首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this investigation was to compare the growth performance of grower pigs fed low-CP, corn-soybean meal (C-SBM) AA-supplemented diets with that of pigs fed a positive control (PC) C-SBM diet with no supplemental Lys. Five experiments were conducted with Yorkshire crossbred pigs, blocked by BW (average initial and final BW were 21 and 41 kg, respectively) and assigned within block to treatment. Each treatment was replicated 4 to 6 times with 4 or 5 pigs per replicate pen. Each experiment lasted 28 d and plasma urea N was determined at the start and end of each experiment. All diets were formulated to contain 0.83% standardized ileal digestible Lys. All the experiments contained PC and negative control (NC) diets. The PC diet contained 18% CP and was supplemented with only DL-Met. The NC diet contained 13% CP and was supplemented with L-Lys, DL-Met, L-Thr, and L-Trp. The NC + Ile + Val diet was supplemented with 0.10% Val + 0.06% Ile. The NC + Ile + Val diet was supplemented with either His (Exp. 1), Cys (Exp. 2), Gly (Exp. 2, 3, and 4), Glu (Exp. 3), Arg (Exp. 4), or combinations of Gly + Arg (Exp. 4 and 5) or Gly + Glu (Exp. 5). Treatment differences were considered significant at P < 0.10. In 3 of the 4 experiments that had PC and NC diets, pigs fed the NC diet had decreased ADG and G:F compared with pigs fed the PC diet. The supplementation of Ile + Val to the NC diet restored ADG in 4 out of 5 experiments. However, G:F was less than in pigs fed the PC diet in 1 experiment and was intermediate between the NC and PC diets in 3 experiments. Pigs fed supplemental Ile + Val + His had decreased G:F compared with pigs fed the PC. Pigs fed supplemental Cys to achieve 50:50 Met:Cys had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.224% supplemental Gly had similar ADG, greater ADFI, and decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.52% supplemental Gly had ADG and G:F similar to that of pigs fed the PC. Pigs fed supplemental Glu had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.48% supplemental Arg had decreased G:F compared with pigs fed the PC. Pigs fed the diet supplemented with Gly + Arg had ADG and G:F similar to pigs fed the PC. Pigs fed the low-CP diets had reduced plasma urea N compared with pigs fed PC. The results of these experiments indicate that supplementing Gly or Gly + Arg to a low-CP C-SBM diet with 0.34% Lys, Met, Thr, Trp, Ile, and Val restores growth performance to be similar to that of pigs fed a PC diet with no Lys supplementation.  相似文献   

2.
The study was conducted to determine the effects of feeding a 16% CP diet, a 12% CP diet, or a 12% CP diet supplemented with crystalline Lys, Trp, and Thr (12% CP + AA diet) in a thermal-neutral (23 degrees C) or heat-stressed (33 degrees C) environment on various body and physiological measurements in growing pigs. Heat-stressed pigs were given a 15% lower daily feed allowance than thermal-neutral pigs to remove the confounding effect of feed intake caused by high temperature. No diet x temperature interaction was observed for any variables (P > 0.09) except for pig activity and pancreas weight. At 33 degrees C, pig activity and pancreas weight did not differ among dietary treatments (P > 0.05). In contrast, at 23 degrees C, pigs fed the 12% CP diet had greater activity than those fed the 16% CP diet or the 12% CP + AA diet (P < 0.05). Pancreas weight was greater for pigs fed the 12% CP + AA diet than those fed the 12% CP diet (P < 0.05) when maintained at 23 degrees C. Compared with 23 degrees C, the 33 degrees C temperature decreased pig activity, heat production, daily gain, feed efficiency, and affected the concentration and accretion of empty body protein and ash, as well as weights of heart, pancreas, stomach, and large intestine (P < 0.05). Pigs fed the 12% CP + AA diet attained similar levels of performance and rates of empty body water, protein, lipid, and ash deposition as pigs fed the 16% CP diet (P > 0.10). Pigs fed the 12% CP + AA diet had lower serum urea plus ammonia nitrogen concentrations (P < 0.01) and total heat production (P < 0.05) compared with those fed the 16% CP diet or the 12% CP diet. These results confirm that, with crystalline AA supplementation, growing pigs fed a 12% CP diet will perform similar to pigs fed a 16% CP diet. The data further indicate that lowering dietary CP and supplementing crystalline AA will decrease total heat production in growing pigs whether they are housed in a thermal-neutral or heat-stressed environment.  相似文献   

