首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most government policies and community perception of the irrigation sector promotes the conversion from gravity-fed to pressurised irrigation methods as a way of reducing water consumption by the irrigation sector. However, optimising for one aspect of a system can have unintended resource and environmental consequences e.g. an increase in energy consumption patterns of irrigated crops. Two Australian irrigation areas were studied: a surface-water supplied region in New South Wales; and a groundwater dependent region in South Australia. The water and energy budgets for crop production from land preparation to harvest were quantified on several farms. Converting from flood to pressurised systems resulted in a reduction in water application of between 10% and 66%. However, in the surface-water supplied region, it also resulted in energy consumption being increased by up to 163%. In the groundwater dependent region, energy consumption was reduced by 12% to 44%. There is potential to reduce energy consumption due to increased water use efficiency, resulting in less water being pumped due to efficiency gains. Therefore, to optimise energy and water use, it is recommended that pressurised irrigation systems be used in areas requiring pressurised extraction of groundwater, while efficient gravity based irrigation methods, coupled with good management practices, be promoted in surface-water supplied areas.  相似文献   

2.
We compare the net present costs of two approaches for managing irrigation-induced deep percolation under border-check irrigated pasture: (1) conversion from border-check irrigation to sprinkler irrigation to minimise deep percolation and (2) installation of a subsurface drainage system to extract excess deep percolation under the existing border-check system. Results for a dairy farm in northern Victoria, Australia, show that conversion to sprinkler irrigation is the more cost-effective approach. The net present cost of the second approach varies across an irrigation landscape, depending on the most suitable subsurface drainage and disposal system that can be used for a particular location. Where an aquifer is high yielding and of low salinity and thus drainage water is suitable for reuse on farm, tubewell drainage and farm reuse of drainage water provides a viable alternative to conversion from border-check irrigation to sprinkler irrigation. Where tubewell drainage or farm reuse is not feasible, sprinkler irrigation is more cost-effective than border-check irrigation with subsurface drainage.  相似文献   

3.
The long term sustainability of conjunctive water use for controlling irrigation salinity is affected by increase in groundwater salinity over time. This paper uses mass conservation of salt and water to assess groundwater degradation over long time scales. Management options which affect this rate of degradation are also examined. The groundwater model developed is illustrated using data from the Shepparton Irrigation Region in the Murray Basin, Australia. The model predicts rapid groundwater deterioration when conjunctive use is conducted over only a fraction of the area of influence of a groundwater pump. Where the pumped aquifer is underlain by deeper groundwaters, the rate of groundwater degradation is also affected by leakage into or out of the conjunctive use system. Surface redistribution of groundwater from pumps installed in zones of regional groundwater discharge to areas recharging the regional groundwaters, reduces excessive degradation in the zones of discharge. With optimal surface distribution of groundwater, the rate of degradation is low. The rate of groundwater degradation also depends on salt inputs from irrigation water and rainfall, and the average depth from the soil surface to the base of the aquifer. The rate of degradation resulting from applied salts in surface water and rainfall is typically about 0.01 dSm-1 per year for shallow aquifers in the Shepparton region, but the rate is lower where deeper aquifers are pumped. Partial irrigation also reduces the rate of degradation because of the reduced rate of salt inputs. Where poorer quality groundwater lies within the area of influence of the groundwater pump, a greater rate of deterioration in the quality of pumped groundwater can be expected from groundwater mixing. In some irrigation regions limited export of groundwater through surface water conveyance structures to a river is possible, so that a regional surface salt balance could be maintained. However, salt exports made equal to the rate of surface imports into the irrigated area will only significantly impact groundwater salinity in the very long term, or where only shallow aquifers can be pumped. In addition, this export can be costly for downstream water users, or if construction of additional conveyance infrastructure is extensive; export can have a detrimental impact on riverine ecosystems. Other management options such as the depth of pump installation and the spatial distribution of irrigation water and pumped groundwater, which affect the redistribution of salts within the groundwater system, have the potential to have a much greater impact on local groundwater salinity.  相似文献   

