首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dormancy release was studied in four populations of annual ryegrass (Lolium rigidum) seeds to determine whether loss of dormancy in the field can be predicted from temperature alone or whether seed water content (WC) must also be considered. Freshly matured seeds were after‐ripened at the northern and southern extremes of the Western Australian cereal cropping region and at constant 37°C. Seed WC was allowed to fluctuate with prevailing humidity, but full hydration was avoided by excluding rainfall. Dormancy was measured regularly during after‐ripening by germinating seeds with 12‐hourly light or in darkness. Germination was lower in darkness than in light/dark and dormancy release was slower when germination was tested in darkness. Seeds were consistently drier, and dormancy release was slower, during after‐ripening at 37°C than under field conditions. However, within each population, the rate of dormancy release in the field (north and south) in terms of thermal time was unaffected by after‐ripening site. While low seed WC slowed dormancy release in seeds held at 37°C, dormancy release in seeds after‐ripened under Western Australian field conditions was adequately described by thermal after‐ripening time, without the need to account for changes in WC elicited by fluctuating environmental humidity.  相似文献   

2.
Ryegrass (Lolium multiflorum Lam.) is one of the most difficult annual weeds to control in cultivation systems worldwide, especially in temperate regions. The widespread use of herbicides in the past two decades has selected resistant biotypes of ryegrass in crops in Southern Brazil. Ryegrass seeds are dormant when disseminated and germination can be staggered over time (crop‐growing season). Knowledge of the germination behavior of seeds from herbicide‐resistant plants has been little studied, but it would be very useful in integrated weed management. Thus, this study aimed to characterize the dynamics of the soil seed bank of two biotypes of L. multiflorum, one glyphosate‐resistant and the other glyphosate‐susceptible, under a no‐tillage system. The treatments were arranged in a bifactorial scheme, using seeds from biotypes (glyphosate‐resistant and glyphosate‐susceptible) with monthly periods of removal from field (one to 12 months). Seeds of each biotype were placed on the soil surface and covered with soil and straw to simulate no‐till conditions. The percentage of germinated, dormant, and dead seeds was evaluated every 30 days. The ryegrass seed bank of glyphosate‐susceptible and glyphosate‐resistant biotypes was reduced to 11 and 15% of dormant seeds, respectively, at the end of 12 months. However, there was no variation in germination, dormancy, and seed mortality between susceptible and glyphosate‐resistant ryegrass. Seeds of glyphosate‐resistant biotype and susceptible showed germination behavior with similar dynamics in the soil over a period of 12 months.  相似文献   

3.
Germination of Setaria chevalieri caryopses   总被引:3,自引:0,他引:3  
Germination studies were made on Setaria chevalieri caryopses (seeds). The seeds imbibed readily upon moist incubation. An after-ripening period which followed a cyclic patlern was necessary for maximum germination. Freshly harvested seed germinated in the presence of light, but only very sporadically in the dark. The germination of dark incubated seed was improved if the seeds were subsequently exposed to light. This photodormancy became less pronounced with dry storage. Treatment with red light increased germination. but was reversed by far-red light suggesting that a phytochrome system operates in the seeds. Sodium azide treatments did not stimulate germination in the dark but were effective in the presence of light.  相似文献   

4.
Trials were carried out to study the germination and dormancy of Cuscuta campestris Y. (dodder) seeds and factors influencing the success of early parasitisation of sugarbeet. Primary dormancy can be removed by seed scarification. Germination was negligible at 10°C and optimal at 30°C, while it was not influenced by light. Seed burial induced a cycle of induction and breaking of secondary dormancy. Seedling emergence was inversely proportional to the depth of seed burial and only seed buried within 5 cm of the soil surface emerged. Storage of C. campestris seeds in a laboratory for 12 years resulted in the loss of primary dormancy, enabling the germination of all viable seeds. Host infection (i.e. protrusion of parasite haustoria from host tissue) was heavily influenced by host growth stage. Tropism towards a host was due to the perception of light transmitted by green parts of sugarbeet plants. Insertion of a transparent glass sheet between host leaves and parasite seedlings did not modify this response. This phototropism permitted Cuscuta to identify host plants with high chlorophyll content as a function of the lower red/far red ratio of transmitted light.  相似文献   