3.
Three experiments were conducted to determine the Val and Ile requirements in low-CP, corn-soybean meal (C-SBM) AA-supplemented diets for 20- to 45-kg pigs. All experiments were conducted for 26 to 27 d with purebred or crossbred barrows and gilts, which were blocked by initial BW. Treatments were replicated with 5 or 6 pens of 3 or 4 pigs per pen. At the beginning of Exp. 1 and the end of all experiments, blood samples were obtained from all pigs to determine plasma urea N (PUN) concentrations. All diets were C-SBM with 0.335% supplemental Lys to achieve 0.83% standardized ileal digestible (SID) Lys, which is the Lys requirement of these pigs. In Exp. 1, 0, 0.02, 0.04, 0.06, 0.08, or 0.10% L-Val was supplemented to achieve 0.51, 0.53, 0.55, 0.57, 0.59, or 0.61% dietary SID Val, and Thr, Trp, Met, and Ile were supplemented to maintain Thr:Lys, Trp:Lys, TSAA:Lys, and Ile:Lys ratios of 0.71, 0.20, 0.62, and 0.60, respectively. Also, supplemental Gly and Glu were added to all diets to achieve 1.66% Gly + Ser and 3.28% Glu, which is equal to the Gly + Ser and Glu content of a previously validated positive control diet that contained no supplemental AA. Treatment differences were considered significant at P < 0.10. Valine addition increased ADG, ADFI, and G:F in pigs fed 0.51 to 0.59% SID Val (linear, P < 0.08), but ADG and ADFI were decreased at 0.61% SID Val (quadratic, P ≤ 0.10). On the basis of ADG and G:F, the SID Val requirement is between 0.56 and 0.58% in a C-SBM diet supplemented with AA. In Exp. 2 and 3, 0, 0.02, 0.04, 0.06, or 0.08% L-Ile was supplemented to achieve 0.43, 0.45, 0.47, 0.49, or 0.51% dietary SID Ile, and Thr, Trp, Met, and Ile were supplemented to maintain Thr:Lys, Trp:Lys, TSAA:Lys, and Val:Lys ratios of 0.71, 0.20, 0.62, and 0.74, respectively. Also, supplemental Gly and Glu were added to achieve 1.66% Gly + Ser and 3.28% Glu as in Exp. 1. Data from Exp. 2 and 3 were combined and analyzed as 1 data set. Daily BW gain, ADFI, and G:F were not affected by Ile additions to the diet; however, ADFI was decreased among pigs fed the diet with 0.45% SID Ile (P < 0.10) compared with pigs fed the 0.43% SID Ile diet. Broken-line analysis requirements could not be estimated for the combined data from Exp. 2 or 3. The results of this research indicate that the SID Val requirement is between 0.56 to 0.58% (0.67 to 0.70 SID Val:Lys), and the Ile requirement is adequate at 0.43% SID Ile (0.52 SID Ile:Lys) for 20- to 45-kg pigs.  相似文献   

4.
Diarrhea incidence in weaned pigs may be associated with the concentration of intestinal microbial metabolites (ammonia, amines, and VFA) that are influenced by dietary CP content. Three experiments were conducted to determine effects of a low-protein, AA-supplemented diet on ileal AA digestibility, growth performance, diarrhea incidence, and concentration of microbial metabolites in ileal and cecal digesta of pigs weaned at 14 d of age. In Exp. 1, 8 pigs fitted with a simple T-cannula at the distal ileum were assigned in a crossover design to 2 diets containing 24 or 20% CP using wheat, corn, full-fat soybeans, whey powder, fish meal, and blood plasma as the main ingredients. Supplemental AA were added to the diets to meet the AA standards according to the 1998 NRC recommendations. Chromic oxide was used as an indigestible marker. Diets were fed at 2.5 times the ME requirement for maintenance. The reduction of dietary CP decreased (P < 0.05) the apparent ileal digestibility of most AA, except Lys, Met, Thr, Val, and Pro. Dietary CP content did not affect the pH of ileal digesta or ileal concentrations of ammonia N, cadaverine, putrescine, or VFA. In Exp. 2, 8 pigs fitted with a simple T-cannula in the cecum were assigned to 2 diets, similar to Exp. 1. Dietary CP content did not affect the pH of cecal digesta. The reduction in CP content decreased (P < 0.05) cecal ammonia N, acetic acid, isobutyric acid, isovaleric acid, total VFA, and putrescine concentrations by 28 to 39%. In Exp. 3, 32 pigs were assigned to 2 diets, similar to Exp. 1, according to a randomized complete block design. Pigs had free access to feed and water. Dietary CP content did not affect growth performance or fecal consistency scores during the 3-wk study, and diarrhea was not observed. The results of these experiments indicate that lowering the dietary CP content combined with supplementation of AA markedly reduced the production of potentially harmful microbial metabolites in cecal digesta of early-weaned pigs without affecting growth performance.  相似文献   

5.
The effects of Ile and Val supplementation of a low-CP, corn-wheat-soybean meal-based piglet diet on growth performance, incidence of diarrhea, and N balance were studied using 60 Landrace x Duroc male piglets in a 4-wk experiment. The 60 individually caged piglets were divided into 5 dietary treatments, each consisting of 12 piglets. Diet 1 was a positive control diet (20% CP); diet 2 was a low-CP negative control diet (17% CP); diets 3, 4, and 5 were low-CP diets to which Ile, Val, or the combination of Ile and Val were added, respectively. All diets were supplemented with Lys, Met, Thr, and Trp to provide the required concentrations of these AA according to the 1998 NRC. Average daily gain and ADFI were similar among pigs fed the positive control, Val-added, and the Val plus Ile-added diets. On wk-2 and wk-4, fecal score was greater (softer feces) in piglets fed the 20% CP level compared with the remaining treatments (P < 0.01). Nitrogen intake was decreased (P < 0.0001) in pigs fed diets containing low levels of CP compared with pigs fed the 20% CP diet. Fecal N excretion (g/d) was decreased (P < 0.05) in piglets fed low-CP diets at wk 1 and wk 4 of feeding, and in urine at wk 4 of feeding. Crude protein levels or AA supplementation had no effect on N retention efficiencies. These results indicate that the supplementation of Val alone, or in combination with Ile, to a low-CP piglet diet with adequate levels of Lys, Met, Thr, and Trp is necessary to achieve maximum performance in pigs consuming corn-wheat-soybean meal-based diets.  相似文献   

