首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Abstract The monogenean Anoplodiscus cirrtisspiralis infects the fins and nares of snapper, Pagrus auratus (Bloch & Schneider). The epidermis beneath the haptor in both microhabitats is eroded and the parasite attaches to the basement membrane by an adhesive secretion. Captive snapper suffered fin damage through high levels of infection by this parasite. Laboratory experiments showed A. cirrusspiralis to be adversely affected by reduced salinity and killed within 1 h by diluted sea water of < 5%0 salinity.  相似文献   

2.
A two-factor experiment was carried out to investigate the change in skin colour and plasma cortisol response of cultured Australian snapper Pagrus auratus to a change in background colour. Snapper (mean weight=437 g) were held in black or white tanks and fed diets containing 39 mg unesterified astaxanthin kg−1 for 49 days before being transferred from white tanks to black cages (WB) or black tanks to white cages (BW). Skin colour values [ L * (lightness), a * (redness) and b * (yellowness)] of all snapper were measured at stocking ( t =0 days) and from cages of fish randomly assigned to each sampling time at 0.25, 0.5, 1, 2, 3, 5 and 7 days. Plasma cortisol was measured in anaesthetized snapper following colour measurements at 0, 1 and 7 days. Fish from additional black-to-black (BB) and white-to-white (WW) control treatments were also sampled for colour and cortisol at those times. Rapid changes occurred in skin lightness ( L * values) after altering background colour with maximum change in L * values for BW and WB treatments occurring within 1 day. Skin redness ( a *) of BW snapper continued to steadily decrease over the 7 days ( a *=7.93 × e−0.051 × time). Plasma cortisol concentrations were highest at stocking when fish were held at greater densities and were not affected by cage colour. The results of this study suggest that transferring dark coloured snapper to white cages for 1 day is sufficient to affect the greatest benefit in terms of producing light coloured fish while minimizing the reduction in favourable red skin colouration.  相似文献   

3.
A two‐factor experiment was performed to evaluate the effects of cage colour (black or white 0.5 m3 experiment cages) and light environment (natural sunlight or reduced level of natural sunlight) on the skin colour of darkened Australian snapper. Each treatment was replicated four times and each replicate cage was stocked with five snapper (mean weight=351 g). Snapper exposed to natural sunlight were held in experimental cages located in outdoor tanks. An approximately 70% reduction in natural sunlight (measured as PAR) was established by holding snapper in experimental cages that were housed inside a ‘shade‐house’ enclosure. The skin colour of anaesthetized fish was measured at stocking and after a 2‐, 7‐ and 14‐day exposure using a digital chroma‐meter (Minolta CR‐10) that quantified skin colour according to the L*a*b* colour space. At the conclusion of the experiment, fish were killed in salt water ice slurry and post‐mortem skin colour was quantified after 0.75, 6 and 22 h respectively. In addition to these trials, an ad hoc market appraisal of chilled snapper (mean weight=409 g) that had been held in either white or in black cages was conducted at two local fish markets. Irrespective of the sampling time, skin lightness (L*) was significantly affected by cage colour (P<0.05), with fish in white cages having much higher L* values (L*≈64) than fish held in black cages (L*≈49). However, the value of L* was not significantly affected by the light environment or the interaction between cage colour and the light environment. In general, the L* values of anaesthetized snapper were sustained post mortem, but there were linear reductions in the a* (red) and b* (yellow) skin colour values of chilled snapper over time. According to the commercial buyers interviewed, chilled snapper that had been reared for a short period of time in white cages could demand a premium of 10–50% above the prices paid for similar‐sized snapper reared in black cages. Our results demonstrate that short‐term use of white cages can reduce the dark skin colour of farmed snapper, potentially improving the profitability of snapper farming.  相似文献   

4.
Sexually mature female hatchery‐reared snapper, Pagrus auratus (Bloch & Schneider) were captured from sea cages by handline and injected at first capture (control) or 24 h after capture, transport and subsequent confinement (delayed injection) with either saline, luteinizing hormone releasing hormone analogue, human chorionic gonadotropin, or 17α‐hydroxyprogesterone. Blood was sampled before hormone treatment and again after 168 h, and fish were checked daily for ovulation. Plasma levels of 17β‐estradiol (E2), testosterone (T), 17α, 20β dihydroxy‐4‐pregnen‐3‐one (17, 20βP) and cortisol were determined by radioimmunoassay. The ovulatory response was assessed from the proportion of fish ovulating, ovulation volume, egg quality and fertility. A delay in injection resulted in significantly lower plasma E2 and T levels in response to hormone treatment, smaller ovulation volumes, and poorer egg quality than in control fish. The results are consistent with the generally inhibitory effects of stress on reproduction in fish, and confirm the requirement to treat fish with hormones designed to induce ovulation, as soon as possible after capture and disturbance.  相似文献   

