首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
J. Ndunguru  S. Mwale 《EPPO Bulletin》1999,29(1-2):215-216
Symptoms of a virus-like disease of unknown aetiology were observed in sunflower in five provinces of Zambia during the 1998 growing season. In the 20 surveyed farmers'fields, disease incidence was 80–100%. Yield loss in seed production as a result of the putative virus (or virus complex) was estimated at 60%. The virus was not seed-borne in sunflower. The weed Tridax procumbens was found to be an alternative host of the virus, and the virus was transmitted by Aphis gossypii from the weed to sunflower. Serological analysis suggests that the virus (or virus complex) is closely related to luteoviruses. It is tentatively named sunflower yellow blotch virus (SYBV).  相似文献   

2.
The incidence of alfalfa mosaic virus (AMV) in lucerne seed and pods during maturation, when monitored by sap transmission to Phaseolus (infective virus) and ELISA (AMV antigen), showed that infective virus incidence decreased rapidly with maturation, whereas antigen incidence declined slowly and was always higher than infective virus. Infective virus and antigen incidence were higher in mature seed of cv. Maris Kabul than cv. Europe because virus inactivation/degradation were more rapid in cv. Europe. Seed infection with virus originating from pollen, ovules or both was found in pods and seeds 12–15 days after pollination between healthy or AMV-infected plants; this was before maturation-associated virus inactivation. Ovule transmission was more frequent than pollen transmission. AMV antigen was present in embryos and testas of mature seed; infective virus only in embryos. Non-infective but ELISA-positive antigen in testa extracts accounted for the higher incidence of 'seed-borne AMV' compared with embryo-associated seed transmission to seedlings. Tests with dry mature seed either underestimated (infectivity tests) or overestimated (ELISA) eventual seedling infection. Infectivity and ELISA tests gave identical incidence values for 17 to 29-day-old seedlings.  相似文献   

3.
中国甘薯病毒种类的血清学和分子检测   总被引:6,自引:1,他引:6  
 2009~2010年,从我国18个省(市)采集了176份表现病毒病症状的甘薯样品。利用血清学、PCR和核苷酸序列测定的方法,对上述样品中的病毒种类进行了鉴定。血清学检测结果表明,供试样品中甘薯羽状斑驳病毒(SPFMV)的阳性率最高,达56.3%,其次为甘薯G病毒(SPVG)和甘薯类花椰菜花叶病毒(SPCaLV),阳性率分别为34.1%和33.5%。PCR和核苷酸序列测定结果表明,我国甘薯上至少存在SPFMV、SPVG、甘薯潜隐病毒(SPLV)、甘薯褪绿斑病毒(SPCFV)、甘薯褪绿矮化病毒(SPCSV)、黄瓜花叶病毒(CMV)、甘薯脉花叶病毒(SPVMV)和甘薯卷叶病毒(SPLCV)8种病毒。此外,供试样品中没有检测出甘薯轻斑驳病毒(SPMMV),是否存在甘薯轻斑点病毒(SPMSV)、SPCaLV和C 6病毒尚不能确定。  相似文献   

4.
Tomatoes grown in plastic houses in Crete have been inspected since 1980 for virus diseases. Plants with virus-like symptoms were checked by sap inoculation to test plants and the isolated viruses were identified by host reaction and serology. The most common viruses were, in order of frequency, tomato mosaic virus (ToMV), potato virus X, tomato bushy stunt virus (TBSV), potato virus Y and cucumber mosaic virus. The large use of ToMV-resistant cultivars reduces gradually the importance of ToMV while TBSV tends to become a serious problem of tomato in Crete.Samenvatting Van 1980–1984 werden op Kreta de in plasticfolie-kassen geteelde tomaten geïnventariseerd op de aanwezigheid van virussen. Verdachte plante werden door sapinoculatie op toetsplanten onderzocht. De daarbij geïsoleerde virussen werden daarna via de symptomen op de waardplanten en serologisch geïdentificeerd. In volgorde van belangrijkheid werden de volgende virussen het meest aangetroffen: tomatemozaïekvirus, aardappelvirus X, tomatedwerggroeivirus, aardappel Y virus en komkommermozaïekvirus, De laatste jaren is door de toenemende teelt van tomaterassen met resistentie tegen tomatemozaïekvirus het belang van dit virus sterk verminderd, terwijl het tomatedwerggroeivirus een steeds ernstiger probleem lijkt te worden.  相似文献   

