首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提高细小病毒(PPV)细胞培养的滴度,本试验通过对猪细小病毒(PPV)感染ST细胞接毒工艺各步骤的比较研究.从不同接毒方式、细胞接种量、病毒感作时间以及接种浓度等方面进行分析,利用猪细小病毒SYBRGreenI实时荧光定量PCR方法对病毒滴度进行检测。结果表明:ST细胞覆盖率接近单层时接毒,采用分步法接毒,以10^3倍稀释病毒接种,接种病毒后感作2h,将接毒后细胞维持液中血清浓度设为2%这5个方面的接毒工艺可提高PPV细胞培养的病毒滴度。  相似文献   

2.
将猪细小病毒(PPV)接种于F81和PK15细胞,研究不同的培养基、pH值、血清含量、细胞密度对病毒在细胞里增殖的影响,细胞毒液冻融3次后测半数组织细胞感染量(TCID50)。试验结果表明,接毒24 h后F81和PK15细胞都有病变产生,在细胞病变达到75%以上时收获细胞毒液,发现PPV在F81细胞和PK15细胞中均能增殖且病毒滴度比较高。测得F81细胞接种PPV最高滴度为108.71TCID50/mL;PK15细胞接种PPV最高滴度为108.73TCID50/mL。  相似文献   

3.
1983年我们在上海地区分离到猪细小病毒(PPV),并进行了鉴定,结果见以前的报告。 1984年起,我们和嘉定县种畜场协作又进行了猪细小病毒灭活疫苗的研究,研制成一种灭活疫苗,现将研究结果简述如下。一、灭活苗的制备用上海分离的PPV S-1毒株的猪睾丸(ST)传代细胞株适应毒作为制苗用种毒,用转瓶培养技术增殖ST细胞,当瓶壁的2/3~3/4长满单层时接种病毒,37℃培养,待50%细胞出现病变时收获培养液作血球凝集试验  相似文献   

4.
为改进猪圆环病毒2型的培养工艺,驯化了一株可无血清培养的全悬浮PK15细胞用于培养猪圆环病毒2型,并对病毒的敏感性、接毒时间、接毒量、收获方法进行了试验.结果表明,用该细胞培养猪圆环病毒2型,如果采用批次收获,接毒时细胞密度为0.5×106/mL,接毒量为0.1 MOI,接毒72 h后收毒,病毒滴度能达到106.4 T...  相似文献   

5.
通过将猪细小病毒CG-05株同步接种于ST细胞,测定不同时间收获的病毒液的TCID50和HA,研究了CG-05株病毒在ST细胞上的增殖规律。病毒接种后镜检观察接毒细胞,在接种病毒后24 h,即可在细胞较少的区域看到非常轻微的病变。测定病毒TCID50,检测到接毒后培养17h病毒已经明显增殖;当培养到40h左右,其TCID50即接近高峰,达到10-7.2/0.1mL以上,并进入平台期;继续培养,TCID50最高可达到10-8.5/0.1mL,且直到122 h也不见明显降低。病毒HA价也出现同样的平台期,但比TCID50的平台期出现得晚,到50 h才进入平台期。结果表明,用ST细胞培养CG-05株病毒,接种病毒培养56~96 h后,如病变达到80%以上,且细胞脱落已形成20%以上空斑,此时收获病毒可获得高效价的病毒液。该研究可为制备高效价的PPV病毒抗原提供数据资料。  相似文献   

6.
猪细小病毒(PPV)强毒,在1~5日龄仔猪肾原代细胞上传代,传至20代左右毒力下降。为保持PPV强毒的毒力,我们用一头妊娠母猪(妊娠48d)做剖腹术。用大剂量的PPV细胞培养物注入猪胎儿的羊膜腔内,人工感染猪胎儿,病毒通过猪胎儿体内的组织进行复制,使毒力增强。术后12d迫杀母猪,取胎儿分离PPV强毒。  相似文献   

7.
猪圆环病毒2型(PCV2)细胞内增殖滴度的提高是开发PCV2全病毒灭活苗的瓶颈问题.为克服该困难,探究高病毒滴度PCV-2规模化增殖工艺,采用PK-15细胞单层接毒、同步接毒与带毒传代3种增殖工艺对PCV2进行增殖,并应用细胞孵育剂D-氨基葡萄糖对各增殖工艺进行优化,最后通过间接免疫荧光试验对比分析不同的增殖工艺组病毒...  相似文献   

