首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adoption of input‐responsive varieties enhanced food production during the second half of the 20th century. However, even bigger challenges lie ahead because of the growing societal demands. For example, the global population of 7.2 billion in 2013 is projected to reach 9.2 billion by 2050 and stabilize at 10 billion by 2100. The growing and increasingly affluent population, with preference towards more and more meat‐based diet, is likely to jeopardize the finite, fragile, and dwindling soil and water resources which are already under great stress in densely populated countries in Asia and elsewhere. Economic growth and increase in gross domestic product also lead to generation of waste or by‐products, along with contamination and eutrophication of water resources. International trade in food/feed products also involves transfer of virtual water, which is a serious issue when water‐scarce countries export virtual water to water‐endowed countries. The problem is confounded by the present and future climate change driven by the growing energy demands of the carbon civilization. Thus, adaptation to climate change represents both a threat and an opportunity for sustainable development. Adaptive strategies must be sustainable socially and environmentally and advance the Millennium Development Goals, while buffering agroecosystems against extreme climate events (e.g., pedologic, agronomic, and ecologic drought). Thus, recognizing and addressing the water‐soil‐waste nexus is important to achieving climate‐strategic agriculture. Sustainable intensification of agroecosystems, producing more per unit consumption of essential resources, must consider judicious management of hydrological and biogeochemical cycles (C, N, P, S). The soil C pool must be managed and enhanced to offset anthropogenic emissions, and mitigate/adapt to the climate change. The pace of adoption of recommended land use and soil‐/plant‐/animal‐management practices can be kept at par with advances in scientific knowledge through continuous dialogue between scientists on the one hand and policy makers / land managers on the other to translate research data into policy and action plans.  相似文献   

2.
3.
4.
The aim of this review is to describe the main physicochemical characteristics of diverse types of humic‐metal‐phosphate acid complexes. The effects of these complexes on phosphorus (P) fixation in soils with different pH values and physicochemical features and on plant phosphorus uptake are also discussed. Humic‐metal‐phosphate complexes have apparent stability constants in the same range as those of metal‐humic complexes, in solutions with diverse pH and ionic‐strength values. Likewise, the molecular‐size distribution of humic‐metal‐phosphate complexes as a function of pH is similar to that of potassium or sodium humates and metal‐humic complexes. Humic‐metal‐phosphate complexes are able to decrease phosphate fixation in soils and increase plant growth and phosphate uptake. Phosphorus fertilizers containing humic‐metal‐phosphate complexes proved to be efficient to improve plant growth and P uptake with respect to conventional fertilizers such as single superphosphate. The values of parameters related to plant phosphorus‐utilization efficiency (PUt E) suggest that the regulation of root acquisition of phosphate from these complexes could involve the interregulation of a system for the optimization of metabolic P utilization in the shoot and another system involving stress responses of roots under phosphorus deficiency.  相似文献   

5.
A large variety of extraction methods are used worldwide for the estimation of “plant‐available P” in soils. In Germany, the standard extractants are Calcium‐Acetate‐Lactate (CAL) and Double‐Lactate (DL). Until now there is no validated transformation procedure available and studies on the comparability of both methods have reported conflicting evidence. The uncertainty about the equivalence of CAL‐P and DL‐P hinders a direct comparison of the P fertility status and P fertilizer recommendations across Germany. Based on 136 datasets for soil samples from an interlaboratory comparison program and three P fertilization field trial sites, for which plant‐available P had been determined by both the CAL and DL method, we assessed the comparability of both extraction methods and derived simple and multiple regression equations to transform DL‐P into CAL‐P values. On average, DL extracted 30% more P than CAL. However, this strongly depended on soil pH and carbonate content. A simple linear regression model explained 70% of the variance. However, if simple linear regression models were fitted to pH‐specific samples (pH range 4.5 to 7.0) the R2 increased to 0.96. Based on an independent validation dataset (n = 48) we demonstrated that such pH‐specific models were more accurate than models that did not consider pH when transforming DL‐P to CAL‐P values. Multiple regression results showed that out of soil pH, Corg, Nt, and C : N ratio, only soil pH improved the model. The transformation equations in this study provide a step towards an improved comparability of P fertility status assessments of soils across Germany.  相似文献   