4.
We describe the development, calibration and preliminary application of a dynamically coupled economic–hydrologic simulation–optimization model ensemble for evaluating the conjunctive use of surface and groundwater in small reservoir-based irrigation systems characteristic of the Volta Basin, Africa. We focus on a representative small reservoir-irrigation system located in the Antakwidi catchment in Ghana. The model ensemble consists of the physical hydrology model WaSiM-ETH and an economic optimization model written in GAMS. Results include optimal water storage and allocation regimes for irrigated production, given conjunctive surface water and groundwater systems. The goal of our research, conducted within the GLOWA Volta project, is to develop a decision support system for improving the management of land and water resources in the face of potential environmental change in the Volta Basin.  相似文献   

5.
Prior to the discussion on approaches to combine irrigation scheduling and water application practices, several farm irrigation performance indicators are defined and analysed. These indicators concern the uniformity of water distribution along an irrigated field and the efficiency of on-farm water application. Then, the analysis focus is on three main irrigation systems: surface, sprinkler and microirrigation. For each of these systems, the analysis concerns the main characteristics and constraints of the systems, more relevant aspects influencing irrigation performances, and approaches which could lead to a more appropriate coupling of irrigation scheduling and water application methods. Conclusions point out on the need for combined improvements in irrigation scheduling and methods, for expanding field evaluation of irrigation in farmers fields, for improved design of on-farm systems, and for quality control of irrigation equipments and design.  相似文献   

6.
A key question in relation to rainwater harvesting (RWH) is whether the technique increases the sustainability of irrigated agriculture. A conceptual water balance model, based on field data from the Arvari River catchment, was developed to study and understand catchment-scale trade-offs of rainwater harvesting (RWH). The model incorporates an effective representation of RWH function and impact, and works on a daily time step. Catchment spatial variability is captured through sub-basins. Within each sub-basin hydrological response units (HRUs) describe the different land use/soil combinations associated with the case study catchment, including irrigated agriculture. Sustainability indices, based on irrigated agriculture water demand, were used to compare conceptual management scenarios. The results show that as RWH area increases, it reaches a limiting capacity from where additional RWH structures do not increase the benefit to groundwater stores, but reduces stream flow. If the irrigation area is increased at the optimal level of RWH, where the sustainability indices were greatest, the resilience of the system actually decreased. Nevertheless RWH in a system increased the overall sustainability of the water resource for irrigated agriculture, compared to a system without RWH. Also RWH provided a slight buffer in the groundwater store when drought occurred. The conceptual analysis highlights the important link between irrigation area and RWH area, and the impact of RWH on the catchment water balance.  相似文献   

7.
The regular application of nitrogen fertilizers by irrigation is likely responsible for the increase in nitrate concentrations of groundwater in areas dominated by irrigated agriculture. Consequently, sustainable agricultural systems must include environmentally sound irrigation practices. To reduce the harmful effects of irrigated agriculture on the environment, the evaluation of alternative irrigation water management practices is essential. Micro-irrigation offers a large degree of control, enabling accurate application according to crop water requirements, thereby minimize leaching. Furthermore, fertigation allows the controlled placement of nutrients near the plant roots, reducing fertilizer losses through leaching into the groundwater. The presented two-dimensional modeling approach provides information to improve fertigation practices. The specific objective of this project was to assess the effect of fertigation strategy and soil type on nitrate leaching potential for four different micro-irrigation systems. We found that seasonal leaching was the highest for coarse-textured soils, and conclude that fertigation at the beginning of the irrigation cycle tends to increase seasonal nitrate leaching. In contrast, fertigation events at the end of the irrigation cycle reduced the potential for nitrate leaching. For all surface-applied irrigation systems on finer-textured soils, lateral spreading of water and nitrates was enhanced by surface water ponding, causing the water to spread across the surface with subsequent infiltration downwards and horizontal spreading of soil nitrate near the soil surface. Leaching potential increased as the difference between the extent of the wetted soil volume and rooting zone increased.  相似文献   