8.
在研制猪细小病毒灭活疫苗时,应用了超滤浓缩技术,提高了合毒细胞培养液中的抗原含量。为了保证浓缩的流量,减少对滤膜的污染,对含毒细胞培养液作了预处理一离心及微滤,以便除去细胞培养液中的细胞碎片、蛋白质等大分子物质及固形微粒。超滤时选用50000Da滤膜,在20psig压力下,经过5倍浓缩的PPV细胞培养液,血凝滴度提高2个滴度以上。病毒含量测定表明,TCID50/0.2mL由107左右升至109以上,以其配制疫苗,能显著地提高疫苗的免疫原性。超滤技术具有易于操作、高效、分离精度高、没有二次污染等优点,可以根据需要选择不同的浓缩浓度,对保证疫苗的质量具有重要作用。  相似文献   

9.
用灭活的猪细小病毒和伪狂犬病毒的双价苗接种的猪群所产生的与每一种病毒相应的体液抗体的几何平均滴度,比用灭活的单价苗所接种的猪群高或略高。接种猪用活病毒攻毒后,其几何平均滴度上升,这表明接种疫苗并不能阻止病毒的复制。然而,下面所提供的材料也表明,病毒在接种猪中的复制并不那么广泛。即虽然无论是接种猪或没有接种(对照)的猪,用活的细小病毒攻击后,均无出现临床症状,但攻毒后,没有接种的猪的几何平均滴度高于接种猪,这一事实表明,接种的效果还是明显的。相反,虽然用活的伪狂犬病毒攻击的全部猪都出现临床症状,但接种猪的症状轻微,而且是一过性的,但没有接种的猪,症状都是严重的,以至死亡。  相似文献   

10.
取疑似猪细小病毒(PPV)流产胎儿组织病料,处理后接种PK-15传代细胞,2~4 d后出现了明显的细胞病变;荧光抗体试验结果显示,PPV呈现阳性;以猪细小病毒VP2基因的1对特异性引物,从PPV疫苗、流产胎儿病料及感染细胞培养物中PCR扩增出158 bp的DNA条带;扩增产物经EcoRⅠ酶切分析,得到了预期的条带(123 bp和35 bp),从而证实PCR方法的特异性;敏感性试验结果显示,PCR的最小检出量为300 pg。研究结果表明,2006年9月发生在贵州省某种猪场的疫情确由猪细小病毒感染所致。  相似文献   

11.
二乙烯亚胺对猪细小病毒的灭活作用   总被引:2,自引:0,他引:2  
使用新型灭活剂二乙烯亚胺(binary ethylenimine,BEI)对猪细小病毒(Porcine parvovirus,PPV)进行了灭活试验,通过ST传代细胞接种法观察病毒灭活后是否出现细胞病变,并结合血凝试验检测灭活效果,确定最佳灭活方法。用3~5日龄乳鼠检测BEI灭活后的病毒培养物和相应制备疫苗的安全性,并用豚鼠检测该灭活工艺制备疫苗的效果,与传统甲醛灭活进行了比较。结果显示,终浓度为1‰的BEI在32℃情况下经20 h即可彻底灭活PPV病毒;BEI灭活的病毒制备的疫苗免疫豚鼠较甲醛灭活病毒产生较高的血凝抑制抗体。  相似文献   

12.
为优化ST悬浮细胞培养条件及其生产猪伪狂犬病病毒的工艺参数,对影响ST悬浮细胞生长的接种细胞初始密度、培养时间和摇瓶转速等工艺参数进行优化比较,对影响猪伪狂犬病病毒增殖的接种细胞初始密度、感染量和培养时间等条件进行优化。结果显示:接种细胞初始密度1.00×106 cells/mL、摇瓶转速140 r/min、悬浮培养48 h时,细胞数量扩增了4倍且细胞活力高;猪伪狂犬病病毒接种时初始细胞密度2.00×106 cells/mL、感染量MOI=1.0、培养60~72 h,毒价可达109.00 TCID50/mL。结果表明,优化后的培养工艺适用于摇瓶中ST悬浮细胞及猪伪狂犬病病毒的培养。本研究为获得高密度ST悬浮细胞和提高猪伪狂犬病病毒繁殖能力提供了试验依据。  相似文献   