6.
The synergistic effects of nitrogen‐fixing and phosphate‐solubilizing rhizobacteria on plant growth, yield, grain protein, and nutrient uptake of chickpea plants were determined in a sandy clay‐loam soil. Legume grain yield and concentration and uptake of nitrogen (N) and phosphorus (P) were significantly increased as a result of co‐inoculation with Mesorhizobium and P‐solubilizing Pseudomonas and Bacillus spp. The inoculation with M. ciceri RC4 + A. chroococuum A10 + Bacillus PSB9 tripled the seed yield and resulted in highest grain protein (295 mg g–1) at 145 d after sowing (DAS). An 8% increase in P concentration above the uninoculated control was observed in case of a single inoculation with Pseudomonas PSB 5, while the P uptake was highest (2.14‐fold above the uninoculated control) with a combined inoculation with [M. ciceri RC4 + A. chroococcum A10 + Bacillus PSB 9] at 145 DAS. The highest N concentration and N uptake at 145 DAS (81% and 16% above the uninoculated control, respectively) were observed with the triple inoculation of [M. ciceri RC4 + A. chroococcum A10 + Pseudomonas PSB 5). These findings show that multiple inoculations with rhizospheric microorganisms can promote plant growth and grain yield and increase concentrations and uptake of N and P by field‐grown chickpea.  相似文献   

7.
Improved information on water‐extractable soil P (Pw) and its distribution in various forms is needed to assess its bioavailability and environmental impact. This study investigated Pw in a fluvo‐aquic soil solution in relation to the continuous application of inorganic fertilizer (NPK) and wheat straw–soybean‐based compost for 15 y. Phosphatase‐hydrolysis techniques were used to fractionate organic P (Po) in water extracts of soil into phosphomonoester (Pom) and phosphodiester (Pod). In comparison with the noncomposted treatments, compost application significantly increased the levels of inorganic P (Pi) and Po. Pom was the main form in water‐extractable soil Po (71%–88%), in which sugar phosphate (Pos) occupied 48%–75%, inositol hexakisphosphate (Pop) comprised 13%–23%, and Pod only accounted for a small percentage (11%–26%). Long‐term compost application significantly increased the content of Pom, Pos, and Pod, but decreased the Pop content; the ratio of Pom to Po increased significantly in compost‐treated soil, but the ratio of Pop to Po and Pod to Po significantly decreased. Thus, the equilibrium of phosphatase involved P transformations shifted to Pi in compost‐treated soil. The phosphomonoesterase and phosphodiesterase activities were significantly higher in compost‐treated soil, which favored the transformations of Pod into Pom and Pom into Pi. The ratio of Po to Pw in water extracts of compost‐treated soil was similar to that of control soils with no fertilizer input (CK), but was significantly lower than in NPK treatment, which demonstrated that a larger increase occurred for soil Pi in water extracts of compost‐treated soil. Long‐term compost application in the fluvo‐aquic soil changed the composition of Pw, promoted the rate of P transformations in soil solution, and significantly increased soil P bioavailability.  相似文献   

8.
Exudates are part of the total rhizodeposition released by plant roots to soil and are considered as a substantial input of soil organic matter. Exact quantitative data concerning the contribution of exudates to soil C pools are still missing. This study was conducted to reveal effects of 13C‐labeled exudate (artificial mixture) which was regularly applied to upper soil material from two agricultural soils. The contribution of exudate C to water‐extractable organic C (WEOC), microbial biomass C (MBC), and CO2‐C evolution was investigated during a 74 d incubation. The WEOC, MBC, and CO2‐C concentrations and the respective δ13C values were determined regularly. In both soils, significant incorporation of artificial‐exudate‐derived C was observed in the WEOC and MBC pool and in CO2‐C. Up to approx. 50% of the exudate‐C amounts added were recovered in the order WEOC << MBC < CO2‐C in both soils at the end of the incubation. Newly built microbial biomass consisted mainly of exudates, which substituted soil‐derived C. Correspondingly, the CO2‐C evolved from exudate‐treated soils relative to the controls was dominated by exudate C, showing a preferential mineralization of this substrate. Our results suggest that the remaining 50% of the exudate C added became stabilized in non‐water‐extractable organic fractions. This assumption was supported by the determination of the total organic C in the soils on the second‐last sampling towards the end of the incubation. In the exudate‐treated soils, significantly more soil‐derived C compared to the controls was found in the WEOC on almost all samplings and in the MBC on the first sampling. This material might have derived from exchange processes between the added exudate and the soil matrix. This study showed that easily available substrates can be stabilized in soil at least in the short term.  相似文献   