8.
The intensive irrigated rice-wheat systems in the northwest Indo-Gangetic Plains of South Asia are built on a long tradition of canal irrigation and the more recent advent of tubewells. Findings from farm surveys are used to examine water management and water productivity in the rice-wheat belt of India's Haryana State and Pakistan's Punjab province. Attributes of the irrigation sources help explain the widespread interest in groundwater use and the relative demise of canal water use. In each area groundwater now is the main irrigation source, used either solely or in conjunction with surface water. The ownership of tubewells is near universal among the surveyed farms, whereas conjunctive water use is more widespread during the monsoon season, among better endowed farmers and in the Pakistan Punjab. In Pakistan Punjab farmers primarily rely on diesel powered tubewells whereas Haryana farmers mainly use relatively cheaper electric power. Water productivity indicators for rice are markedly lower than those for wheat—largely reflecting significantly higher water inputs in paddy cultivation—but also vary between the study areas and by the prevailing water use, reflecting the limited incentives for farmers to use water wisely. A combination of technological, land use and market based approaches is likely to be most effective in achieving sustainable water management in these intensive cereal systems.  相似文献   

9.
The findings of a study of factors influencing the uptake of pressurised irrigation technologies by smallholders in developing countries are presented. The paper reviews the physical and technical characteristics that determine their suitability for use by smallholders. It also identifies a range of pre-conditions relating to water availability, institutional support and economic opportunity that must be satisfied before smallholders will adopt even low-technology pressurised irrigation systems.The review demonstrates that where physical, economic and institutional conditions are right some forms of pressurised modern irrigation technology permit smallholder irrigation of high value crops where surface irrigation would be inappropriate. However, the paper warns against the danger of wide-scale promotion of such technologies without considering the issues of institutional and technical support. Where pressurised systems are promoted to increase water use efficiency it is essential that they be well designed, installed and operated for savings to be realised.  相似文献   

10.
美国德克萨斯州高地平原区地下水灌溉管理方法研究   总被引:2,自引:2,他引:0  
德克萨斯州高地平原区是美国灌溉和旱地作物的生产基地,其灌溉水源主要来源于奥加拉拉(Ogallala)地下水含水层。然而,自从1950年灌溉农业发展以来,由于对奥加拉拉含水层地下水的过度开采,使得区域地下水位严重下降,有些地区地下水位下降超过50 m。为了保护地下水资源和实现地下水可持续利用,2000年以来美国德克萨斯州高平原地区在节水压采方面开展了一系列工作,取得了较好的成效。采取的主要措施包括:用德克萨斯州高地平原蒸腾蒸发网络(The Texas High Plains Evapotranspiration Network, TXHPET)进行灌溉及地下水管理,改变作物品种,改进灌溉技术,改变种植结构,保护性耕作方法,加强降雨管理,将小部分灌溉农田转为旱作农田等。该区域1958年的灌溉面积为183万hm~2,1974年灌溉面积达到峰值,为242万hm~2;1989年灌溉面积降为159万hm~2,由于喷灌技术的推广应用,2000年灌溉面积恢复到187万hm~2。1958年大多数灌区为地面灌溉,仅有11%的灌溉面积为喷灌。1974年之后,灌溉总面积在减少,主要灌溉方式转为喷灌,中心支轴式喷灌面积稳步增长。自1989年之后,喷灌在该区域快速发展,2000年喷灌面积已占该区域灌溉面积的72%。早期的喷灌系统在较高压力下运行,自20世纪80年代,低压喷灌系统已全面使用。我国华北地区长期超量开采地下水与美国德克萨斯州高原区地下水超采情况及问题相似。兹系统介绍了美国德克萨斯州高地平原区在地下水超采情况下采取的综合措施拟为我国地下水超采地区的地下水管理工作提供技术与经验参考。  相似文献   