5.
Lithospermum arvense is an increasing annual weed in winter crops of the semiarid region of southern Argentina under low impact tillage systems, an agricultural practice that has become popular in recent years. Seed distribution in the soil profile under conventional tillage will change when reduced tillage is implemented, thus affecting the germination microenvironment. The effect of seed burial depth and soil water regime on field germination, enforced dormancy, innate dormancy and seed decay was studied in relation to burial time in a field experiment. In addition, the effect of burial depth on seed germination and seedling emergence was examined under laboratory controlled conditions. Field germination of buried seed ranged from 55% to 65% for shallow (2 cm) and from 5% to 30% for greater depths (20 cm). Enforced dormancy levels were significantly higher among deeper seeds. The amount of innate dormant seeds was reduced to <10% after a year of burial. Lithospermum arvense seedbanks can be classified as short-term persistent. Germination in the laboratory was unaffected by burial depth, while seedling emergence reduction was adequately described by a sigmoidal model. Results indicate that agricultural practices that accumulate L. arvense seeds near the soil surface enhance seedling recruitment.  相似文献   

6.
Effects of environmental factors on the germination and seedling emergence of glyphosate‐resistant (R) and ‐susceptible (S) biotypes of Eleusine indica (L.) Gaertn. were examined under laboratory and greenhouse conditions. The R biotype exhibited a higher germination percentage compared with the S biotype at constant temperatures of 20 and 35°C under dark conditions, and alternating temperatures of 30/25°C, and 35/25°C during a 12 h photo period. For both biotypes, germination was optimal at alternating temperatures of 30/20°C and 35/20°C. However, there was no significant difference (P > 0.05) in the germination between the R and S biotypes at these temperature regimes. The germination of both biotypes was inhibited by osmotic stress imposed by a water potential of ?0.80 MPa. When the moisture stress was released and the seeds were subsequently transferred to distilled water, the germination was enhanced to approximately 90% and 16% for the R and S biotype seeds, respectively. Higher emergence rates were obtained in shallow seed depths (0 or 2 cm) compared to deep depths. Emergence percentage of the R biotype was higher than that of the S biotype at 0 cm and 2 cm depths. The maximum emergence percentage of the R biotype was higher than that of S biotype when seeds were sown on the surface of either loamy or clay loam soil taken from three different sites.  相似文献   

7.
Germination of freshly harvested seeds of Commelina benghalensis L. varied from 0–3% for small aerial seeds, 20–35% for large aerial seeds and from 33% for small underground seeds to 90% for large underground seeds. Innate dormancy of all seed types was completely overcome by clipping the seed coat. Exposure to 90°C dry heat for 2 h was also effective in increasing germination of the three strongly dormant seed types. Optimum temperature for germination varied with the different seed types. Periods of likely major weed infestation from the four seed types were predicted using soil temperature data. Exposure to light increased germination but was not essential and underground seeds responded more to light than aerial seeds. Optimum depth of emergence for the four seed types was from 0 to 50 mm and there was a positive correlation between maximum depth of emergence and seed weight.  相似文献   

8.
The transition from seed dormancy to germination is a multi‐step process. However, distinguishing between physiological processes involved in seed dormancy alleviation and those involved in germination has been difficult. We studied the seed dormancy alleviation process in Amaranthus tuberculatus, an important weed species in midwestern USA. Using three A. tuberculatus biotypes that differ in dormancy level, it was determined that stratification reduced seed dormancy from a high to a low level. Temperature alternation alleviated low seed dormancy and triggered germination. Exogenously applied abscisic acid (ABA) and gibberellic acid (GA) had no effect on seeds with high dormancy. However, ABA and paclobutrazol (a GA biosynthesis inhibitor) significantly reduced germination of seeds with low dormancy. Hormones could not replace the effects of stratification or temperature alternation on dormancy alleviation. Based on our results, we propose a seed dormancy–germination transition model in which the dormancy of A. tuberculatus seeds is progressively reduced from a high to a low level; but environmental conditions (i.e. stratification) can accelerate the dormancy alleviation process. Under low dormancy levels, the seed is more sensitive to environmental cues that are responsible for removing dormancy and triggering germination (i.e. temperature alternation). Finally, ABA and GA regulation occurs primarily during the final transition from low dormancy to germination rather than the alleviation of high dormancy.  相似文献   