5.
Summary Some properties ofCucumis virus 2, occurring in The Netherlands were studied. From electron micrographs can be concluded that the virus particles are rod-shaped, with a length of about 325 m (fig. 1, 2 and 3).The thermal inactivation point, the dilution-endpoint and the length of the rods of this virus agree with those ofCucumis virus 2 as described in literature. There is a close resemblance of this virus with tobacco mosaic virus.  相似文献   

6.
Cultures of the soil inhabiting fungusPythium spec. were inoculated in vitro with tobacco mosaic virus. Virus could be demonstrated in the mycelia from 4 days on after inoculation. In 15 days old cultures the virus concentration in the mycelium was higher than in the liquid culture medium. It is not yet clear whether the virus only accumulates, or also multiplies in the mycelium. After growth on solid medium infected mycelia still contained virus indicating that the virus is able to persist and possibly also to multiply in the hyphae.Samenvatting Cultures van de bodemschimmelPythium spec. werden in vitro geïnoculeerd met tabaksmozaïekvirus. In enkele gevallen kon al 4 dagen na inoculatie virus in mycelium worden aangetoond. In 15 dagen oude cultures bevatte het mycelium meer virus dan de cultuurvloeistof. Het is nog niet bekend of het virus zich slechts ophoopt of zich ook vermeerdert in het mycelium. Na groei op een agarmedium gedurende 7 dagen bevatte het mycelium nog virus, wat er op zou wijzen dat het virus in staat is zich te handhaven in de hyfen en zich daarin wellicht ook te vermeerderen.  相似文献   

7.
从葎草中检出复合侵染的多种病毒   总被引:2,自引:0,他引:2  
采用抗原直接包被酶联免疫吸附测定法(ELISA)对采自重庆近郊的34个葎草样品进行了主要病毒种类的检测。其中马铃薯Y病毒(Potato virus Y, PVY)的侵染最普遍,其阳性检出率达44.12%;马铃薯X病毒(Potato virus X, PVX)的阳性检出率最低,仅为26.47%,其余5种病毒,烟草花叶病毒(Tobacco mosaic virus, TMV)、黄瓜花叶病毒(Cucumber mosaic virus, CMV)、番茄花叶病毒(Tomato mosaic virus, ToMV)、芜菁花叶病毒(Turnip mosaic virus, TuMV)及蚕豆萎蔫病毒2号(Broad bean wilt virus 2, BBWV-2)的阳性检出率均为35.29%。葎草样品受多种病毒的复合侵染现象非常严重,15个阳性样品中病毒复合侵染率为80%,其中75%的样品检测到7种病毒复合侵染。  相似文献   

8.
Badnavirus in Bougainvillea spectabilis showing virus-like symptoms was identified by the presence of bacilliform particles, measuring 125–130 × 30–40 nm in leaf-dip preparations and by analysis of its putative open reading frame 3 sequence. The virus, tentatively named Bougainvillea bacilliform virus (BBV), had the highest identities (up to 60%) with Spiraea yellow leaf spot virus, Gooseberry vein banding associated virus, Taro bacilliform virus, and Citrus yellow mosaic virus. In phylogenetic analysis, BBV clustered with Badnavirus putative species. Attempts to transmit the virus to several hosts failed. This is the first report of a new Badnavirus detected in Bougainvillea.  相似文献   