11.
针对西北干旱区灌区生态环境脆弱、水资源短缺、复杂不确定性等问题,以石羊河流域红崖山灌区为例,耦合2型模糊集、模糊可信度约束规划和多目标规划等理论方法,构建了基于2型模糊集的多目标农业-生态水土资源优化配置模型。模型以灌溉水损失最小、生态植被灌溉水满意度最大、生态植被灌溉水费用最小和主要粮食作物经济效益最大为目标,对红崖山灌区10个决策单元的地表水、地下水和粮食作物种植面积进行优化配置。求解模型得到不同可信度水平和不确定性程度下的水土资源优化配置方案。结果表明:耦合2型模糊集的模型能够提供丰富的配置方案,水量对可信度水平的敏感性高于不确定性程度,作物种植结构对可信度水平不敏感。以不确定性程度参数为0.5、可信度水平为0.7时为例,生态植被均通过地表水灌溉,作物通过地表水、地下水联合灌溉,玉米的产量和经济效益均大于小麦。相比前人研究,本研究考虑生态植被灌溉需求,优化结果更加真实合理。本研究可为决策者提供较为符合灌区实际的配置方案,为西北干旱区灌区现代化建设提供科学指导。  相似文献   

12.
宁夏银北灌区井渠结合灌溉三维数值模拟与分析   总被引:9,自引:0,他引:9  
为实现银北灌区水资源联合调度 ,减少引黄水量 ,充分利用地下水的目标 ,对选定典型区的地表水、地下水联合调度进行模拟 ,对井渠结合灌溉模式和运作方式进行了计算。通过三维的数值模拟计算发现 ,在规划渠系利用条件下 ,可以根据当地实际情况 ,在来水保证率低的春灌或冬灌期实施井灌 ,以控制地下水位 ,减少土壤返盐 ,也可以对部分农田采用集中井灌的方式 ,以提高用水效率。  相似文献   

13.
Waterlogging and salinization are major impediment to the sustainability of irrigated lands and livelihoods of the farmers, especially the smallholders, in the affected areas of the Indus Basin. These problems are the result of a multitude of factors, including seepage from unlined earthen canals system, inadequate provision of surface and subsurface drainage, poor water management practices, insufficient water supplies and use of poor quality groundwater for irrigation. About 6.3 million ha are affected by different levels and types of salinity, out of which nearly half are under irrigated agriculture. Since the early 1960s, several efforts have been made to improve the management of salt-affected and waterlogged soils. These include lowering groundwater levels through deep tubewells, leaching of salts by excess irrigation, application of chemical amendments (e.g. gypsum, acids, organic matter), and the use of biological and physical methods. However, in spite of huge investments, the results have in general been disappointing and the problems of waterlogging and salinity persist.This paper reviews sources, causes and extent of salinity and waterlogging problems in the Indus Basin. Measures taken to overcome these problems over the last four decades are also discussed. The results reveal that the installed drainage systems were initially successful in lowering groundwater table and reducing salinity in affected areas. However, poor operation and maintenance of these systems and provision of inadequate facilities for the disposal of saline drainage effluent resulted in limited overall success. The paper suggests that to ensure the sustainability of irrigated agriculture in the Indus Basin, technical and financial support is needed and enhanced institutional arrangements including coordination among different federal and provincial government agencies to resolve inter-provincial water allocation and water related issues is required.  相似文献   

14.
Existing closed-conduit irrigation systems are capable of saving water by increasing application uniformity. But, because most of them require pumping to pressurize water for distribution, the water is saved often at the expense of increased energy consumption. This paper describes a new irrigation system that reduces the energy requirement by using inexpensive, thin-walled, corrugated plastic pipe of sufficient diameter that the pressure head often available from a surface ditch is sufficient. A simple installation technique, giving extremely high application uniformity, is described for the system for permanent crops. Costs for the system can be less than for comparable sprinkler or drip irrigation systems.  相似文献   