9.
10.
《Cereal Chemistry》2017,94(1):151-157
The development of innovative legume‐enriched rice products is a promising way to exploit rice varieties with a low sensory grade. In this work, a multidisciplinary approach was applied to the characterization of extruded breakfast cereals prepared from African‐grown Oryza glaberrima (cv. Viwonor) or Oryza sativa (cv. Jasmine 85) enriched with 30% cowpea flour, obtained from sprouted or nonsprouted cowpea. Regardless of the rice species, addition of sprouted cowpea flour conferred a peculiar volatiles profile, rich in sour, bitter, and astringent taste. Protein structural indices provided molecular insights about the macroscopic differences among samples. Extruded products from O. glaberrima were characterized by lower expansion rates with respect to those obtained from O. sativa , regardless of the type of cowpea flour. Sprouting time had a positive influence on the hardness of extruded glaberrima‐based products, facilitating formation of a more compact matrix, but it did not influence sativa‐ based products. Therefore, the breakdown of protein during sprouting appeared fundamental for the incorporation of legume proteins in more compact matrices, such as the one from sativa rice. In the glaberrima‐based products, addition of sprouted cowpea resulted in further loosening of the structure, and this was more evident at increased sprouting times.  相似文献   

11.
Data on quantification of erosion rates in alpine grasslands remain scarce but are urgently needed to estimate soil degradation. We determined soil‐erosion rates based on 137Cs in situ measurements. The method integrates soil erosion over the last 22 y (time after the Chernobyl accident). Measured erosion rates were compared with erosion rates modeled with the Universal Soil Loss Equation (USLE). The comparison was done in order to find out if the USLE is a useful tool for erosion prediction in steep mountainous grassland systems. Three different land‐use types were investigated: hayfields, pasture with dwarf shrubs, and pasture without dwarf shrubs. Our test plots are situated in the Urseren Valley (Central Switzerland) with a mean slope steepness of 37°. Mean annual soil‐erosion rates determined with 137Cs of the investigated sites ranged between the minimum of 4.7 t ha–1 y–1 for pastures with dwarf shrubs to >30 t ha–1 y–1 at hayfields and pastures without dwarf shrubs. The determined erosion rates are 10 to 20 times higher compared to previous measurements in alpine regions. Our measurements integrated over the last 22 y, including extreme rainfall events as well as winter processes, whereas previous studies mostly reported erosion rates based on summer time and short‐term rainfall simulation experiments. These results lead to the assumption that heavy‐rainfall events as well as erosion processes during winter time and early spring do have a considerable influence on the high erosion amounts that were measured. The latter can be confirmed by photographs of damaged plots after snowmelt. Erosion rates based on the USLE are in the same order of magnitude compared to 137Cs‐based results for the land‐use type “pasture with dwarf shrubs”. However, erosion amounts on hayfields and pasture without dwarf shrubs are underestimated by the USLE compared to 137Cs‐based erosion rates. We assume that the underestimation is due to winter processes that cause soil erosion on sites without dwarf shrubs that is not considered by the USLE. Dwarf shrubs may possibly prevent from damage of soil erosion through winter processes. The USLE is not able to perform well on the affected sites. Thus, a first attempt was done to create an alpine factor for the USLE based on the measured data.  相似文献   

12.
Wheat breeders need a nondestructive method to rapidly sort high‐ or low‐protein single kernels from samples for their breeding programs. For this reason, a commercial color sorter equipped with near‐infrared filters was evaluated for its potential to sort high‐ and low‐protein single wheat kernels. Hard red winter and hard white wheat cultivars with protein content >12.5% (classed as high‐protein, 12% moisture basis) or < 11.5% (classed as low‐protein) were blended in proportions of 50:50 and 95:5 (or 5:95) mass. These wheat blends were sorted using five passes that removed 10% of the mass for each pass. The bulk protein content of accepted kernels (accepts) and rejected kernels (rejects) were measured for each pass. For 50:50 blends, the protein in the first‐pass rejects changed as much as 1%. For the accepts, each pass changed the protein content of accepts by ≈0.1%, depending on wheat blends. At most, two re‐sorts of accepts would be required to move 95:5 blends in the direction of the dominant protein content. The 95:5 and 50:50 blends approximate the low‐ and high‐protein mixture range of early generation wheat populations, and thus the sorter has potential to aid breeders in purifying samples for developing high‐ or low‐protein wheat. Results indicate that sorting was partly driven by color and vitreousness differences between high‐ and low‐protein fractions. Development of a new background specific for high‐ or low‐protein and fabrication of better optical filters for protein might help improve the sorter performance.  相似文献   

