (P less than 0.05) decreases in cardiac output.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Detomidine (30 mcg/kg), xylazine (1.1 mg/kg) and xylazine/morphine (1.1 mg/kg and 0.75 mg/kg with 300 mg maximum dose) were compared in horses admitted for broncho-alveolar lavage. Horses (n=99) were randomized and clinicians performing the procedure were unaware of the sedation used. Horses were assessed during the procedure and for the next 2 hours. A significant number of xylazine/morphine-sedated horses showed excitement (p<0.05). The frequency of sinus block or arrest and second-degree atrioventricular block was significantly greater with detomidine. Detomidine-sedated horses were significantly more depressed than either xylazine or xylazine/morphine treated animals. Heart rate was significantly greater in horses given xylazine/morphine by 60 min. There was no significant difference between drug treatments related to reactions to the procedure or respiratory rate depression. The study indicated that all three methods are suitable for standing restraint. The more frequent adverse side effects (circling, muscle fasciculations, head pressing) accompanying xylazine/morphine should be considered.  相似文献   

8.
The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine. KEY WORDS: cardiovascular effect, detomidine, equine, medetomidine, xylazine.  相似文献   

9.
OBJECTIVE: To assess the sedative and cardiopulmonary effects of medetomidine and xylazine and their reversal with atipamezole in calves. ANIMALS: 25 calves. PROCEDURES: A 2-phase (7-day interval) study was performed. Sedative characteristics (phase I) and cardiopulmonary effects (phase II) of medetomidine hydrochloride and xylazine hydrochloride administration followed by atipamezole hydrochloride administration were evaluated. In both phases, calves were randomly allocated to receive 1 of 4 treatments IV: medetomidine (0.03 mg/kg) followed by atipamezole (0.1 mg/kg; n = 6), xylazine (0.3 mg/kg) followed by atipamezole (0.04 mg/kg; 7), medetomidine (0.03 mg/kg) followed by saline (0.9% NaCl; 6) solution (10 mL), and xylazine (0.3 mg/kg) followed by saline solution (10 mL; 6). Atipamezole or saline solution was administered 20 minutes after the first injection. Cardiopulmonary variables were recorded at intervals for 35 minutes after medetomidine or xylazine administration. RESULTS: At the doses evaluated, xylazine and medetomidine induced a similar degree of sedation in calves; however, the duration of medetomidine-associated sedation was longer. Compared with pretreatment values, heart rate, cardiac index, and PaO(2) decreased, whereas central venous pressure, PaCO(2), and pulmonary artery pressures increased with medetomidine or xylazine. Systemic arterial blood pressures and vascular resistance increased with medetomidine and decreased with xylazine. Atipamezole reversed the sedative and most of the cardiopulmonary effects of both drugs. CONCLUSIONS AND CLINICAL RELEVANCE: At these doses, xylazine and medetomidine induced similar degrees of sedation and cardiopulmonary depression in calves, although medetomidine administration resulted in increases in systemic arterial blood pressures. Atipamezole effectively reversed medetomidine- and xylazine-associated sedative and cardiopulmonary effects in calves.  相似文献   

10.
Antagonism of xylazine sedation by 4-aminopyridine and yohimbine in cattle   总被引:2,自引:0,他引:2  
Twenty-four crossbred steers (4 groups of 6 steers each) were injected IM with a standard dosage range of xylazine hydrochloride (0.2 to 0.3 mg/kg of body weight). When the steers were maximally sedated, group I (control group) were given isotonic saline solution (1 ml, IV), group II were given 4-aminopyridine (4-AP, 0.3 mg/kg) IV, group III were given yohimbine hydrochloride (0.125 mg/kg) IV, and group IV were given 4-AP (0.3 mg/kg) plus yohimbine hydrochloride (0.125 mg/kg) IV. The 4-AP decreased mean standing time (MST; time until animal could stand unaided) from 94.3 minutes (control) to 13.4 minutes. Yohimbine decreased MST to 27 minutes. The combination of 4-AP + yohimbine decreased MST to 7.4 minutes. Mean total recovery time (MTRT; time from xylazine injection until normal behavior, including eating and drinking) was not significantly (P = greater than 0.05) decreased from control values by any of the antagonists tested. The combination of 4-AP + yohimbine decreased MST in animals given a 3X overdose of xylazine (0.6 mg/kg) from 124 minutes (control) to 30.3 min. The MTRT was not significantly (P greater than 0.05) decreased from control values. Two animals given a 5X overdose of xylazine (1 mg/kg) and then given 4-AP + yohimbine had a MST of 32.5 minutes and a MTRT of 3.7 hours. The combination of 4-AP + yohimbine produced marked antagonism of xylazine sedation in cattle. The combination of antagonists may prove to be useful for the arousal of animals sedated with xylazine alone or with a combination of sedatives including xylazine.  相似文献   