9.
Germination and emergence are critical life stages for annual plants and so their full understanding is essential for managing arable plant populations. This study investigated the most important species‐specific environmental cues that regulate seed germination and emergence (temperature and light) of the arable Ranunculaceae species Consolida orientalis, Consolida pubescens, Delphinium gracile, Delphinium halteratum ssp. verdunense and Nigella gallica, to propose management strategies for their preservation in agro‐ecosystems. Growth chamber and outdoor pot experiments were conducted for two consecutive seasons to analyse light (complete darkness or 12 h light) and temperature (5/10, 5/15 and 10/20°C) requirements and emergence patterns. The relative light germination requirement (ΔGlight), which extends from ?100 (complete darkness) to 100 (light), was estimated. Weibull functions were fitted to observed emergence (%) in pots. For all species, germination was higher in complete darkness than with a light regime (?60 < ΔGlight < ?95). This dark requirement indicates better germination for buried seeds. A tillage operation just after seed shed is therefore recommended. Consolida spp. germinate and emerge almost exclusively in autumn–winter, while Delphinium spp. and N. gallica can also germinate in spring. These arable plants would be able to adapt to delayed sowings, an important strategy for avoiding early‐emerging competitive weeds. Facultative winter‐germinating species could face early herbicide treatments if sufficient emergence occurs in winter–spring. These results bring new information to help develop conservation strategies for these species in agro‐ecosystems.  相似文献   

10.
Changes in dormancy of Spergula arvensis seeds were studied during pre-incubation at constant temperatures and under a temperature regime that condensed the annual temperature cycle into 73 days. Each day in the regime represented the mean day and night temperatures and day lengths of 5 successive days of an average year in The Netherlands. Incubation occurred in water or loamy sand, in darkness. Germination of the seeds was tested in water or KNO3 over a range of temperature. Seeds were irradiated with saturating doses of red light. In half of the treatments, pre-incubated seeds were dehydrated at the transfer to the conditions of the germination test. Breaking of dormancy occurred under conditions of 'spring'. It did not depend on exposure to low‘winter’temperatures, but was induced by rising 'spring’temperatures. Seeds developed secondary dormancy in late‘autumn'. The expression of the changes in dormancy that were induced during pre-incubation depended on the conditions of the germination test. Light, nitrate and dehydration stimulated germination. The experiments predicted that field emergence from nitrate-poor soils that have not been dehydrated will be restricted to a short period in autumn, whereas disturbance of nitrate-rich soils followed by a dry spell will stimulate germination of S. arvensis seeds from early spring to late autumn. The data presented good explanations for the cosmopolitan character and the serious weediness of this species. Its classification as a summer or winter annual is discussed.  相似文献   