13.
Many applications have been developed for aqueous dispersions of jet‐cooked starch‐oil composites prepared by excess steam jet cooking. Previous formulations have typically contained 20–50% oil by weight based on the weight of starch. To expand the range of potential applications, new preparation methods were investigated to increase the oil content to as high as four times the weight of starch. High‐amylose corn starch was cooked in an excess‐steam jet cooker in the presence of oleic acid, and soybean oil was added to form the starch‐oil composites. Amylose is removed from solution by forming helical inclusion complexes with the oleic acid and, if the materials are cooled sufficiently quickly, the helical inclusion complexes only form small aggregates and shells around the oil droplets. Depending on the composition and preparation method, a wide range of stable, high‐oil materials from low‐viscosity liquids to smooth pastes can be formed. The flow, textural, and structural properties of these materials are shown. The materials can be used in a wide range of applications, including spray lubricants, lotions, and for fat delivery in cake mixes.  相似文献   

14.
Under‐ as well as overfertilization with nitrogen (N) will result in economic loss for the farmer due to reduced yields and quality of the products. Also from an ecological perspective, it is important that the grower makes the correct decision on how much and when to apply N for a certain crop to minimize impacts on the environment. To aggravate the situation, N is a substance that is present in many compartments in different forms (nitrate, ammonium, organic N, etc.) in the soil‐plant environment and takes part in various processes (e.g., mineralization, immobilization, leaching, denitrification, etc.). Today, many N‐recommendation systems are mainly based on yield expectation. However, yields are not stable from year to year for a given field. Also the processes that determine the N supply from other sources than fertilizer are not predictable at the start of the growing season. Different methodological approaches are reviewed that have been introduced to improve N‐fertilizer recommendations for arable crops. Many soil‐based methods have been developed to measure soil mineral N (SMN) that is available for plants at a given sampling date. Soil sampling at the start of the growing period and analyzing for the amount of NO ‐N (and NH ‐N) is a widespread approach in Europe and North America. Based on data from field calibrations, the SMN pool is filled up with fertilizer N to a recommended amount. Depending on pre‐crop, use of organic manure, or soil characteristics, the recommendation might be modified (±10–50 kg N ha–1). Another set of soil methods has been established to estimate the amount of N that is mineralized from soil organic matter, plant residues, and/or organic manure. From the huge range of methods proposed so far, simple mild extraction procedures have gained most interest, but introduction into practical recommendation schemes has been rather limited. Plant‐analytical procedures cover the whole range from quantitative laboratory analysis to semiquantitative “quick” tests carried out in the field. The main idea is that the plant itself is the best indicator for the N supply from any source within the growth period. In‐field methods like the nitrate plant sap/petiole test and chlorophyll measurements with hand‐held devices or via remote sensing are regarded as most promising, because with these methods an adequate adjustment of the N‐fertilizer application strategy within the season is feasible. Prerequisite is a fertilization strategy that is based on several N applications and not on a one‐go approach.  相似文献   

15.
Little is known about the bacterial ecology of evaporative salt‐mining sites (salterns) of which Teguidda‐n‐Tessoumt at the fringe of the West African Saharan desert in Niger is a spectacular example with its many‐centuries‐old and very colorful evaporation ponds. During the different enrichment steps of the salt produced as a widely traded feed supplement for cattle, animal manure is added to the crude brine, which is then desiccated and repeatedly crystallized. This study describes the dominant Bacteria and Archaea communities in the brine from the evaporation ponds and the soil from the mine, which were determined by PCR‐DGGE of 16S rDNA. Correspondence analysis of the DGGE‐community fingerprints revealed a change in community structure of the brine samples during the sequential evaporation steps which was, however, unaffected by the brine's pH and electric conductivity (EC). The Archaea community was dominated by a phylogenetically diverse group of methanogens, while the Bacteria community was dominated by gamma proteobacteria. Microorganisms contained in the purified salt product have the potential to be broadly disseminated and are fed to livestock across the region. In this manner, the salt mines represent an intriguing example of long‐term human activity that has contributed to the continual selection, cultivation, and dissemination of cosmopolitan microorganisms.  相似文献   