5.
Two experiments were conducted with Australian snapper Pagrus auratus (Bloch and Schneider, 1801). The first was aimed at determining the dietary level of astaxanthin that improved skin redness (CIE a*values) of farm‐reared snapper. Farmed snapper (ca. 600 g) fed a commercial diet without carotenoids were moved to indoor tanks and fed the same diet supplemented with 0, 36 or 72 mg astaxanthin kg?1 (unesterified form as Carophyll Pink?) for nine weeks. Skin redness (CIE a* values) continued to decrease over time in fish fed the diet without astaxanthin. Snapper fed the diet containing 72 mg astaxanthin kg?1 were significantly more red than fish fed the diet with 36 mg astaxanthin kg?1 three weeks after feeding, but skin redness was similar in both groups of fish after 6 and 9 weeks. The second experiment was designed to investigate the interactive effects of dietary astaxanthin source (unesterified form as Carophyll Pink? or esterified form as NatuRose?; 60 mg astaxanthin kg?1) and degree of shading (0%, 50% and 95% shading from incident radiation) on skin colour (CIE L*a*b*) and skin and fillet astaxanthin content of farmed snapper (ca. 800 g) held in 1 m3 floating cages. After 116 days, there were no significant interactions between dietary treatment and degree of shading for L*, a* or b* skin colour values or the concentration of astaxanthin in the skin. Negligible amounts of astaxanthin were recovered from fillet samples. The addition of shade covers significantly increased skin lightness (L*), possibly by reducing the effect of melanism in the skin, but there was no difference between the lightness of fish held under either 50% or 95% shade cover (P>0.05).  相似文献   

6.
Two experiments were carried out to determine the apparent crude protein (CP), organic matter (OM), fat and gross energy (GE) digestibility coefficients (ADCs) of several protein and energy sources (ingredients) for Australian snapper using the indirect method of determination and collection of faeces by passive settlement. The first experiment determined ADCs for one level of fishmeal (500 g kg?1 diet), three levels of extruded wheat (200, 300 or 400 g kg?1 diet) and two levels of fish oil (150 or 250 g kg?1 diet). The second experiment determined ADCs for two levels each of meat meal or poultry meal (300 or 500 g kg?1 diet), one level each of haemoglobin powder or blood meal (150 g kg?1 diet) and one level each of solvent extracted soybean meal or a low‐allergenic, cold‐pressed soybean meal (300 g kg?1 diet). Similar ingredients and where appropriate, different inclusion levels were compared using one‐ or two‐way analysis of variance (anova ). Fishmeal was almost completely digested and ADC values ranged between 94.3% and 99.2%. Fish oil was also well digested, with ADC values ranging between 97.6% and 106.0% and was not significantly affected by inclusion level. Linear regression analysis indicated that there was no relationship between the inclusion level of extruded wheat and either CP (ADCs ranged from 100.1% to 105.4%) or fat digestibility (ADCs ranged from 89.1% to 104.4%). However, there was a significant negative linear relationship between the inclusion level of extruded wheat and GE digestibility (GEADC=86.51?0.031 × inclusion level; R2=0.49). Two‐way anova indicated that CP, OM and GE ADCs of poultry meal (i.e. 85.9%, 89.7% and 91.3% respectively) were significantly higher than those determined for meat meal (i.e. 63.8%, 63.4% and 71.3% respectively), but ADCs were not affected by inclusion level or the interaction between inclusion level and ingredient type. The fat digestibility coefficients of meat and poultry meal were not significantly different (ADCs ranged from 92.3% to 95.0%). The CP digestibility of haemoglobin powder (95.1%) was significantly higher than that of ring‐dried blood meal (81.6%), but there was no difference between the digestibility of OM (77.0%) or GE (80.4%) from these products. There was no difference between the CP (88.9%), OM (56.9%) and GE (65.6%) digestibility of the solvent extracted soybean meal and the low‐allergenic, cold‐pressed soybean meal. These coefficients will be useful in formulating both practical and research‐based diets for this species.  相似文献   