13.
SYBR Green Ⅰ实时PCR对猪细小病毒体外复制动态分析   总被引:1,自引:0,他引:1  
根据已经发表的猪细小病毒(PPV)的VP2基因序列,设计2对特异性引物,建立了检测PPV的SYBR GreenⅠ实时PCR方法。该方法最小检出量为12个PPV拷贝。模板稀释度在108范围内呈良好的线性关系,与猪圆环病毒2型、猪繁殖与呼吸综合征病毒、乙型脑炎病毒、猪瘟病毒、伪狂犬病病毒无交叉反应。应用本方法对PPV在体外感染细胞后的复制动态进行了观察,并绘制了病毒的体外增殖曲线。数据换算为每瓶中细胞内、外病毒拷贝数,结果显示细胞外病毒含量在接毒初始的36h逐渐下降,随后开始逐步增加;接毒后84h培养液中的病毒含量(1.739×1010拷贝)逐渐超过细胞内的病毒含量(1.321×1010拷贝);在接毒后108h培养液中病毒含量达到峰值(7.626×1010拷贝),随即病毒含量开始快速下降。细胞内病毒粒子在接毒后24h内为对数增长期,然后为缓慢增长期,至接种后72h达到复制峰值(1.425×1010拷贝),并维持至108h。与病毒复制动态变化相对应的细胞病变是从细胞聚集、开始形成空斑到约80%的细胞病变产生,108h之后随着细胞的大量死亡,细胞内、外病毒数量都开始急剧减少。  相似文献   

14.
为了在PK15细胞上获得更高滴度的猪圆环病毒2型(PCV2)ZJ/C株,本实验优化了细胞接种密度、接毒方法、接毒量与收获时间和冻融次数等条件。结果表明接种密度在2.5×10~5个/m L,同步接毒加D-氨基葡萄糖处理,接毒量为2%,接毒后90h收获,-20℃冻融2次,PCV2-ZJ/C株增殖效果最好。该结果为猪圆环病毒2型灭活疫苗(ZJ/C株)的生产提供了依据。  相似文献   

15.
为制定猪细小病毒病弱毒疫苗效力检验的标准,用3批猪细小病毒病弱毒疫苗进行接种猪与接种豚鼠的平行试验;同时进行临床免疫试验。3批疫苗接种豚鼠和猪后定期进行PPVHI抗体检测;猪于免疫后攻毒,并进行病毒分离。免疫母猪在怀孕早期进行强毒攻击,40d扑杀进行病毒分离。用3批疫苗免疫后备母猪统计产仔成绩。结果显示,豚鼠接种后21d、猪接种后7d全部产生抗体反应。免疫攻毒的猪均未从血浆和内脏中分离到病毒,而从对照猪分离到病毒;怀孕母猪强毒攻击后扑杀,胎儿病毒分离均为阴性,而对照猪胎儿病毒分离为阳性;统计数据表明免疫猪的产仔成绩比未免疫猪高,平均每窝多产活仔1.85头,少产死胎木乃伊胎0.65头。结果表明,当免疫豚鼠PPV HI≥64时,免疫猪能抵抗PPV强毒攻击,两者呈正相关;免疫母猪的攻毒试验表明免疫母猪能抵抗PPV经胎盘感染;临床免疫试验证明疫苗具有良好的免疫原性和安全性。  相似文献   