6.
Three experiments were conducted to determine the optimal true ileal digestible (TID) Trp:Lys ratio for 90- to 125-kg barrows. Basal diets contained 0.55% TID Lys and were either corn-based (Exp. 1) or corn- and soybean meal-based (Exp. 2 and 3) diets supplemented with crystalline AA. In addition, each experiment contained a corn-soybean meal control diet. The number of pigs per pen progressively increased, with pigs housed in 2 (n = 82; initial and final BW of 88.5 and 113.6 kg, respectively), 7 (n = 210, initial and final BW of 91.2 and 123.3 kg, respectively), or 20 to 22 (n = 759; initial and final BW of 98.8 and 123.4 kg, respectively) pigs per pen for each successive experiment. Pigs in Exp. 1 were fed 6 incremental additions of L-Trp, equating to TID Trp:Lys ratios of 0.109, 0.145, 0.182, 0.218, 0.255, and 0.290. For the 28-d period, there was a quadratic improvement in G:F (P = 0.05) and ADG (P = 0.08) with increasing TID Trp:Lys, characterized by an improvement in performance of pigs fed the basal diet compared with those consuming diets with a 0.145 TID Trp:Lys ratio, with a plateau thereafter as TID Trp:Lys increased. Pigs fed the control diet had less increase in backfat depth than the average of pigs fed the titration diets (1.30 vs. 4.09 mm, respectively; P = 0.02), but pork quality was unaffected by dietary treatment. Pigs in Exp. 2 were fed 4 incremental additions of L-Trp, equating to TID Trp:Lys ratios of 0.130, 0.165, 0.200, and 0.235. Average daily gain and ADFI increased in a linear fashion with increasing TID Trp:Lys for the 29-d trial (P < 0.01), with quadratic improvements in d-29 BW (P = 0.06) and G:F (P = 0.05). Pigs fed the diet containing a TID Trp:Lys ratio of 0.165 had greater d-29 BW, ADG, G:F, and lower serum urea N concentration than pigs fed the basal diet (P < 0.05), but were similar to pigs fed TID Trp:Lys ratios of 0.200 and 0.235 for all criteria measured. In Exp. 3, TID Trp:Lys ratios of 0.13, 0.15, 0.17, 0.19, and 0.21 were evaluated. The response to increasing TID Trp:Lys was limited to a quadratic (P < 0.10) improvement in G:F with increasing TID Trp:Lys ratios. Maximum G:F was noted at a TID Trp:Lys ratio of 0.17. No relationship was noted between TID Trp:Lys and carcass characteristics. These experiments demonstrate that the minimum TID Trp:Lys ratio for pigs from 90 to 125 kg of BW is at least 0.145, but not greater than 0.17.  相似文献   

7.
A study with 3 experiments was conducted to determine the AA digestibility and energy concentration of deoiled (solvent-extracted) corn distillers dried grains with solubles (dDGS) and to evaluate its effect on nursery pig growth performance, finishing pig growth performance, and carcass traits. In Exp. 1, a total of 5 growing barrows (initial BW = 30.8 kg) were fitted with a T-cannula in the distal ileum and allotted to 1 of 2 treatments: 1) a diet with dDGS as the sole protein source, or 2) a N-free diet for determining basal endogenous AA losses in a crossover design at 68.0 kg of BW. Apparent and standardized (SID) ileal digestibility of AA and energy concentration of dDGS were determined. In Exp. 2, a total of 210 pigs (initial BW = 9.9 kg) were used in a 28-d experiment to evaluate the effect of dDGS on nursery pig performance. Pigs were allotted to 5 dietary treatments (0, 5, 10, 20, or 30% dDGS) formulated to contain equal ME (increased added fat with increasing dDGS) and SID Lys concentrations based on the values obtained from Exp. 1. In Exp. 3, a total of 1,215 pigs (initial BW = 29.6 kg) were used in a 99-d experiment to determine the effect of dDGS on growth and carcass characteristics of finishing pigs. Pigs were allotted to dietary treatments similar to those used in Exp. 2 and were fed in 4 phases. The analyzed chemical composition of dDGS in Exp. 1 was 35.6% CP, 5.29% ash, 4.6% fat, 18.4% ADF, and 39.5% NDF on a DM basis. Apparent ileal digestibility values of Lys, Met, and Thr in dDGS were 47.2, 79.4, and 64.1%, respectively, and SID values were 50.4, 80.4, and 68.9%, respectively. The determined GE and DE and the calculated ME and NE values of dDGS were 5,098, 3,100, 2,858, and 2,045 kcal/kg of DM, respectively. In Exp. 2, nursery pig ADG, ADFI, and G:F were similar among treatments. In Exp. 3, increasing dDGS reduced (linear; P < 0.01) ADG and ADFI but tended to improve (linear; P = 0.07) G:F. Carcass weight and yield were reduced (linear; P < 0.01), loin depth tended to decrease (linear; P = 0.09), and carcass fat iodine values increased (linear; P < 0.01) as dDGS increased. No difference was observed in backfat, percentage of lean, or fat-free lean index among treatments. In conclusion, dDGS had greater CP and AA but less energy content than traditional distillers dried grains with solubles. In addition, when dietary fat was added to diets to offset the reduced ME content, feeding up to 30% dDGS did not affect the growth performance of nursery pigs but did negatively affect the ADG, ADFI, and carcass fat quality of finishing pigs.  相似文献   