7.
8.
In an attempt to improve post‐harvest skin colour in cultured Australian snapper Pagrus auratus, a two‐factor experiment was carried out to investigate the effects of a short‐term change in cage colour before harvest, followed by immersion in K+‐enriched solutions of different concentrations. Snapper supplemented with 39 mg unesterified astaxanthin kg?1 for 50 days were transferred to black (for 1 day) or white cages (for 1 or 7 days) before euthanasia by immersing fish in seawater ice slurries supplemented with 0, 150, 300, 450 or 600 mmol L?1 K+ for 1 h. Each treatment was replicated with five snapper (mean weight=838 g) held individually within 0.2 m3 cages. L*, a* and b* skin colour values of all fish were measured after removal from K+ solutions at 0, 3, 6, 12, 24 and 48 h. After immersion in K+ solutions, fish were stored on ice. Both cage colour and K+ concentration significantly affected post‐harvest skin colour (P<0.05), and there was no interaction between these factors at any of the measurement times (P>0.05). Conditioning dark‐coloured snapper in white surroundings for 1 day was sufficient to significantly improve skin lightness (L*) after death. Although there was no difference between skin lightness values for fish held for either 1 or 7 days in white cages at measurement times up to 12 h, fish held in white cages for 7 days had significantly higher L* values (i.e. they were lighter) after 24 and 48 h of storage on ice than those held only in white cages for 1 day. K+ treatment also affected (improved) skin lightness post harvest although not until 24 and 48 h after removal of fish from solutions. Before this time, K+ treatment had no effect on skin lightness. Snapper killed by seawater ice slurry darkened (lower L*) markedly during the first 3 h of storage in contrast with all K+ treatments that prevented darkening. After 24 and 48 h of storage on ice, fish exposed to 450 and 600 mmol L?1 K+ were significantly lighter than fish from seawater ice slurries. In addition, skin redness (a*) and yellowness (b*) were strongly dependent on K+ concentration. The initial decline in response to K+ was overcome by a return of a* and b* values with time, most likely instigated by a redispersal of erythrosomes in skin erythrophores. Fish killed with 0 mmol L?1 K+ maintained the highest a* and b* values after death, but were associated with darker (lower L*) skin colouration. It is concluded that a combination of conditioning snapper in white surroundings for 1 day before harvest, followed by immersion in seawater ice slurries supplemented with 300–450 mmol L?1 K+ improves skin pigmentation after >24 h of storage on ice.  相似文献   

9.
This study used a curvilinear model to investigate the effects of different digestible energy (DE) levels on the digestible protein (DP) requirements of juvenile snapper Pagrus auratus. For each DE level (15, 18 or 21 MJ kg−1), DP content was increased from about 210–560 g kg−1 in seven evenly spaced increments by formulating a summit diet (highest DP content) and a diluent diet (lowest DP content) at the desired DE level and combining the summit and diluent diets in various ratios to achieve the desired DP content. This ensured the DE level remained relatively stable. Each of the 21 dietary treatments was fed to three replicate groups of snapper twice daily to apparent satiation for 57 days. At the completion of the trial, fish were weighed and killed for chemical analysis. Results indicated that the rapid growth of snapper weighing 30–90 g was highly dependent on the ratio of DP to DE and that optimum protein deposition did not occur until snapper were offered feeds with at least 350 g DPkg−1, irrespective of DE level. According to the fitted models, diets formulated for snapper reared at temperatures from 20–25°C should contain approximately 23 g DP MJ DE−1 to promote optimal weight gain and protein deposition. Based on the feeding regime used in this study, this could be achieved with practical diets containing a DP:DE ratio of 460:20, 420:18 or 350:15.  相似文献   