11.
Les semences de Leersia oryzoides (L.) Sw. germent mal au moment de leur récolte parce qu'elles sont dormantes. Leur germination exige des températures élevées, mais une alternance de températures fraîches et de températures élevées est plus favorable. La dormanee résulte en partie de l'action inhibitrice des glumellcs qui sont capables de fixer de l'oxygène, ce qui réduit la quantité de ce gaz disponible pour le grain. Elle s'élimine très lentement au cours de la conservation au sec ou pendant un prétraitement au froid humide. A 20°C, les caryopses nus germent mieux en hypoxie (3 à 15% d'02) qu'à l'air et un excès d'oxygène est très nocif. A 30°C, par contre, leur germination reste possible dans des atmosphères enrichies en ce gaz (50 à 100%d'02). Les caractéristiques physiologiques de la dormance et de la germination de ces semences sont discutées en relation avec l'adaptation de la mauvaise herbe à son environnement. Some aspects of the germination of caryopses of Leersia oryzoides (L.) Sw. Freshly harvested seeds of Leersia oryzoides (L.) Sw. show low germination as a result of dormancy. Germination requires high températures but is improved at a diurnal alternation between high and low temperature. Dormancy is partially due to inhibition by the glumes which are capable of oxygen uptake and thus reduce the amount of oxygen available to the grain. This dormancy is gradually reduced during dry storage, or low temperature incubation. Germination of naked caryopses at 20°C is higher at sub-aimospheric 02 (3–15%) than in normal air, while excess oxygen is noxious. At 30°C, however, germination takes place even in 02-enriched atmospheres (50–100%), The physiological characteristics of dormancy and of germination of this species are discussed in relation to the adaptation of this weed to its environment. Uber die Keimung der Karyopsen von Leersia oryzoides (L.) Sw. Die Samen von Leersia oryzoides (L.) Sw. befinden sich zur Zeit der Ernte in einer Ruhephase; sie keimen deshalb zu diesem Zeitpunkt Schlecht. Zur Keimung sind höhere Temperaturen erforderlich. Ein Wechsel zwischen niederen und höheren Temperaturen ist jedoch noch günstiger. Diese Ruhezeit wird z.T. durch eine Hemmwirkung der Deckspelzen, welche Sauerstoff fixieren können, verursacht, wodurch die für das Korn zur Verfügung stehende Sauerstoffmenge reduziert wird. Während einer Kühllagerung oder einer Vorbehandlung in feucht-kalter Athmosphäre verschwindet die Ruheperiode langsam. Bei 20°C keimen die nackten Karyopsen in Gegenwart geringer Sauerstoffmengen (3–15% 02) besser als in normal zusammengesetzter Luft, während ein erhöhter 02 Gehalt sogar schädlich wirkt. Bei 30°C hingegen, ist die Keimung auch in mit Sauerstoff angereicherter Athmosphäre (50–100%) möglich. Die physiologischcn Grundlagen von Samenruhe und Keimung werden in Beziehung mit der Anpassung dieses Unkrautes an seine Standorte diskutiert.  相似文献   

12.
Although the effects of cold stratification on the release of physiological dormancy in seeds have been studied extensively, knowledge of the role of soil moisture content on seed dormancy release during cold stratification is limited. Our study determined seed dormancy characteristics and the effect of soil moisture content on seed dormancy breakage during cold stratification in the five common weed species Amaranthus retroflexus, Chenopodium album, Chenopodium hybridum, Plantago lanceolata and Setaria glauca. Seeds of all five species were dormant at the time of harvest and their germination response to light and temperature varied. Soil moisture content had a significant effect on seed dormancy release of all species except P. lanceolata. Germination percentage of A. retroflexus, C. album, C. hybridum increased and then decreased as soil moisture content increased, regardless of germination test temperature. The optimal soil moisture content and seed moisture content for dormancy breakage of A. retroflexus, C. album, C. hybridum were 8%, 12%, 8% and 22.0%, 37.7%, 25.7% respectively. Dry storage (after‐ripening) significantly increased germination of S. glauca. Moreover, increasing soil moisture content first slowed and then increased dormancy breakage in S. glauca. These results suggest that data on soil moisture content should be incorporated into models that predict weed seed dormancy breakage and timing of seedling emergence as well as those for weed management.  相似文献   

13.
The effects of intensity, duration and spectral quality of light were investigated on the germination of Galium spurium L. Light inhibited germination and the degree of this inhibition was related to the intensity and duration of exposure to light beyond the initial 36-h imbibition period. Subsequent dry storage for up to 7 weeks and reincubation in the dark did not remove this inhibitory effect, indicating that a secondary dormancy was induced by continuous exposure to light. Germination was completely inhibited with intermittent 1-h exposures of light every 3, 7 or 11 h for 8 days. Red, far-red and blue light inhibited germination and the degree of inhibition was related to the duration of exposure. Far-red light was more inhibitory than red or blue light. Green light promoted germination slightly. Nitrate salts in the medium during light exposure did not prevent the onset of light-induced dormancy. In subsequent dark incubation, light-induced dormancy was overcome by the addition of nitrates and, to a lesser extent, by kinetin and GA3.  相似文献   