15.
This study analyzes the effects of irrigation modernization on water conservation, using the Riegos del Alto Aragón (RAA) irrigation project (NE Spain, 123354 ha) as a case study. A conceptual approach, based on water accounting and water productivity, has been used. Traditional surface irrigation systems and modern sprinkler systems currently occupy 73% and 27% of the irrigated area, respectively. Virtually all the irrigated area is devoted to field crops. Nowadays, farmers are investing on irrigation modernization by switching from surface to sprinkler irrigation because of the lack of labour and the reduction of net incomes as a consequence of reduction in European subsidies, among other factors. At the RAA project, modern sprinkler systems present higher crop yields and more intense cropping patterns than traditional surface irrigation systems. Crop evapotranspiration and non-beneficial evapotranspiration (mainly wind drift and evaporation loses, WDEL) per unit area are higher in sprinkler irrigated than in surface irrigated areas. Our results indicate that irrigation modernization will increase water depletion and water use. Farmers will achieve higher productivity and better working conditions. Likewise, the expected decreases in RAA irrigation return flows will lead to improvements in the quality of the receiving water bodies. However, water productivity computed over water depletion will not vary with irrigation modernization due to the typical linear relationship between yield and evapotranspiration and to the effect of WDEL on the regional water balance. Future variations in crop and energy prices might change the conclusions on economic productivity.  相似文献   

16.
Most methods used to predict irrigation water consumption at a regional scale are based on biophysical models and cropping patterns. Their aim is to provide accurate estimations of “water demand” that are useful for water resource management. However, in the case of free access to the water resource, for example pumping from a water table, it is only possible to prevent overexploitation by “managing” the demand for water, which thus needs to focus on farmers’ choices and behavior. In this paper, we propose a framework to represent agricultural activities using typologies of farms and production units aggregated at a regional scale. The framework can be used to estimate consumption of irrigation water and of other inputs, as well as the production of outputs. The framework can also be used to evaluate the effects of technical, economic or institutional changes on farm income, and to predict the consequences of changes for farmers’ choices at regional scale. We used this method in Central Tunisia to estimate irrigation water demand in 1999. We then simulated the changes that would occur if drip irrigation were adopted. The results of the simulation showed some savings in water and in labor, and, with fertigation, an increase in yields. Using drip irrigation would consequently enable farmers to extend the area of drip-irrigated land. We then simulated the widespread adoption of drip irrigation and the resulting extension of irrigated areas: the results showed no savings in water at the regional scale. These hypotheses were confirmed in 2005 using new typologies to estimate the new demand for irrigation water. We also simulated the effects of economic changes on farm incomes. A major increase in the cost of water affected a minority of farms, which consumed only 17% of total irrigation water, whereas a slight decrease in watermelon and melon prices affected a majority of farms, which consumed 78% of total irrigation water. Water demand management tools therefore need to focus on the effects of technical, economic, or institutional changes and on farmers’ choices.  相似文献   

17.
The South-North Water Transfer (SNWT) project (upon completion) will deliver some 4.8 billion m3 of water per annum to Hebei, Beijing and Tianjin — greatly mitigating water shortage in North China. Surface water that is currently restricted to urban use could then become partly available for agricultural production. This will reduce the dependence of agriculture on groundwater, which will in turn retard groundwater depletion in the region. This study determines the spatial and temporal distributions of agricultural water requirement in Hebei Plain. This in turn lays the basis for surface water reallocation following the completion of the SNWT project. DSSAT and COTTON2K crop models are used along with crop coefficient methods to estimate required irrigation amounts for wheat, maize, cotton, vegetables and fruit trees in Hebei Plain. The study uses 20 years (1986-2006) of agronomic, hydrologic and climate data collected from 43 well-distributed stations across the plain. Based on the results, wheat accounts for over 40% of total irrigation water requirement in the plain. Similarly, wheat, maize and cotton together account for 64% of the total irrigation water requirement. The piedmont regions of Mount Taihang have the highest irrigation requirement due to high percent farm and irrigated land area. The months of April and May have the highest irrigation water requirement, respectively accounting for 18.1% and 25.4% of average annual irrigation. Spatial and temporal variations in our estimated irrigation water requirement are higher than those in the officially published statistics data. The higher variations in our results are more reflective of field conditions (e.g. precipitation, cropping pattern, irrigated land area, etc.). This therefore indicates a substantive improvement (in our study) over the average statistical data. Based on our simulation results, viable surface water reallocation strategies following the completion of the SNWT project are advanced and discussed.  相似文献   