10.
Three 2‐factor experiments were conducted to determine the effects of background colour and synthetic carotenoids on the skin colour of Australian snapper Pagrus auratus. Initially, we evaluated the effects on skin colour of supplementing diets for 50 days with 60 mg kg?1 of either astaxanthin (LP; Lucantin® Pink), canthaxanthin (LR; Lucantin® Red), apocarotenoic acid ethyl ester (LY; Lucantin® Yellow), selected combinations of the above or no carotenoids and holding snapper (mean weight=88 g) in either white or black cages. In a second experiment, all snapper (mean weight=142 g) from Experiment 1 were transferred from black to white, or white to white cages to measure the short‐term effects of cage colour on skin L*, a* and b* colour values. Skin colour was measured after 7 and 14 days, and total carotenoid concentrations were determined after 14 days. Cage colour was the dominant factor affecting the skin lightness of snapper with fish from white cages much lighter than fish from black cages. Diets containing astaxanthin conferred greatest skin pigmentation and there were no differences in redness (a*) and yellowness (b*) values between snapper fed 30 or 60 mg astaxanthin kg?1. Snapper fed astaxanthin in white cages displayed greater skin yellowness than those in black cages. Transferring snapper from black to white cages increased skin lightness but was not as effective as growing snapper in white cages for the entire duration. Snapper fed astaxanthin diets and transferred from black to white cages were less yellow than those transferred from white to white cages despite the improvement in skin lightness (L*), and the total carotenoid concentration of the skin of fish fed astaxanthin diets was lower in white cages. Diets containing canthaxanthin led to a low level of deposition in the skin while apocarotenoic acid ethyl ester did not alter total skin carotenoid content or skin colour values in snapper. In a third experiment, we examined the effects of dietary astaxanthin (diets had 60 mg astaxanthin kg?1 or no added carotenoids) and cage colour (black, white, red or blue) on skin colour of snapper (mean weight=88 g) after 50 days. Snapper fed the astaxanthin diet were more yellow when held in red or white cages compared with fish held in black or blue cages despite similar feed intake and growth. The skin lightness (L* values) was correlated with cage L* values, with the lightest fish obtained from white cages. The results of this study suggest that snapper should be fed 30 mg astaxanthin kg?1 in white cages for 50 days to increase lightness and the red colouration prized in Australian markets.  相似文献   

11.
Abstract. This study examined whether passive implantable transponder (PIT) tags could be used to mark individually juvenile snapper, Pagrus auratus (Bloch and Schneider), without affecting their growth. Fifty juvenile snapper (25 tagged and 25 untagged controls) were placed in each of four 2000–1 tanks. At the start of the experiment the snapper had a mean weight of 59 ± 18g (SD). After 70 days, the mean weight of all fish was 115 ± 31 g (SD) and there was no significant difference between the growth of tagged and untagged fish. Apparent tag loss ranged from 4 to 8%.  相似文献   

12.
A single‐factor experiment was conducted to investigate the effects of dietary astaxanthin concentration on the skin colour of snapper. Snapper (mean weight=129 g) were held in white cages and fed one of seven dietary levels of unesterified astaxanthin (0, 13, 26, 39, 52, 65 or 78 mg astaxanthin kg?1) for 63 days. Treatments comprised four replicate cages, each containing five fish. The skin colour of all fish was quantified using the CIE L*, a*, b* colour scale after 21, 42 and 63 days. In addition, total carotenoid concentrations of the skin of two fish cage?1 were determined after 63 days. Supplementing diets with astaxanthin strongly affected redness (a*) and yellowness (b*) values of the skin at all sampling times. After 21 days, the a* values increased linearly as the dietary astaxanthin concentration was increased before a plateau was attained between 39 and 78 mg kg?1. The b* values similarly increased above basal levels in all astaxanthin diets. By 42 days, a* and b* values increased in magnitude while a plateau remained between 39 and 78 mg kg?1. After 63 days, there were no further increases in measured colour values, suggesting that maximum pigmentation was imparted in the skin of snapper fed diets >39 mg kg?1 after 42 days. Similarly, there were no differences in total carotenoid concentrations of the skin of snapper fed diets >39 mg kg?1 after 63 days. The plateaus that occurred in a* and b* values, while still increasing in magnitude between 21 and 42 days, indicate that the rate of astaxanthin deposition in snapper is limited and astaxanthin in diets containing >39 mg astaxanthin kg?1 is not efficiently utilized. Astaxanthin retention after 63 days was greatest from the 13 mg kg?1 diet; however, skin pigmentation was not adequate. An astaxanthin concentration of 39 mg kg?1 provided the second greatest retention in the skin while obtaining maximum pigmentation. To efficiently maximize skin pigmentation, snapper growers should commence feeding diets containing a minimum of 39 mg unesterified astaxanthin kg?1 at least 42 days before sale.  相似文献   