9.
在吉林省7个主要甘薯种植区共采集85份甘薯叶片样品,利用小RNA深度测序技术对混合样品进行检测,经RT-PCR和测序验证,鉴定出样品中存在10种病毒,包括6种RNA病毒和4种DNA病毒。分别是马铃薯Y病毒科马铃薯Y病毒属的甘薯羽状斑驳病毒Sweet potato feathery mottle virus (SPFMV)、甘薯潜隐病毒Sweet potato latent virus (SPLV)、甘薯G病毒Sweet potato virus G (SPVG)、甘薯C病毒Sweet potato virus C (SPVC)、甘薯2号病毒Sweet potato virus 2 (SPV2);长线形病毒科毛形病毒属的甘薯褪绿矮化病毒Sweet potato chlorotic stunt virus (SPCSV);双生病毒科菜豆金色花叶病毒属的甘薯曲叶病毒Sweet potato leaf curl virus(SPLCV);玉米线条病毒属的甘薯无症状1号病毒Sweet potato symptomless virus 1 (SPSMV1);花椰菜花叶病毒科杆状DNA病毒属的甘薯杆状DNA病毒B Sweet potato badnavirus B (SPBV-B)和甘薯隐症病毒Sweet potato pakakuy virus (SPPV)。  相似文献   

10.
To identify viruses in Henan tobacco-planting areas, from 2015 to 2017 and 2019, 288 symptomatic tobacco samples were collected and then subjected to small RNA sequencing. Results showed that at least 7 viruses were detected from these samples which including four previously reported viruses, cucumber mosaic virus (CMV), tobacco mosaic virus (TMV), potato virus Y (PVY) and tobacco vein banding mosaic virus (TVBMV). Other three viruses, wild tomato mosaic virus (WTMV), brassica yellows virus (BrYV), and cycas necrotic stunt virus (CNSV) were firstly detected in Henan province. However, tobacco etch virus (TEV) and tobacco ringspot virus (TRSV) were not detected from these samples. In addition, CMV, TMV, PVY, TVBMV, and BrYV were the dominant viruses infecting tobacco in Henan Province.  相似文献   

11.
Surveys to identify virus diseases affecting garlic ( Allium sativum ), onion ( Allium cepa ) and Persian leek ( Allium ampeloprasum var. persicum ) were conducted from 1999 to 2002. Surveys covered different regions of Iran (Tehran [different vegetable markets, farmer fields and cultivation areas], Noushahr, Chalous, Roudbar, Sari, Hamadan, Touyserkan, Ghazvin and Jiroft). A total of 2045 (1285 garlic, 525 onion and 230 leek) samples showing symptoms of virus infection were collected and tested by ELISA; and in some cases tests were also confirmed by immunoelectron microscopy (IEM) for the presence of Allium viruses. ELISA results showed that the following viruses were detected: Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV) (genus Potyvirus , family Potyviridae ), Garlic common latent virus (GarCLV), Shallot latent virus (SLV) (genus Carlavirus ), Garlic virus D (GarV-D), Garlic virus B (GarV-B) and Garlic virus C type (GarV-C) (genus Allexivirus ). None of the samples reacted with antibodies to Shallot yellow stripe virus (SYSV) genus Potyvirus , family Potyviridae ), Shallot virus X (ShVX) and Garlic virus A (GarV-A, genus Allexivirus ). GarCLV, SLV, GarV-D, GarV-B and GarV-C are reported for the first time from Allium crops in Iran.  相似文献   

12.
In the years 1973 and 1975 mosquitoes and some other Diptera (Tabanidae, Simuliidae, Hippoboscidae) were tested for virus. 13,924 mosquitoes, 75 horseflies and 60 blackflies were processed in 1973. Five strains of Tahyna virus were isolated from mosquito species Aedes vexans. 3,378 mosquitoes and 12 sheep keds were tested for virus in 1975. Twelve strains of Calovo virus were isolated from Anopheles maculipennis and one strain of Tahyna virus was obtained from Aedes vexans mosquitoes.  相似文献   