11.
OBJECTIVE: To determine sedative, cardiorespiratory and metabolic effects of xylazine hydrochloride, detomidine hydrochloride, and a combination of xylazine and acepromazine administered i.v. at twice the standard doses in Thoroughbred horses recuperating from a brief period of maximal exercise. ANIMALS: 6 adult Thoroughbreds. PROCEDURE: Horses were preconditioned by exercising them on a treadmill to establish a uniform level of fitness. Each horse ran 4 simulated races, with a minimum of 14 days between races. Simulated races were run at a treadmill speed that caused horses to exercise at 120% of their maximal oxygen consumption. Horses ran until they were fatigued or for a maximum of 2 minutes. One minute after the end of exercise, horses were treated i.v. with xylazine (2.2 mg/kg of body weight), detomidine (0.04 mg/kg), a combination of xylazine (2.2 mg/kg) and acepromazine (0.04 mg/kg), or saline (0.9% NaCl) solution. Treatments were randomized so that each horse received each treatment once, in random order. Cardiopulmonary indices were measured, and samples of arterial and venous blood were collected immediately before and at specific times for 90 minutes after the end of each race. RESULTS: All sedatives produced effective sedation. The cardiopulmonary depression that was induced was qualitatively similar to that induced by administration of these sedatives to resting horses and was not severe. Sedative administration after exercise prolonged the exercise-induced increase in body temperature. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of xylazine, detomidine, or a combination of xylazine-acepromazine at twice the standard doses produced safe and effective sedation in horses that had just undergone a brief, intense bout of exercise.  相似文献   

12.
Isofluorane is a modern, only slightly depressive inhalation anaesthetic with excellent pharmacologic characteristics in use in equine medicine. In contrast to halothane, isofluorane is hardly broken down in the liver, but is eliminated by the lung. It low solubility in blood permits excellent control of anaesthesia. However, due to its swift elimination from the organism there is heightened risk of premature recovery from isofluorane anaesthesia. In this study the recovery phases of 96 horses were monitored for its duration and the animals' physical coordination. The horses were divided into four groups. Two groups were sedated with xylazine, one of which received postanaesthetic sedation with xylazine, the other saline solution only. The other two groups were sedated with romifidine, either with or without postanaesthetic sedation after general anaesthesia. In this study the horses of Group 4, sedated with 0.02 mg/kg BW romifidine at the moment of extubation, showed the best recovery phase. The number of attempts to arise was reduced and coordination was better. Similar results were obtained by postanaesthetic sedation with 0.2 mg/kg BW xylazine (Group 2). Premedication with 0.08 mg/kg BW romifidine without postanaesthetic sedation (Group 3) could be carried out at mean duration of anaesthesia of 85 minutes with no negative effects observed during the recovery period. Premedication with xylazine without postanaesthetic sedation (Group 1) is not to be recommended, as the number of attemps to stand up was significantly higher and coordination was either weak or significantly poorer than in the other three groups. The results of this study show that post-anaesthetic sedation of horses with an alpha 2-adrenoceptor agonist can improve the recovery phase after inhalant anaesthesia with isofluorane in regard to the number of attempts to arise and the animals' physical coordination.  相似文献   

13.
OBJECTIVE: To determine the cardiopulmonary and sedative effects of medetomidine hydrochloride in adult horses and to compare those effects with effects of an equipotent dose of xylazine hydrochloride. ANIMALS: 10 healthy adult female horses. PROCEDURE: 5 horses were given medetomidine (4 microg/kg of body weight, i.v.), and the other 5 were given xylazine (0.4 mg/kg, i.v.). Heart rate, respiratory rate, arterial blood pressures, pulmonary arterial blood pressures, and cardiac output were recorded, and sedation and ataxia scores were assigned before and every 5 minutes after drug administration for 60 minutes. Rectal temperature and blood gas partial pressures were measured every 15 minutes after drug administration. RESULTS: Arterial blood pressure was significantly decreased throughout the study among horses given medetomidine and was significantly decreased for 40 minutes among horses given xylazine. Compared with baseline values, cardiac output was significantly decreased 10, 20, and 40 minutes after administration of medetomidine and significantly increased 40 and 60 minutes after administration of xylazine. Despite the significant decrease in respiratory rate in both groups, results of blood gas analyses were not significantly changed over time. Ataxia and sedation scores were of similar magnitude for the 2 groups, but ataxia persisted slightly longer among horses given medetomidine. Horses resumed eating hay 10 to 55 minutes after drug administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that equipotent low doses of medetomidine and xylazine induce comparable levels of ataxia and sedation and similar cardiopulmonary changes in adult horses.  相似文献   