8.
Two experiments were conducted to determine the effects of crude protein (CP) level in diets containing coarse wheat bran (CWB) with or without pharmacological levels of Zn (provided by zinc oxide: ZnO) on growth performance and fecal DM of nursery pigs. In experiment 1, 360 barrows (Line 200 × 400, DNA, Columbus, NE, initially 5.6 kg) were allotted to 1 of 6 dietary treatments from d 0 to 21 after weaning with 5 pigs per pen and 12 pens per treatment. Treatments included a positive control diet (21% CP) with 3,000 mg/kg Zn in phase 1 and 2,000 mg/kg in phase 2; negative control (21% CP) with 110 mg/kg added Zn, and 4 diets containing 4% CWB and 110 mg/kg added Zn formulated to contain 21%, 19.5%, 18%, or 16.5% CP. The 2 control diets and 21% CP CWB diet contained 1.40% standardized ileal digestible (SID) Lys in phase 1 and 1.35% SID Lys in phase 2, while the 19.5%, 18%, and 16.5% CP diets contained 1.33, 1.25 and 1.20% Lys, respectively, in both phases. Pigs fed the positive control diet containing pharmacological ZnO had increased (P < 0.05) ADG and G:F compared with the negative control and the 21% CP CWB diet. Reducing CP (concurrently with SID Lys) in diets containing CWB decreased ADG and G:F (linear, P = 0.002); however, fecal DM increased (linear, P = 0.005). In experiment 2, two groups of 300 and 350 pigs, initially 7.0 and 6.2 kg, respectively, were used with 5 pigs per pen and 26 pens per treatment. The objective was to determine if adding back essential AA would improve growth performance of pigs fed the low CP diets. All dietary treatments were fed for 13 days, contained 4% CWB, and consisted of: (1) positive control with 2,000 mg/kg of Zn and 21% CP (1.35% SID Lys); (2) no ZnO and 21% CP; and 3 diets with no ZnO formulated to 18% CP and (3) 1.2% SID Lys; (4) 1.35% SID Lys by the addition of feed grade amino acids (AA), and (5) diet 4 with non-essential amino acids (NEAA; Gly and Glu). Pigs fed 21% CP with ZnO had increased (P = 0.001) ADG compared to those fed 18% CP (1.35% SID Lys) with high levels of feed grade amino acids or those fed the reduced SID Lys (1.2%) diet. Overall, G:F was improved (P < 0.001) for pigs fed 21% CP diets and those fed the 18% CP diet with NEAA compared to pigs fed 1.2% SID Lys and pigs fed high levels of feed grade amino acids. Fecal DM was increased for pigs fed the reduced SID Lys diet. In summary, pharmacological levels of Zn improve pig growth performance, but reducing CP (and subsequently SID Lys) decreased nursery pig growth performance.  相似文献   

9.
Two experiments were conducted to evaluate the effects of adding combinations of wheat middlings (midds), distillers dried grains with solubles (DDGS), and choice white grease (CWG) to growing-finishing pig diets on growth, carcass traits, and carcass fat quality. In Exp. 1, 288 pigs (average initial BW = 46.6 kg) were used in an 84-d experiment with pens of pigs randomly allotted to 1 of 4 treatments with 8 pigs per pen and 9 pens per treatment. Treatments included a corn-soybean meal-based control, the control with 30% DDGS, the DDGS diet with 10% midds, or the DDGS diet with 20% midds. Diets were fed in 4 phases and formulated to constant standardized ileal digestible (SID) Lys:ME ratios within each phase. Overall (d 0 to 84), pigs fed diets containing increasing midds had decreased (linear, P ≤ 0.02) ADG and G:F, but ADFI was not affected. Feeding 30% DDGS did not influence growth. For carcass traits, increasing midds decreased (linear, P < 0.01) carcass yield and HCW but also decreased (quadratic, P = 0.02) backfat depth and increased (quadratic, P < 0.01) fat-free lean index (FFLI). Feeding 30% DDGS decreased (P = 0.03) carcass yield and backfat depth (P < 0.01) but increased FFLI (P = 0.02) and jowl fat iodine value (P < 0.01). In Exp. 2, 288 pigs (initial BW = 42.3 kg) were used in an 87-d experiment with pens of pigs randomly allotted to 1 of 6 dietary treatments with 8 pigs per pen and 6 pens per treatment. Treatments were arranged in a 2 × 3 factorial with 2 amounts of midds (0 or 20%) and 3 amounts of CWG (0, 2.5, or 5.0%). All diets contained 15% DDGS. Diets were fed in 4 phases and formulated to constant SID Lys:ME ratios in each phase. No CWG × midds interactions were observed. Overall (d 0 to 87), feeding 20% midds decreased (P < 0.01) ADG and G:F. Pigs increasing CWG had improved ADG (quadratic, P = 0.03) and G:F (linear, P < 0.01). Dietary midds or CWG did not affect ADFI. For carcass traits, feeding 20% midds decreased (P < 0.05) carcass yield, HCW, backfat depth, and loin depth but increased (P < 0.01) jowl fat iodine value. Pigs fed CWG had decreased (linear, P < 0.05) FFLI and increased (linear, P < 0.01) jowl fat iodine value. In conclusion, feeding midds reduced pig growth performance, carcass yield, and increased jowl fat iodine value. Although increasing diet energy with CWG can help mitigate negative effects on live performance, CWG did not eliminate negative impacts of midds on carcass yield, HCW, and jowl fat iodine value.  相似文献   