13.
14.
为了解湖南省马铃薯种薯质量和主要病毒病发生情况,2019年-2020年马铃薯秋作和冬作期间,对长沙、益阳、湘潭、澧临等马铃薯生产区的155个马铃薯样品,运用反转录-聚合酶链式反应(RT-PCR)和双抗体夹心酶联免疫吸附检测(DAS-ELISA)技术,筛查6种主要马铃薯病毒,包括马铃薯X病毒Potato virus X(PVX)、马铃薯Y病毒Potato virus Y(PVY)、马铃薯M病毒Potato virus M(PVM)、马铃薯S病毒Potato virus S(PVS)、马铃薯A病毒Potato virus A(PVA)、马铃薯卷叶病毒Potato leaf roll virus(PLRV)。检测结果表明:6种马铃薯病毒病在湖南均有不同程度的发生,单一和两种病毒复合感染植株占比最高,其次是3种病毒复合感染,存在极少数植株复合感染4~5种病毒病情况。在秋作马铃薯中,PVY检出率达到29.41%;PVS和PVA检出率均为27.94%;PVM、PVX、PLRV的检出率分别为20.59%、19.12%、17.65%。在冬作马铃薯中,PVX检出率最高,达到31.03%;其次是PLRV,...  相似文献   

15.
The ribosome and virus contents in potato virus X-infected tobacco plants was determined chromatographically. The data were compared with those obtained from measurements of ribosome concentrations in healthy plants of the same age. Bean plants with white clover mosaic virus, and potato and tobacco plants with potato virus X, and tobacco mosaic virus alone and in complex, were similarly tested.The ribosome content of healthy bean plants was about ten times that of healthy tobacco plants, and of healthy potato plants about 2.5 times that of tobacco plants.Potato virus X induced a larger increase in ribosome content in tobacco plants than in potato plants. White clover mosaic virus had almost no influence on the ribosome level in bean plants.During senescence the increase in ribosome and virus contents induced by virus infection declined. In seven-week-old tobacco plants and ten-week-old potato plants the quantity of ribosomes remained constant. Tobacco mosaic virus reduced the increase of ribosome content caused by potato virus X.Samenvatting Het gehalte aan ribosomen en virus van tabaksplanten van verschillende leeftijden, geïnoculeerd met aardappelvirus-X werd chromatografisch bepaald en vergeleken met op overeenkomstige wijze bepaalde ribosoomgehalten van even oude gezonde planten. Dezelfde analysen werden uitgevoerd met boneplanten, geïnoculeerd met witte-klavermozaïekvirus, en met aardappelplanten en tabaksplanten, geïnoculeerd met aardappelvirus-X en tabaksmozaïekvirus zowel afzonderlijk als in complex.Het ribosoomgehalte van gezonde boneplanten bleek meer dan tien keer zo hoog als dat van gezonde tabaksplanten (Tabel 1) en van aardappelplanten ongeveer 2,5× zo hoog als dat van gezonde tabaksplanten (Tabel 2).Aardappelvirus-X had een verhoging van het ribosoomgehalte bij tabak tot gevolg (Tabel 1). Bij aardappel was deze verhoging geringer (Tabel 2). Witte-klavermozaiekvirus verhoogde het ribosoomgehalte bij bonen nauwelijks (Tabel 1).Bij veroudering nam de verhoging door virusinfectie sterk af. Bij tabak van zeven weken oud was geen verhoging merkbaar. Bij aardappel trad de verhoging niet meer op, wanneer de planten tien weken oud waren (Tabel 2).Tabaksmozaïekvirus verminderde de verhoging van het ribosoomgehalte dat door aardappelvirus-X werd veroorzaakt (Tabel 4).  相似文献   

16.
Virus-related degeneration constrains production of quality sweet potato seed, especially under open field conditions. Once in the open, virus-indexed seed is prone to virus infection leading to decline in performance. Insect-proof net tunnels have been proven to reduce virus infection under researcher management. However, their effectiveness under farmer-multiplier management is not known. This study investigated the ability of net tunnels to reduce degeneration in sweet potato under farmer-multiplier management. Infection and degeneration were assessed for two cultivars, Kabode and Polista, grown in net tunnels and open fields at two sites with varying virus pressures. There was zero virus incidence at both sites during the first five generations. Sweet potato feathery mottle virus and sweet potato chlorotic stunt virus were present in the last three generations, occurring singly or in combination to form sweet potato virus disease. Virus infection increased successively, with higher incidences recorded at the high virus pressure site. Seed degeneration modelling illustrated that for both varieties, degeneration was reduced by the maintenance of vines under net tunnel conditions. The time series of likely degeneration based on a generic model of yield loss suggested that, under the conditions experienced during the experimental period, infection and losses within the net tunnels would be limited. By comparison, in the open field most of the yield could be lost after a small number of generations without the input of seed with lower disease incidence. Adopting the technology at the farmer-multiplier level can increase availability of clean seed, particularly in high virus pressure areas.  相似文献   