13.
14.
Two experiments were performed to investigate the digestibility and utilization of carbohydrate sources by Australian snapper Pagrus auratus. In the first experiment, snapper of two different size classes (110 and 375 g) were fed a reference diet containing no starch (REF) or diets containing 150 (PN15), 250 (PN25), 350 (PN35) or 450 g kg?1 (PN45) of 100% gelatinized wheat starch to investigate the interactive effects of fish size and starch inclusion level on apparent organic matter (OM) or gross energy (GE) digestibility (ADC), post‐prandial plasma glucose concentration, hepatosomatic index (HSI) and liver or tissue glycogen content. A second experiment used a 72 h time course study to investigate the ability of larger snapper (300–481 g) to clear an intra‐peritoneal injection of 1 g d ‐glucose kg?1 body weight (BW). Organic matter and GE ADCs declined significantly in both fish sizes as the level of starch increased (PN45energy small fishenergy large fish). There was no interaction between fish size and inclusion level with respect to GE or OM ADCs. Gross energy ADC for both sized fish was described by the linear function GE ADC=104.97 (±3.39)–0.109 (±0.010) × inclusion level (R2=0.86). Hepatosomatic index, liver and muscle glycogen concentrations were significantly elevated in both small and large snapper‐fed diets containing gelatinized starch compared with snapper fed the REF diet. Three‐hour post‐prandial plasma glucose concentrations were not significantly affected by fish size, inclusion level or the interaction of these factors (REF=PN15=PN25=PN35=PN45), and ranged between 1.60 and 2.5 mM. The mean±SD resting level of plasma glucose (0 h) was 2.4±1.1 mM. Circulating levels of plasma glucose in snapper peaked at 18.9 mM approximately 3 h after intra‐peritoneal injection and fish exhibited hyperglycaemia for at least 12–18 h. There were no significant differences between the plasma glucose concentrations of snapper sampled 0, 18, 24, 48 or 72 h after injection (0=18=24=48=72<12< 1<3=6 h), indicating snapper required almost 18 h to regulate their circulating levels of glucose to near‐basal concentrations. Australian snapper are capable of digesting moderate levels of gelatinized wheat starch; however, increasing the dietary content of starch resulted in a reduction in OM and GE digestibility. Smaller snapper appear to be less capable of digesting gelatinized starch than larger fish, and levels above 250 and 350 g kg?1 of diet are not recommended for small and large fish respectively. Snapper subjected to an intra‐peritoneal injection of d ‐glucose have prolonged hyperglycaemia; however, the post‐prandial response to the uptake of glucose from normally digested gelatinized starch appears to be more regulated.  相似文献   

15.
The unnaturally dark pigmentation of cultured Australian snapper Pagrus auratus can be improved through dietary astaxanthin supplementation and by holding fish in tanks with a white background. The practical application of these laboratory‐based findings was examined with two experiments to establish if the advantages of transferring fish to light coloured tanks before harvest could be achieved on‐farm using white cages and to determine the effects of fish density on skin colour. For the first experiment, snapper (mean TL=29.7 cm) were transferred from a commercial snapper sea cage to black or white netted cages and fed diets supplemented with unesterified astaxanthin (supplied as Lucantin® Pink, BASF) at 0 or 39 mg kg?1 for 42 days. Skin colour was measured using the CIE (black–white), (green–red), (blue–yellow) colour scale. Snapper held in white netting cages became significantly lighter (higher ) than snapper held in black cages; however, values were not as high as previous laboratory‐based studies in which snapper were held in white plastic‐lined cages. Snapper fed astaxanthin displayed significantly greater and values, and total carotenoid concentrations after 42 days. In addition, total carotenoids were higher in fish from black than white cages. The second experiment was designed to investigate whether density reduced the improvements in skin colour achieved by holding fish in white coloured cages and whether cage colour affected stress. Snapper (mean weight=435 g) were acclimated to black cages and fed 39 mg kg?1 astaxanthin for 44 days before transferring to black or white plastic‐lined cages at 14 (low), 29 (mid) or 45 (high) kg m?3 for 7 days after which time skin colour, plasma cortisol and plasma glucose concentrations were measured. Skin lightness () was greater in snapper transferred to white plastic‐lined cages with the lightest coloured fish obtained from the lowest density after 7 days. Density had no effect on plasma cortisol or glucose levels after 7 days, although plasma cortisol was elevated in snapper from black cages. For improved skin colouration we recommend feeding unesterified astaxanthin at 39 mg kg?1 for approximately 6 weeks and transferring snapper to white plastic‐lined cages or similar at low densities for short periods before harvest rather than producing fish in white netting sea cages subject to biofouling.  相似文献   