14.
The purpose of this study was to compare and evaluate sedation with intravenous xylazine (1.1 mg/kg bodyweight [BW]) versus intravenous romifidine (100 micrograms/kg BW) followed by induction of anesthesia with intravenous diazepam (0.04 mg/kg BW) and ketamine (2.2 mg/kg BW). Twelve healthy horses were used in a blinded, randomized, cross-over design. Heart rate, presence of 2nd degree atrioventricular heart blocks (2 degrees AVB), respiratory rate, arterial blood pressures, blood gases, packed cell volume, total serum proteins, and duration of anesthesia and recumbency were recorded. Induction and recovery quality was evaluated using a 0 to 4 score. Response to stimulation with noise, pressure, and cutaneous electrical stimulation was assessed at 5 minute intervals during recumbency to evaluate the depth of anesthesia. Heart rate was lower and 2 degrees AVB more frequent in the romifidine group, while blood pressure was lower in the xylazine group. Duration of anesthesia was longer in the romifidine group (mean 20.8, s mean 2.3 min) versus the xylazine group (mean 15.8, s mean 1.6 min), while induction and recovery were excellent in both groups. Respiratory rates, blood gas values, packed cell volumes, and total protein levels did not differ between groups. The results indicate that romifidine premedication followed by diazepam and ketamine is a very satisfactory regime for short duration intravenous anesthesia in horses.  相似文献   

15.
The effects of four intravenous combinations, xylazine (0.7 mg/kg)/methadone (0.1 mg/kg), xylazine (0.7 mg/kg)/buprenorphine (0.004 and 0.006 mg/kg) and acepromazine (0.05 mg/kg)/buprenorphine (0.006 mg/kg) on arterial blood pressure, central venous pressure, heart rate, respiratory rate and blood gases were studied in four experimental ponies. With xylazine/buprenorphine and xylazine/methadone onset of sedation was rapid and obvious and although no surgical or diagnostic procedures were carried out, sedation was judged to be satisfactory for the next 30 to 40 minutes. Onset of sedation after intravenous injection of acepromazine/buprenorphine was slower and less obvious, while its duration was difficult to determine for the ponies could be aroused by noise even when apparently fully sedated. The observations indicated that at the stated doses all the drug combinations should be safe for clinical use.  相似文献   

16.
Cardiovascular effects of xylazine and detomidine in horses   总被引:6,自引:0,他引:6  
The cardiovascular effects of xylazine and detomidine in horses were studied. Six horses were given each of the following 5 treatments, at 1-week intervals: xylazine, 1.1 mg/kg, IV; xylazine, 2.2 mg/kg, IM; detomidine, 0.01 mg/kg, IV; detomidine, 0.02 mg/kg, IV; and detomidine, 0.04 mg/kg, IM. All treatments resulted in significantly decreased heart rate, increased incidence of atrioventricular block, and decreased cardiac output and cardiac index; cardiac output and cardiac index were lowest following IV administration of 0.02 mg of detomidine/kg. Mean arterial pressure was significantly reduced for various periods with all treatments; however, IV administration of 0.02 mg of detomidine/kg caused hypertension initially. Systemic vascular resistance was increased by all treatments. Indices of ventricular contractility and relaxation, +dP/dt and -dP/dt, were significantly depressed by all treatments. Significant changes were not detected in stroke volume or ejection fraction. The PCV was significantly reduced by all treatments. Respiratory rate was significantly decreased with all treatments, but arterial carbon dioxide tension did not change. Arterial oxygen tension was significantly decreased briefly with the 3 IV treatments only.  相似文献   

17.
OBJECTIVE: To compare the effects of two balanced anaesthetic protocols on end-tidal isoflurane (Fe'ISO), cardiopulmonary performance and quality of recovery in horses. DESIGN: Prospective blinded randomized clinical study. ANIMALS: Sixty-nine client-owned horses, American Society of Anesthesiologists category I and II, undergoing elective surgery. METHODS: The horses were premedicated with acepromazine (0.03 mg kg(-1)) IM 30-60 minutes before induction of anaesthesia and were randomly assigned to one of two treatments: in group L (37 horses) xylazine (1 mg kg(-1)) and in group M (31 horses) medetomidine (7 microg kg(-1)) was administered IV for sedation. Anaesthesia was induced 5 minutes later with ketamine (2.2 mg kg(-1)) and diazepam (0.02 mg kg(-1)) IV and maintained with isoflurane in oxygen/air (initial FIO2 0.40-0.50) and a constant rate infusion (CRI) of either lidocaine (2 mg kg(-1)/15 minutes loading dose followed by 50 microg kg(-1) minute(-1)) (group L) or medetomidine (3.5 microg kg(-1) hour(-1)) (group M). If horses showed movement or nystagmus, additional thiopental or ketamine was administered. Heart rate, mean arterial pressure (MAP), Fe'ISO and arterial blood gases were measured. Cardiac output was measured with the lithium dilution method in 10 (group L) and 11 (group M) horses every 45 minutes. Recovery was scored. RESULTS: Heart rate and the cardiac index (CI) were significantly higher in group L with changes over time. In group M, MAP was significantly higher during the first 50 minutes. Group L needed more additional ketamine and thiopental to maintain a surgical plane of anaesthesia and Fe'ISO was significantly higher from 70 minutes. Recovery was longer in group M and of better quality. The significance level was set at p < 0.05. CONCLUSIONS AND CLINICAL RELEVANCE: In group M, maintenance of stable anaesthetic depth was easier and lower Fe'ISO was required to maintain a surgical plane of anaesthesia. Recoveries were longer but of better quality. The CI was higher in group L but cardiovascular function was generally well maintained in both groups.  相似文献   