17.
苹果(Malus pumila Mill.)普遍感染病毒。目前, 培育无病毒原种母本树, 建立用于繁殖接穗和营养系砧木的母本园, 栽植无病毒苗木, 是防治病毒病的根本措施。本文针对常见的4 种苹果病毒及1 种类病毒, 综述了茎尖培养、热处理、化学处理、微茎尖嫁接以及低温处理脱除苹果病毒方法的研究进展, 分析了不同方法的应用效果, 及所适合脱除的病毒种类, 以期为我国苹果病毒脱除技术研究提供参考信息。  相似文献   

18.
Virus yellows is an important disease affecting yield in sugar beet in the UK. Myzus persicae (Sulzer) is the most effective and efficient aphid vector of the three viruses causing the disease: beet yellows virus, beet mild yellowing virus and beet chlorosis virus. Control of virus yellows disease is thus focused on the study and control of this aphid species. UK national surveys of virus yellows began in 1946 and these data helped to formulate disease forecasting schemes to optimise control. Over the years, in addition to improvements in farm hygiene, periodic changes and developments in control of the disease have occurred. To accommodate these important developments, virus yellows forecasting schemes have evolved accordingly. The most recent version has been adapted to take account of the current widespread use of imidacloprid seed treatment. Its application offers potential to optimise the rational use of aphicides such as imidacloprid so as to benefit beet growers and the environment by reducing prophylactic use of seed treatment.  相似文献   

19.
The concentration of African cassava mosaic virus (ACMV) was assessed by enzyme-linked immunosorbent assay in relation to symptom severity among resistant, moderately resistant and susceptible cassava genotypes. Resistant genotype NR 8083 had significantly lower symptom severity scores ( P  < 0·05) than the susceptible genotype TMS 91934, but the two genotypes contained similar levels of virus concentration. The moderately resistant genotypes TMS 30572 and NR 8082 expressed significantly lower symptom severities ( P  < 0·05) than the susceptible genotypes TMS 91934 and TME 117, but they contained significantly higher virus concentrations ( P  < 0·05) than TMS 91934 and similar virus concentration as in TME 117. However, two other resistant genotypes, TME 1 and TME 8, had low symptom severity scores and virus concentrations. There was significant interaction ( P  ≤ 0·05) between cropping season and virus concentration in all the genotypes except TMS 30572. The resistant and moderately resistant genotypes that had high virus concentrations sustained storage root yield losses. The severity of symptoms expressed was not necessarily a reflection of the virus concentration in some of the genotypes. In addition to the use of symptom severity scores to group genotypes into resistant classes, it is recommended that virus concentration should also be considered. Genotypes displaying mild symptoms, but with high levels of virus accumulation, could be an important source of inoculum in the spread of ACMV by the whitefly vectors. This suggests that each genotype should be tested for virus accumulation prior to its release to the farmers.  相似文献   

20.
An unusual virus was isolated from a Japanese Cucumis melo cv. Prince melon plant showing mild mottling of the leaves. The virus had a broad experimental host range including at least 19 plant species in five families, with most infected plants showing no symptoms on inoculated and uninoculated systemically infected leaves. The virus particles were spherical, approximately 28 nm in diameter, and the coat protein (CP) had an apparent molecular mass of about 55 kDa. The virus possessed a bi-partite genome with two RNA species, of approximately 8,000 and 4,000 nucleotides. Both genome components for the new virus were sequenced. Amino acid sequence identities in CP between the new virus and previously characterized nepoviruses were found to be low (less than 27%); however, in phylogenetic reconstructions the closest relationship was revealed between the new virus and subgroup A nepoviruses. These results suggest that the new virus represents a novel member of the genus Nepovirus. A new name, Melon mild mottle virus, has been proposed for this new virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号