16.
This report describes Exophiala infection in cultured striped jack, Pseudocaranx dentex , in Japan in 2005. One hundred out of 35 000 fish died per day and mortalities continued for 1 month. Diseased fish showed swelling of the abdomen and kidney distension. Numerous septate hyphae, pale brown in colour, were seen in kidney in squash preparations. Histology revealed abundant fungal hyphae and conidia in gill, heart and kidney. Fungal hyphae were accompanied by cell necrosis and influx of inflammatory, mainly mononuclear cells. The fungus isolated from the diseased fish had septate hyphae, pale brown in colour and 1.8–3.0 μm in diameter. Conidiogenous cells were conspicuous annellides, short or cylindrical or fusiform in shape. Conidia were one-celled, ellipsoidal with smooth walls, accumulated in balls at the apices of annellides that tended to slide down, 1.5–2.0 μm in width and 3.0–5.0 μm in length. The fungus was classified into the genus Exophiala based on its morphology and as Exophiala xenobiotica based on the sequences of the ITS 1–5.8S–ITS 2 regions of rDNA. This is the first record of this fungus in a marine fish.  相似文献   

17.
Abstract. The pathogenicity of the agent causing viral nervous necrosis (VNN) of striped jack, Pseudocaranx dentex (Bloch & Schneider), was examined in striped jack and other selected marine fish species. Fish were exposed to purified striped jack nervous necrosis virus (SJNNV) (0·1–100 ng ml−1) or homogenates of diseased striped jack larvae. Striped jack larvae (3·5 and 4·4 mm total length) were susceptible to the virus, but juveniles (78 mm) were not. The viral antigens were detected by indirect ELISA and the characteristic pathological changes, i.e. vacuolation in the retina and brain, were reproduced in the affected larvae. The infection was also established in healthy larvae by cohabitation with the diseased larvae. Larvae of red sea bream, Pagrus major Temminck & Schlegel, yellowtail, Seriola quinqueradiata Temminck & Schlegel, and goldstriped amberjack, Seriola lalandi Valenciennes, were not susceptible to SJNNV.  相似文献   

18.
19.
The rate of oxygen consumption of minced whole body was determined volumetrically, as an indication of metabolic rate in vitro (M in vitro ), at 20°C in porgy Pagrus major ranging from 0.0002 g (just after hatch) to 2.9 g (67 days old) in body mass. A triphasic relationship was found between M in vitro of individual fish (l.min–1) and wet body mass W (g). During the prolarval stage accompanied with the transitional period to the postlarval stage (0.00020–0.00023 g, 0–6 days old), the mass-specific metabolic rate in vitro (M in vitro /W in l.g–1.min–1) increased with age (D in days) as expressed by an equation M in vitro /W = 3.88 + 0.74/D. During the postlarval stage (0.00031–0.003 g, 8–22 days old), M in vitro /W remained almost constant, independent of body mass following an equation M in vitro /W = 5.24 W–0.085. During the juvenile and adolescent stages (0.0047–2.9 g, 30–67 days old), M in vitro /W decreased with increasing body mass following an equation M in vitro /W = 1.66 W–0.235. These results correspond with the triphasic relationship between metabolism in vivo and body mass observed in intact porgy of 0.0002–270 g (Oikawa et al. 1991). It is concluded, therefore, that the dependence of mass-specific metabolic rate on body size exists in vitro as well as in vivo, during the early stages in the porgy. Based on these results, factors controlling the metabolism-size relationship are discussed.  相似文献   

20.
Pacific threadfin Polydactylus sexfilis (Bloch & Schneider 1801) and bluefin trevally Caranx melampygus (Cuvier 1833) are warmwater marine finfish currently under development for aquaculture in the Pacific. Differences in specific activities of digestive enzymes extracted from the stomach and mid-gut were compared to gain insight into their feeding habits in the wild and to understand their nutritional needs. Adult fish were maintained in captivity and fed a commercial pelleted feed. Serine protease measured in all tissues was at least 20 times higher in threadfin than in trevally. Aspartic proteases were the major digestive enzymes found in trevally. There was a 34-fold increase in collagenase activity in the intestine of threadfin from the prefed to the fed state. Chitinase activity was found in the stomach, pylorus and intestine of both species. However, specific activity in pylorus and intestine of threadfin increased 2.75 and 4 times, respectively, but showed little change in trevally. Amlyases were found only in trevally. Increase in lipase specific activity in the gut of trevally was higher than that for threadfin. The results indicated that the two species have diverse digestive capabilities. This appears to be consistent with their feeding habits in nature. Threadfin are more adapted to a wider range of food protein sources than trevally, but appear to be less well adapted than trevally to using complex carbohydrates. These observations may provide a basis for practical diet formulations for these two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号