10.
The optimal ratio of tryptophan (Trp):lysine (Lys) relative to the ratio of threonine (Thr):Lys was studied in 288 crossbred (Cambrough 15 x Canabrid) nursery pigs from 7.1 to 15.6 kg BW. Treatments were arranged in a 3 x 3 factorial with three calculated ratios of true digestible Thr:Lys (0.55, 0.60, or 0.65) in combination with three Trp:Lys ratios (0.145, 0.170, or 0.195). Treatments were replicated with eight pens of four pigs each. The experiment lasted 28 day with Phase II (222.6 g CP and 11.9 g true digestible Lys/kg diet, initially 24 day of age and 7.1 kg BW) and Phase III (196.2 g CP and 10.1 kg true digestible Lys/kg diet, initially 38 day of age and 9.8 kg BW) diets each fed for 14 day. Threonine by Trp interactions were observed for average daily gain during each period, and for daily feed intake during Phase III and overall. Generally, Trp addition linearly increased gain and feed intake at a Thr:Lys ratio of 0.60 and 0.65 but not at a Thr:Lys ratio of 0.55. Gain:feed was increased linearly with increasing levels of Trp during both periods. There were no main effects of Thr in either time period or overall. Overall, optimal performance was obtained in pigs fed the true digestible Trp:Lys ratio of 0.195 at Thr:Lys ratios 0.60 or 0.65. These results indicate that Trp:Lys ratios above 0.195 may be needed to maximize performance in diets containing wheat and barley.  相似文献   

11.
We hypothesized that balancing the content of exogenous amino acids, especially lysine, to reduce protein content in swine diets could reduce nitrogen (N) pollution associated with animal husbandry. Two experiments (45 d each experiment) were performed on weaned piglets (Duroc × Landrace × Yorkshire, 28 d of age) to test this and to determine the optimal lysine to crude protein (Lys:CP) ratio in diet. In Exp. 1, 12 piglets (6 replicates [n = 6]) were fed diets containing different levels of CP (17% and 20%) but the same level of Lys. Increased CP content resulted in significant increases (P < 0.05) of average daily gain (ADG), average daily feed intake (ADFI), and body weight (BW), but did not affect the feed to gain ratio. In Exp. 2, 24 piglets (8 replicates [n = 8]) were fed 1 of 3 diets as follows: 1) 20% CP with a regular Lys:CP ratio (6.23%, control); 2) 17% CP with a reduced Lys:CP ratio (6.14%, LL); or 3) 17% CP with a standard Lys:CP ratio (7.32%, SL). The ADG, final BW, serum concentrations of growth hormone and insulin-like growth factor-1, villus height in the jejunum, and villus height to crypt depth ratio were the lowest in piglets fed LL diet, whereas blood urea N concentration was the lowest and the value of lipase activity was the highest in the piglets fed SL diet. The SL diet did not affect growth performance, intestinal morphology, or serum hormone concentrations, indicating that reduced dietary N with a high Lys:CP ratio can efficiently reduce dietary N excretion without negatively affecting weaned piglets.  相似文献   

12.
An experiment was conducted to determine the influence of postfast dietary CP and P concentration on the repletion of N, P, Ca, and Mg lost during a 3-d fast in sheep. Four Suffolk wether lambs averaging 35 kg were used in a 4 x 4 Latin square design. Lambs were fed a control diet (700 g/d; as-fed basis) for 14 d and were then deprived of feed and water for 3 d. Lambs were then fed one of four isoenergetic realimentation diets: 1) low CP/low P, 2) low CP/high P, 3) high CP/high P, and 4) high CP/very high P. Realimentation N and Mg intakes were 9.8 and 1.1 g/d for lambs fed the low-CP diet and 18.1 and 1.7 g/d for lambs fed the high-CP diets, respectively. Realimentation P intakes were 1.40, 2.36, 2.66, and 3.82 g/d for lambs fed Diets 1, 2, 3, and 4, respectively. Nitrogen, P, Ca, and Mg apparent digestibility and balance and serum urea N, free fatty acids, P, Ca, Mg, and alkaline phosphatase were determined during the prefast, fast, and realimentation periods. Lambs fed the high-CP diets had higher (P less than .05) N and P digestibility and balance than lambs fed the low-CP diet. Increasing the dietary P content did not affect (P greater than .15) P balance or digestibility. In general, the realimentation diet fed did not affect (P greater than .15) serum concentrations of free fatty acids, alkaline phosphatase, inorganic P, Ca, or Mg.  相似文献   