14.
Trials were carried out to investigate the effects of light and temperature on germination of Rumex obtusifolius L. After several months of storage, seeds gradually lost dormancy and became photosensitive. Thermal optima for germination were between 20 °C and 25 °C in light or in darkness. At lower temperatures there was a greater demand for light, so that the greatest differences in germination percentage (between low and high temperatures) were found within the 10–15 °C temperature range. The calculated thermal minima ( x -intercept method) in light and darkness were 8.3 °C and 6.1 °C respectively. Daily temperature fluctuation increased germination even after seed irradiation with far-red light, suggesting a lower demand for the far-red-absorbing form of phytochrome. Seed burial inhibited germination in proportion to depth; however, germination inhibition was independent of seed phytochrome photo-equilibrium, which had been diversified by seed pretreatment with light. Seedlings did not emerge when seeds were buried >8 cm deep. Recovery of ungerminated seeds showed that excessive burial did not impede seedling emergence but rather prevented seed germination. However, this induction of dormancy was lost once germination processes were activated (24–48 h at 20 °C) that made germination irreversible. Temperature was also involved in inhibition, and low temperature (<15 °C) induced the least inhibition. This is discussed in terms of processes of respiration and fermentation in buried seeds.  相似文献   

15.
Summary Germination of Phalaris minor declined with the increase in duration of imbibition in water from 30 min to 72 h at temperatures above 22 °C . Germination was reduced down to 10 cm and 2 cm soil depth by wheat straw burning in puddled and non-puddled soil, respectively, with maximum reduction near the soil surface. The dormancy of P . minor seed was not more than 60 days under field conditions. In puddled soil, 38–60% of the viable seeds of P. minor remained concentrated in the upper 5-cm layer. Germination decreased with an increase in soil depth. In total, 15% of seeds stored in the laboratory emerged from 10-cm depth, whereas seeds did not germinate below 4.2-cm depth under field conditions. Depth of emergence of P . minor was shallower in zero tillage compared with the conventional method of wheat sowing. The seeds retrieved from rice soils kept under continuous submergence for 60 days exhibited 26% and 57% loss of germination over semi-submergence and semi-wet conditions respectively. There was 100% loss of germination in 10-month-old seeds retrieved from the soil under rice-growing conditions. Plant density of P. minor was lower in zero tillage than with the conventional method of wheat sowing. Cross-ploughing in the upper 2–5 cm of soil (shallow tillage) and drill-sowing of wheat 1 week after shallow tillage reduced germination of P. minor by 44% and 37% and increased grain yield by 21% and 47% over zero-tillage and conventional methods respectively.  相似文献   

16.
Longevity of shattercane [Sorghum bicolor (L.) Moench] seed buried 22 cm deep in soil at three locations across Nebraska, U.S.A. was followed for 14 years. Shattercane seed lost viability more quickly when buried in a Keith very fine sandy loam in western Nebraska (Alliance, average seed germination 21%) than in a Holdrege silt loam in central (North Platte, 37% germination) or in a Sharpsburg silty clay loam in eastern Nebraska (Lincoln, 38% germination) which were similar. The maximum survival of the open-panicle shattercane biotype, with glumes tightly enclosing the seeds, used in this study was 11, 12, and 13 years at Alliance, North Platte, and Lincoln, Nebraska, respectively.  相似文献   