18.
基于水盐生产函数的绿洲灌区水盐调控研究   总被引:7,自引:2,他引:5  
土壤次生盐碱化是新疆灌溉农业所面临的最大环境问题。灌溉农业的快速扩展与灌排系统不完善是造成土壤次生盐碱化发生与恶化的关键因素。以水盐生产函数为依据,计算了不同生育阶段及全生育期阶段棉花相对产量与土壤全盐的关系,依据该计算结果对塔里木灌区的土壤盐化程度做了初步划分。基于塔里木灌区地下水埋深较浅且多为微咸水的事实,比较深入地探讨了地下水合理的动态水位及作物对潜水利用问题。最后,提出了灌区水盐调控的对策,强调排水系统的通畅运行是控制土壤次生盐碱化的关键,通过排水系统和减少灌溉定额使作物生长期的地下水埋深控制在1.6~2.1 m内,不但可以减少排水成本,而且也可使作物充分利用地下水,同时促进塔里木河水质的改善。  相似文献   

19.
Comparative analysis of main on-farm irrigation systems in Portugal   总被引:2,自引:0,他引:2  
Traditional irrigation systems still cover a large area of irrigated lands in Portugal. The needs for competitiveness leads to the gradual abandon of traditional systems, resulting in social and economic impacts. Pressurised on-farm irrigation systems provide labour savings but imply important investments. Surface irrigation does not require expensive equipment and is low energy and low labour consuming, if modern systems are implemented. Flexible-pipe, gated-pipe, surge-flow valve and cablegation are the main equipment issues available to Portuguese farmers for modern surface irrigation practice. Conditions for application of these systems have been studied relative to different soil and topographic conditions. Plane land, either horizontal or sloped and undulated fields can be irrigated by surface systems, if a convenient design is accomplished. The adequacy of the irrigation systems has been evaluated and a cost-benefit study was carried out. A case study of a situation with undulated land, representative of South Portugal, is presented in this paper, comparing surface irrigation issues and a sprinkler system. Conclusions show a particular economic interest on adopting surge-valve, gated-pipe and cablegation.  相似文献   

20.
Irrigated agriculture notably increases crop productivity, but consumes high volumes of water and may induce off-site pollution of receiving water bodies. The objectives of this paper were to diagnose the quality of irrigation and to prescribe recommendations aimed at improving irrigation management and reducing the off-site pollution from a 15,500 ha irrigation district located in the Ebro River Basin (Spain). Three hydrological basins were selected within the district where the main inputs (irrigation, precipitation, and groundwater inflows) and outputs (actual crop's evapotranspiration, surface drainage outflows, and groundwater outflows) of water were measured or estimated during a hydrological year. The highest volume of water (I = 1400 mm/year) was applied in the basin with highly permeable, low water retention, flood irrigated soils where 81% of the total surface was planted with alfalfa and corn. This basin had the lowest consumptive water use efficiency (CWUE = 45%), the highest water deficit (WD = 5%) and the highest drainage fraction (DF = 57%). In contrast, the lowest I (950 mm/year), the highest CWUE (62%), and the lowest WD (2%) and DF (37%) were obtained in the basin with 60% of the surface covered with deep, high water retention, alluvial valley soils, where 39% of the cultivated surface is sprinkler irrigated and with only 48% of the surface planted with alfalfa and corn. We concluded that the three most important variables determining the quality of irrigation and the volume of irrigation return flows in the studied basins were (i) soil characteristics, (ii) irrigation management and irrigation system, and (iii) crop water requirements. Therefore, the critical recommendations for improving the quality of irrigation are to (i) increase the efficiency of flood-irrigation, (ii) change to pressurized systems in the shallow and highly permeable soils, and (iii) reuse of drainage water for irrigation within the district. These management strategies will conserve water of high quality in the main reservoir and will decrease the crop water deficits and the volume of irrigation return flows, therefore, minimizing the off-site pollution from this irrigation district.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号