13.
Two experiments were conducted to determine the effect of dietary L-carnitine on growth performance and carcass composition of nursery and growing-finishing pigs. In Exp. 1,216 weanling pigs (initially 4.9 kg and 19 to 23 d of age) were used in a 35-d growth trial. Pigs were blocked by weight in a randomized complete block design (six pigs per pen and six pens per treatment). Four barrows and four gilts were used to determine initial carcass composition. L-Carnitine replaced ground corn in the control diets to provide 250, 500, 750, 1,000, or 1,250 ppm. On d 35, three barrows and three gilts per treatment (one pig/block) were killed to provide carcass compositions. L-Carnitine had no effect (P > 0.10) on growth, percentages of carcass CP and lipid, or daily protein accretion. However, daily lipid accretion tended to decrease and then return to values similar to those for control pigs (quadratic P < 0.10) with increasing dietary L-carnitine. In Exp. 2, 96 crossbred pigs (initially 34.0 kg BW) were used to investigate the effect of increasing dietary L-carnitine in growing-finishing pigs. Pigs (48 barrows and 48 gilts) were blocked by weight and sex in a randomized complete block design (two pigs/pen and eight pens/treatment). Dietary L-carnitine replaced cornstarch in the control diet to provide 25, 50, 75, 100, and 125 ppm in grower (34 to 56.7 kg; 1.0% lysine) and finisher (56.7 to 103 kg; 0.80% lysine) diets. At 103 kg, one pig/pen was slaughtered, and standard carcass measurements were obtained. Dietary L-carnitine did not influence growth performance (P > 0.10). However, increasing dietary carnitine decreased average and tenth-rib back-fat (quadratic, P < 0.10 and 0.05), and increased percentage lean and daily CP accretion rate (quadratic, P < 0.05). Break point analysis projected the optimal dosage to be between 49 and 64 ppm of L-carnitine for these carcass traits. It is concluded that dietary carnitine fed during the nursery or growing-finishing phase had no effect on growth performance; however, feeding 49 to 64 ppm of L-carnitine during the growing-finishing phase increased CP accretion and decreased tenth-rib backfat.  相似文献   

14.
This experiment was conducted to evaluate potential replacements for pharmacological levels of Zn (provided by Zn oxide), such as diet acidification (sodium diformate) and low dietary crude protein (CP: 21 vs 18%) on nursery pig performance and fecal dry matter (DM). A total of 360 weaned pigs (Line 200 × 400, DNA, Columbus, NE; initially 5.90 ± 0.014 kg) were used in a 42-d growth study. Pigs were weaned at approximately 21 d of age and randomly assigned to pens (five pigs per pen). Pens were then allotted to one of eight dietary treatments with nine pens per treatment. Experimental diets were fed in two phases: phase 1 from weaning to day 7 and phase 2 from days 7 to 21, with all pigs fed the same common diet from days 21 to 42. The eight treatment diets were arranged as a 2 × 2 × 2 factorial with main effects of Zn (110 mg/kg from days 0 to 21 or 3,000 mg/kg from days 0 to 7, and 2,000 mg/kg from days 7 to 21), diet acidification, (without or with 1.2% sodium diformate), and dietary CP (21% or 18%, 1.40% and 1.35% in phases 1 and 2 vs. 1.20% standardized ileal digestible Lys, respectively). Fecal samples were collected weekly from the same three pigs per pen to determine DM content. No 2- or 3-way interactions (P > 0.05) were observed throughout the 42-d study for growth performance; however, there was a Zn × acidifier × CP interaction (P < 0.05) for fecal DM on day 7 and for the overall average of the six collection periods. Reducing CP without acidification or pharmacological levels of Zn increased fecal DM, but CP had little effect when ZnO was present in the diet. From days 0 to 21, significant (P < 0.05) main effects were observed where average daily gain (ADG) and gain:feed (G:F) increased for pigs fed pharmacological levels of Zn, sodium diformate, or 21% CP (P < 0.065). In the subsequent period (days 21 to 42) after the experimental diets were fed, there was no evidence of difference in growth performance among treatments. Overall (days 0 to 42), main effect tendencies were observed (P < 0.066) for pigs fed added Zn or sodium diformate from days 0 to 21, whereas pigs fed 21% CP had greater G:F than those fed 18% CP. Pig weight on day 42 was increased by adding Zn (P < 0.05) or acidifier (P < 0.06) but not CP. In summary, none of the feed additives had a major influence on fecal DM, but dietary addition of pharmacological levels of Zn or sodium diformate independently improved nursery pig performance.  相似文献   