16.
猪细小病毒细胞适应株的培育及鉴定   总被引:3,自引:0,他引:3  
从临床表现为皮炎消瘦症状的仔猪肝脏中分离到1株病毒,经聚合酶链式反应(PCR)证实为猪细小病毒(PPV),采用仔猪原代肾细胞和传代ST细胞分离培养,经蚀斑克隆纯化,培育1株ST传代细胞培养适应毒株,命名为PPV-BQ2007株。免疫过氧化物酶单层细胞试验(IPMA)检测病毒抗原主要分布在细胞核及细胞质内。病毒感染细胞可被已知PPV阳性血清中和。免疫电镜可清晰见到聚集成团的大小不一的病毒粒子,近似圆形,无囊膜,直径大小约20nm-22nm。该分离株经ST细胞培养传代,能够产生典型的细胞病变,病毒滴度随代次显著增加,第30代后毒价达10^7 TCID50/mL以上,且毒价和血凝价稳定。测序结果表明PPV-BQ2007株VP2基因与NCBI公布的皮炎型毒株Kresse株的同源性最高,达99.8%,在系统进化分支上处于同一个分支。PPV-BQ2007株传代细胞培养适应株的成功培育和鉴定,为进一步开展该病毒流行病学、致病机理、疫苗免疫与诊断研究等奠定了良好基础。  相似文献   

17.
<正>为筛选出PCV2培养滴度最高的PK15细胞克隆株,采用稀释法从PK15混合细胞中分离单细胞克隆株,获得的细胞克隆用于接毒试验,即用同步接种法将猪圆环病毒2(PCV2)病毒细胞混合液以1∶100的比例接种单克隆细胞,接毒后经PCR与定量PCR检测得出A10细胞克隆培养PCV2,获得的病毒含量最高。将A10细胞进行第  相似文献   

18.
为探讨在有宿主细胞的情况下,反复冻融和不同保存温度对病毒滴度的影响,将收集的含ST细胞培养的猪细小病毒和含Vero细胞培养的伪狂犬病病毒经过不同次数的反复冻融,测定其病毒滴度。将收集的猪细小病毒液和伪狂犬病病毒液分别在4、22、-20、-80℃保存,间隔一段时间后测定半数组织细胞感染剂量(TCID_(50)),以了解病毒滴度。结果显示,含ST细胞的猪细小病毒和含Vero细胞的伪狂犬病病毒经过反复冻融3次之后,病毒滴度比未经冻融的病毒滴度分别提高了1.81lg和1.86lg。同一温度下,随着放置时间的增加,病毒滴度均呈下降的趋势。在一定时间内,不同保存温度下病毒滴度有明显区别,但在-20℃和-80℃条件下保存的病毒滴度下降比4℃和22℃条件下保存的慢。因此,在培养病毒的时候可以用反复冻融3次的方法来提高病毒的滴度。4℃和22℃只能作为病毒的短期储存温度,-20℃和-80℃对于病毒来说是合适的保存温度。  相似文献   

19.
王昊  李睿 《兽医导刊》2020,(5):91-92
目的利用微载体规模化培养ST细胞制备猪细小病毒L株灭活疫苗,并检测其免疫原性。方法猪细小病毒L株接种微载体悬浮培养的猪睾丸传代细胞系(ST细胞)后,收获细胞培养液和细胞,经二乙烯亚胺(BEI)溶液灭活后浓缩,加矿物质油佐剂乳化,制备灭活疫苗,经肌肉注射疫苗,免疫后28天采血,测定血清中和抗体效价。结果。微载体规模化培养ST细胞制备猪细小病毒获得病毒毒价较高,经灭活浓缩后制备疫苗免疫豚鼠,获得了较高效价的中和抗体效价。结论利用微载体规模化培养ST细胞成功制备了具有较高免疫原性的猪细小病毒灭活疫苗,为后期灭活疫苗的开发奠定了基础。  相似文献   

20.
为研究蜂胶黄酮对病毒诱导宿主细胞凋亡的影响,将蜂胶黄酮从最大安全浓度250μg/mL倍比稀释5个浓度,与猪传染性胃肠炎病毒(TGEV)、猪细小病毒(PPV)分别一起加至单层PK-15细胞培养体系中,用流式细胞仪检测蜂胶黄酮对TGEV和PPV感染PK-15细胞凋亡率的影响。结果显示,与病毒对照组比较,TGEV和PPV感染PK-15细胞后,蜂胶黄酮可以显著降低PPV感染引起的PK-15细胞凋亡率,而对TGEV感染引起的PK-15细胞凋亡率则没有显著影响。说明蜂胶黄酮可以减轻无囊膜的PPV感染对PK-15细胞引起的凋亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号