17.
Myagrum perfoliatum is a noxious broad‐leaved weed in western Iranian farming systems. A better understanding of the timing of seedling emergence would facilitate the development of better control strategies for this weed. Therefore, the objective of this study was to examine the effects of different factors on muskweed seed germination. Only 2.8% of the seeds of this species, which are encapsulated in siliques, germinated by, while the seeds that had been removed from the siliques had a 50% germination rate. The immersion of muskweed fruits in concentrated sulfuric acid for 110 min was the best treatment for promoting germination. Gibberellic acid stimulated the germination of the naked seeds by 29.1%, potassium nitrate (40 mmol L‐1) increased the germination rate to 71%, while higher concentrations of potassium nitrate inhibited germination. The optimum germination temperature for the naked seeds was 20/10°C (day/night) and light was not required for germination. No seedling emerged when the seeds were buried 6 cm deep. The seeds were sensitive to both osmotic and salinity stress, but they germinated to 46–49% over a pH range of 4–10. The results of this study revealed that the seeds of M . perfoliatum have physiological dormancy and that it is slowly broken via after‐ripening. However, the fruit wall can prevent germination after physiological dormancy is broken. Thus, this species has the potential to form a persistent seed bank because of the presence of the fruit wall.  相似文献   

18.
The seed dormancy cycle in Solanum nigrum and Solanum physalifolium was studied in relation to seasonal temperature. Seed lots of both species were buried in pots outdoors in a randomised complete block design with four replicates from November 2004 to November 2006. At regular intervals, samples of the seeds were randomly exhumed and tested for germination in incubators at three temperatures and light/darkness regimes. For both species, low winter temperature weakened dormancy and high temperature strengthened it. Dormancy induction mainly occurred from August to October in both species after experiencing warm temperatures. An exception from the general pattern of seed dormancy was however observed; seed germination percentages were temporarily reduced in early spring, followed by a peak in germination, before the main period of strong dormancy in S. nigrum . The same phenomenon was observed in S. physalifolium during June in the first year. This short-lived dormancy induction might explain the late emergence of the species. Seed dormancy enables the species to maximise its chance of survival by regulating germination timing to favourable conditions. Therefore, information on the dormancy cycle can be used to predict seedling emergence and optimise weed control operations.  相似文献   

19.
With the aim to investigate if the halophyte Halothamnus iraqensis Botsch. can be suitable for re-vegetation and remediation of salt-affected lands, this study evaluated(1) the effects of photoperiod, thermoperiod, storage period and wings' presence on its seed germination, and(2) the ability of its seeds to have successful germination recovery after salt stress. Germination tests in different photoperiods(12 h light/12 h darkness and total darkness) and thermoperiods(15℃/20℃ and 20℃/25℃) were conducted for seeds collected in 2012, 2013, 2014, 2015 and 2016. The seeds collected in 2016 were sown under different salinity levels(0, 100, 200, 400 and 600 m M Na Cl) to assess the salinity tolerance during the germination. Wings' presence highly inhibited seed germination of this species in both photoperiods and thermoperiods under all salinity level treatments. In addition, the germination recovery occurred well when seeds were deprived of their wings. The photoperiod of 12 h light/12 h darkness and the thermoperiod of 15℃/20℃ were the best conditions for seed germination. Germination percentages of H. iraqensis seeds decreased with the increasing storage duration, especially after three years of the collection. In addition, H. iraqensis seeds were able to germinate under different salinity levels, and their germination percentages decreased with increasing salinity levels. H. iraqensis seeds have the ability to recover their germination after alleviating the salt stress, irrespective of photoperiod, highlighting the halophilous character of this species.  相似文献   

20.
Thermal requirements for the germination of Amaranthus quitensis, a common annual weed in Argentina, were studied. In addition, temporal changes in dormancy from seeds produced at different times during the growing season were examined. For this second objective, thermal and light requirements for germination were tested in seeds buried at different depths, with or without crop residues. Base and optimum temperatures for germination rates were 12.8°C and 37°C respectively. At dispersal time, maximum percentage germination was 60–70% and this was generally recorded at 35°C/25°C in a 14-h photoperiod. Seed germination tended to increase in later seed collection dates. Seeds of A. quitensis showed seasonal changes in germinability in the soil. In winter, germination of retrieved seeds increased to over 90% until summer, after which there was a decrease until the following winter when germination was close to 40%. There were no differences in germinability between burial depths and crop residue levels. Germination requirements for alternating temperatures and light tended to disappear after burial. Initial viability was 99% and declined slightly during burial. Soil temperature seems to play a crucial role not only by regulating seasonal changes in dormancy, but also by defining the percentage and the germination rate in non-dormant seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号