15.
Two experiments were conducted to assess the effects of porcine ST (pST) on the responses to a near-ideal blend of AA for pigs from 22 to 60 kg BW. Eighty Hampshire × Yorkshire gilts (40 gilts/experiment) were individually penned and assigned to a 4 × 2 factorial arrangement of treatments, consisting of 4 diets with and without pST injection. A fortified corn-soybean meal basal diet was formulated to contain 1.50% total Lys and Thr, Met, and Trp were added to obtain a near-ideal blend of these AA relative to Lys. In 3 additional diets, Lys was reduced to 1.25%, 1.00%, or 0.75% by diluting the basal diet with cornstarch, cellulose, and sand, such that the diets also contained the same ratios of AA. Pigs that received pST were administered a daily intramuscular injection of 2 mg of pST. Data from the 2 experiments were pooled. Administration of pST increased ADG (P < 0.01), G:F (P < 0.01), and LM area (P < 0.01), and decreased ADFI (P < 0.03), last rib backfat (P < 0.01), and 10th rib backfat (P < 0.01). Also, estimated carcass muscle and calculated lean gain increased (P < 0.01) in pST-treated pigs. Administration of pST also increased (P < 0.01) the percentage, total gain and accretion rate of water, protein, and ash in the carcass, and decreased (P < 0.01) the percentage, total gain, and accretion rate of carcass fat. Growth rate, G:F, and carcass traits improved (P < 0.01), percentage of carcass proteinand water increased (P < 0.01), and carcass fat percentage decreased (P < 0.01) with increasing dietary Lys. The percentage, total gain, and accretion rate of carcass protein increased to a greater extent in pST-treated pigs than in untreated pigs, resulting in a pST × Lys interaction (P < 0.05). The results indicated that pST improves performance, leanness, and protein accretion in pigs from 22 to 60 kg BW, and that these responses to dietary Lys and a near-ideal blend of AA is greater in growing pigs treated with pST than untreated pigs.  相似文献   

16.
Forty-eight barrows were used in a 2 x 6 factorial arrangement to test a hypothesis that feeding a protein-deficient diet affects subsequent growth response by altering the efficiency of protein utilization. Barrows were individually fed either a 9% crude protein (CP) diet or an 18% CP diet from 20 to 30 kg of body weight (BW) (depletion phase). From 30 to 45 kg BW (realimentation phase), pigs were fed one of six experimental diets with CP levels of 11.8, 13.1, 14.3, 15.6, 18.8, and 21.8%. Four pigs were slaughtered at 20 kg BW to determine initial body composition. Four pigs from each treatment in depletion phase (a total of eight) were slaughtered at 30 kg BW, and all pigs from each treatment in realimentation phase (a total of 36) were slaughtered at 45 kg BW for subsequent compositional analysis. Pigs were bled at 20, 30, and 40 kg BW for blood urea nitrogen (BUN), insulin-like growth factor (IGF)-I, and IGF-binding protein (IGFBP) assays. Pigs were given three times the maintenance digestible energy requirement (3 x 120 kcal BW(-0.75) x d(-1)) in three equal meals daily. The feed allowance was adjusted every 3 d. During the depletion phase, pigs fed the 18% CP diet grew faster and more efficiently (P < 0.01) and gained more (P < 0.01) water and protein than did pigs fed the 9% CP diet. Pigs fed the 18% CP diet showed higher (P < 0.01) BUN values, IGF-I concentrations, and IGFBP ratios than pigs fed the 9% CP diet. During the realimentation phase, pigs fed the 9% CP diet during the depletion phase grew faster (P < 0.05), tended to grow more efficiently (P = 0.066), gained more water (P < 0.01), and tended to gain more protein (P = 0.068) than pigs fed the 18% CP diet during the depletion phase. Pigs fed the 9% CP diet during the depletion phase tended (P = 0.069) to have a higher protein requirement during the realimentation phase than pigs fed the 18% CP diet during the depletion phase. When measured at 40 kg BW, pigs fed the 9% CP diet had a lower (P < 0.05) BUN than pigs fed the 18% CP diet during the depletion phase. However, the plasma IGF-I concentration and IGFBP ratio at 40 kg BW were not affected by dietary CP level fed during the depletion phase. This study indicates that pigs fed a protein-deficient diet exhibit compensatory growth. During the period of compensatory growth, the requirement of CP for those pigs is higher than that of pigs previously fed an adequate diet. This study also suggests BUN can be used as an indicator of protein utilization efficiency and compensatory growth.  相似文献   

17.
Four experiments were conducted to investigate the feeding value of South Dakota-grown field peas (Pisum sativum L.) for growing pigs. In Exp. 1, 96 pigs (initial BW = 22 +/- 3.35 kg) were allotted to four treatment groups (four pigs per pen, six replicate pens per treatment) and fed growing (0.95% Lys) and finishing (0.68% Lys) diets containing 0, 12, 24, or 36% field peas (as-fed basis). There were no differences among the treatment groups in ADG, ADFI, or G:F. Likewise, there were no differences in backfat thickness or lean meat percent among treatment groups, but pigs fed diets containing 12, 24, or 36% field peas had greater (P < 0.05) loin depths than pigs fed the control diet. In Exp. 2, 120 pigs (initial BW = 7.8 +/- 1.04 kg) were allotted to four treatment groups 2 wk after weaning. Pigs were then fed diets containing 0, 6, 12, or 18% field peas (as-fed basis) during the following 4 wk. There were five pigs per pen and six replicate pens per treatment. Results of the experiment showed no differences in ADG, ADFI, or G:F among treatment groups. In Exp. 3, apparent (AID) and standardized (SID) ileal digestibility coefficients of CP and AA in field peas and soybean meal were measured using six individually penned growing pigs (initial BW = 36.5 +/- 2.1 kg) arranged in a repeated 3 x 3 Latin square design. The AID for Met, Trp, Cys, and Ser, and the SID for Met, Trp, and Cys were lower (P < 0.05) in field peas than in soybean meal; but for CP and all other AA, no differences in AID or SID were observed between the two feed ingredients. Experiment 4 was an energy balance experiment conducted to measure the DE and ME concentrations in field peas and corn. Six growing pigs (initial BW = 85.5 +/- 6.5 kg) were placed in metabolism cages and fed diets based on field peas or corn and arranged in a two-period switch-back design. The DE values for field peas and corn (3,864 and 3,879 kcal/kg DM, respectively) were similar, but the ME of corn was higher (P < 0.05) than the ME of field peas (3,825 vs. 3,741 kcal ME/kg DM). The results from the current experiments demonstrate that the nutrients in South Dakota-grown field peas are highly digestible by growing pigs. Therefore, such field peas may be included in diets for nursery pigs and growing-finishing pigs in amounts of at least 18 and 36%, respectively, without negatively affecting pig performance.  相似文献   