16.
Nine hull‐less barley (HB) containing waxy (0–7% amylose), normal (≈25% amylose), or high amylose (≈42% amylose) starch with normal or fractured granule make‐up and 4–9% (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) were pearled to remove 70% of the original grain weight in 10% intervals. The pearled fractions were analyzed for β‐glucan distribution within HB grain. Protein content of the pearled fractions indicated that the three outermost fractions contained pericarp and testa, aleurone, and subaleurone tissues, respectively. For all HB, β‐glucan and acid‐extract viscosity were very low in the outermost 20% of the kernel. For low β‐glucan HB, β‐glucan content was the greatest in the subaleurone region and declined slightly toward inner layers. For high β‐glucan HB, however, more than 80% of grain β‐glucan was distributed more evenly throughout the endosperm. Acid extract viscosity was significantly (P < 0.01) correlated with total (r = 0.75) and soluble (r = 0.87) β‐glucan content throughout the kernel of all HB. Growing conditions, location and year, had significant effects on the concentration of protein, starch and β‐glucan. However, protein, starch, and β‐glucan distribution patterns were not affected by growing conditions. The difference in β‐glucan distribution between low and high β‐glucan HB may explain the difference in milling performance of HB with low or high β‐glucan.  相似文献   

17.
18.
Climate, soil physical–chemical characteristics, land management, and carbon (C) input from crop residues greatly affect soil organic carbon (SOC) sequestration. According to the concept of SOC saturation, the ability of SOC to increase with C input decreases as SOC increases and approaches a SOC saturation level. In a 12‐year experiment, six semi‐arid cropping systems characterized by different rates of C input to soil were compared for ability to sequester SOC, SOC saturation level, and the time necessary to reach the SOC saturation level. SOC stocks, soil aggregate sizes, and C inputs were measured in durum wheat monocropping with (Ws) and without (W) return of aboveground residue to the soil and in the following cropping systems without return of aboveground residue to soil: durum wheat/fallow (Wfall), durum wheat/berseem clover, durum wheat/barley/faba bean, and durum wheat/Hedysarum coronarium. The C sequestration rate and SOC content were lowest in Wfall plots but did not differ among the other cropping systems. The C sequestration rate ranged from 0.47 Mg C ha−1 y−1 in Ws plots to 0.66 Mg C ha−1 y−1 in W plots but was negative (−0.06 Mg C ha−1 y−1) in Wfall plots. Increases in SOC were related to C input up to a SOC saturation value; over this value, further C inputs did not lead to SOC increase. Across all cropping systems, the C saturation value for the experimental soil was 57.7 Mg ha−1, which was reached with a cumulative C input of 15 Mg ha−1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The ability of high hydrostatic pressure processing to promote changes in both the structural properties of fiber and the interaction of fiber with water were addressed. Both coarse and fine bran from milling of common wheat were considered. Treatment‐induced morphological changes were most pronounced in fine bran, whereas treatment of coarse bran resulted in the largest change in water‐holding capacity. The significance of the process‐induced changes is discussed in terms of their practical relevance in the production of fiber‐enriched foods.  相似文献   

20.
Low‐molecular‐weight organic substances (LMWOS) such as amino acids, sugars and carboxylates, are rapidly turned over in soil. Despite their importance, it remains unknown how the competition between microbial uptake and sorption to the soil matrix affects the LMWOS turnover in soil solution. This study describes the dynamics of LMWOS fluxes (10 µm ) in various pools (dissolved, sorbed, decomposed to CO2 and incorporated into microbial biomass) and also assesses the LMWOS distribution in these pools over a very wide concentration range (0.01–1000 µm ). Representatives of each LMWOS group (glucose for sugars, alanine for amino acids, acetate for carboxylates), uniformly 14C‐labelled, were added to sterilized or non‐sterilized soil and analysed in different pools between 1 minute and 5.6 hours after addition. LMWOS were almost completely taken up by microorganisms within the first 30 minutes. Surprisingly, microbial uptake was much faster than the physicochemical sorption (estimated in sterilized soil), which needed 60 minutes to reach quasi‐equilibrium for alanine and about 400 minutes for glucose. Only acetate sorption was instantaneous. At a concentration of 100 µm , microbial decomposition after 4.5 hours was greater for alanine (76.7 ± 1.1%) than for acetate (55.2 ± 0.9%) or glucose (28.5 ± 1.5%). In contrast, incorporation into microbial biomass was greater for glucose (59.8 ± 1.2%) than for acetate (23.4 ± 5.9%) or alanine (5.2 ± 2.8%). Between 10 and 500 µm , the pathways of the three LMWOS changed: at 500 µm , alanine and acetate were less mineralized and more was incorporated into microbial biomass than at 10 µm , while glucose incorporation decreased. Despite the fact that the LMWOS concentrations in soil solution were important for competition between sorption and microbial uptake, their fate in soil is mainly determined by microbial uptake and further microbial transformations. For these substances, which represent the three main groups of LMWOS in soil, the microbial uptake out‐competes sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号