18.
Background: Signs of tachypnea after sedation of febrile horses with α2‐agonists have been noted previously but have not been further investigated. Objectives: To examine the effects of xylazine and detomidine on respiratory rate and rectal temperature in febrile horses and to investigate if either drug would be less likely than the other to cause changes in these variables. Animals: Nine febrile horses and 9 healthy horses were included in the study. Methods: Horses were randomly assigned to sedation with xylazine 0.5 mg/kg or detomidine 0.01 mg/kg. Heart rate and respiratory rate were recorded before sedation and at 1, 3, and 5 minutes after injection. Hourly measurements of rectal temperature were performed starting before sedation. Results: All febrile horses experienced an episode of tachypnea and antipyresis after sedation. Rectal temperature in the febrile group was significantly lower at 1, 2, and 3 hours after sedation. In several measurements, the decrease was >1°C. Respiratory rate in the febrile group was significantly increased after sedation. All febrile horses were breathing >40 breaths/min and 3 horses >100 breaths/min 5 minutes after sedation. No differences were noted between the 2 treatments. No significant changes in respiratory rate or temperature were noted in the reference group. Conclusions and Clinical Importance: Febrile horses can become tachypneic after sedation with detomidine or xylazine. The antipyretic properties of α2‐agonists need consideration when evaluating patients that have been sedated several hours before examination.  相似文献   

19.
Comparison of the effects of xylazine and romifidine administered perioperatively on the recovery of anesthetized horses. The present study was designed to compare recoveries from anesthesia following the use of romifidine or xylazine in horses. In a prospective blind randomized clinical trial, 28 horses, undergoing elective arthroscopy, were randomly allocated into 2 groups. The intravenous anesthesia protocol used in the xylazine group was: butorphanol [0.02 mg/kg body weight (BW)] and xylazine (0.5 to 0.7 mg/kg BW) for premedication, diazepam (0.1 mg/kg BW) and ketamine (2.2 mg/kg BW) for induction, isoflurane in oxygen for maintenance and xylazine (0.1 mg/kg BW) in recovery. The xylazine was replaced with romifidine 0.05 to 0.08 mg/kg BW (premedication) and 0.01 mg/kg BW (recovery) in the romifidine group. The quality of recovery was evaluated with a modified scoring system and the duration recorded. Wilcoxon Ranked Sum test (P < 0.05) was used for statistical analysis. The recovery quality scores and the durations of recovery were not statistically different between the 2 groups. In this study, romifidine and xylazine were equal in their effects on recovery qualities.(Translated by the authors).  相似文献   

20.
The effect of xylazine on the arrhythmogenic dose of epinephrine (ADE) was studied in 9 horses. Anesthesia was induced by administration of guaifenesin (50 mg/kg of body weight, IV) followed by thiamylal (4 to 6 mg/kg, IV) and was maintained at 1 minimal alveolar concentration (MAC) of halothane (0.89%). Base apex ECG and facial artery pressure were recorded. Epinephrine was infused in a sequence of arithmetically spaced increasing rates (initial rate 0.25 micrograms/kg/min) for a maximum of 10 minutes. The ADE was defined as the lowest epinephrine infusion rate to the nearest 0.25 micrograms/kg/min at which at least 4 premature ventricular depolarizations occurred in a 15-second period. Xylazine (1.1 mg/kg, IV) was administered after the control ADE was determined. Xylazine did not significantly alter the ADE (control, 1.12 +/- 0.38 micrograms/kg/min; xylazine, 1.21 +/- 0.46 micrograms/kg/min). Blood pressure increased transiently for 8 minutes after xylazine administration. Baseline systolic and diastolic arterial pressures and heart rate were not significantly different from control baseline pressures and heart rate 15 minutes after xylazine administration. Blood pressure and heart rate increased significantly during control and xylazine ADE determinations. Significant differences in pH, PaO2, PaCO2, or base excess were not observed between baseline and ADE in the control or xylazine groups. One horse developed atrial fibrillation, and 2 horses developed ventricular fibrillation during ADE determinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号