18.
We conducted two experiments to determine the effects of added dietary niacin on growth performance and meat quality in finishing pigs. Pigs were blocked by weight and assigned to one of six dietary treatments in both experiments. Dietary treatments consisted of a corn-soybean meal-based control diet (no added niacin) or the control diet with 13, 28, 55, 110, or 550 mg/kg of added niacin. In Exp. 1, pigs were housed at the Kansas State University research from with two pigs per pen (six pens per treatment per sex). In Exp. 2, pigs were housed with 26 pigs per pen (four pens per treatment per sex) in a commercial research barn. In Exp. 1, 144 pigs (initially 51.2 kg) were fed diets in two phases (d 0 to 25 and 25 to 62) that were formulated to 1.00 and 0.75% lysine, respectively. In Exp. 2, 1,248 pigs (initially 35.9 kg) were fed diets in four phases (d 0 to 28, 29 to 56, 57 to 84, and 85 to 117), with corresponding total lysine concentrations of 1.25, 1.10, 0.90, and 0.65% lysine, respectively. Added fat (6.0%) was included in the first three phases. In Exp. 1, average daily feed intake tended (quadratic, P < 0.07) to increase then return to values similar to control pigs as dietary niacin increased. Longissimus muscle (LM) 24-h pH (longissimus of pigs fed added niacin) tended to increase (control vs niacin, P < 0.06) for pigs fed added niacin. In the commercial facility (Exp. 2), increasing added niacin improved gain:feed (quadratic, P < 0.01) and subjective color score, and ultimate pH (linear, P < 0.01). Added niacin also decreased (linear, P < 0.04) carcass shrink, L* values, and drip loss percentage. Results from these two studies show that 13 to 55 mg/kg added dietary niacin can be fed to pigs in a commercial environment to improve gain:feed. It also appears that pork quality, as measured by drip loss, pH, and color, may be improved by higher concentrations of added dietary niacin.  相似文献   

19.
Two experiments were conducted to evaluate the effects of dietary CP level on rate, efficiency and composition of gain of growing beef bulls. In Exp. 1, 59 bulls (333 +/- 15.8 kg) were used. Eleven bulls were slaughtered on d 0 to provide an estimate of initial carcass composition (9-10-11 rib section chemical analyses), and remaining bulls were assigned to treatment diets containing 10, 12 or 14% dietary CP. Bulls fed the 10% CP diet grew slower (P less than .05) than bulls fed the 12 or 14% CP diets, although dry matter intake and feed-to-gain ratio did not differ. Bulls fed the 12% CP diet had fatter carcasses (P less than .05) than bulls fed the 10 or 14% CP diets and had greater daily fat accretion than bulls fed the 10% CP diet. In Exp. 2, 60 bulls (318 +/- 9.0 kg) were used. Bulls were assigned to initial slaughter (n = 6) or to one of three dietary treatments, 10, 12 or 14% CP, and were slaughtered after feeding for 66, 136 or 202 d (n = 6 . treatment -1 . slaughter time -1). Bulls fed 10% CP diets had lower (P less than .05) rates of carcass protein accretion during d 0 to 136 and d 0 to 202. Carcass fat gain was similar among treatments over the entire experiment, although bulls fed the 14% CP diet gained more fat during d 0 to 136 than bulls fed the other treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effect of ractopamine, a beta-adrenergic agonist, on growth, nutrient utilization, and carcass composition was studied in pigs fed either 18% CP, 12% CP, or 18% CP restricted (RES = 67% of ad libitum) diets. The 18 and 12% CP diets provided 3.52 and 3.68 Mcal of DE/kg, respectively. All pigs were fed a low-protein (12% CP) diet during pretreatment growth from 15 to 60 kg. Ractopamine at 20 or 30 ppm (30 ppm for RES pigs) in the diet was fed from 60 kg live BW until slaughter at 105 kg (9 pigs/treatment). No ractopamine treatment effect (P greater than .05) was observed for either daily gain or gain/feed, although gain/feed was improved by 8% in both of the ad libitum groups. Ractopamine treatment resulted (P less than .01) in an overall reduction of carcass lipid by 8%, an increase of carcass protein by 5%, and a 21% improvement in the efficiency of protein utilization; the greatest changes occurred in the pigs fed the 12% CP diet (-17%, +11%, and +32%, respectively). The ad libitum daily feed intake was 15% less for pigs fed the 12% CP diet than for those fed the 18% CP diet (P less than .01), and there was a 10% reduction in intake of both diets with the addition of ractopamine (P less than .05). Both carcass lipid and protein deposition seemed to be closely related to energy intake (P less than .01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号