首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gibberella zeae, a causal agent of Fusarium head blight (FHB) in wheat and barley, is one of the most economically harmful pathogens of cereals in the United States. In recent years, the known host range of G. zeae has also expanded to noncereal crops. However, there is a lack of information on the population genetic structure of G. zeae associated with noncereal crops and across wheat cultivars. To test the hypothesis that G. zeae populations sampled from barley, wheat, potato, and sugar beet in the Upper Midwest of the United States are not mixtures of species or G. zeae clades, we analyzed sequence data of G. zeae, and confirmed that all populations studied were present in the same clade of G. zeae. Ten variable number tandem repeat (VNTR) markers were used to determine the genetic structure of G. zeae from the four crop populations. To examine the effect of wheat cultivars on the pathogen populations, 227 strains were sampled from 10 subpopulations according to wheat cultivar types. The VNTR markers also were used to analyze the genetic structure of these subpopulations. In all populations, gene (H = 0.453 to 0.612) and genotype diversity (GD = or >0.984) were high. There was little or no indication of linkage disequilibrium (LD) in all G. zeae populations and subpopulations. In addition, high gene flow (Nm) values were observed between cereal and noncereal populations (Nm = 10.69) and between FHB resistant and susceptible wheat cultivar subpopulations (Nm = 16.072), suggesting low population differentiation of G. zeae in this region. Analysis of molecular variance also revealed high genetic variation (>80%) among individuals within populations and subpopulations. However, low genetic variation (<5%) was observed between cereal and noncereal populations and between resistant and susceptible wheat subpopulations. Overall, these results suggest that the populations or subpopulations are likely a single large population of G. zeae affecting crops in the upper Midwest of the United States.  相似文献   

2.
Twenty four isolates of Fusarium graminearum, half of which were 3-acetyldeoxynivalenol (3-ADON) and half 15-acetyldeoxynivalenol (15-ADON) chemotypes, were tested for their ability to produce deoxynivalenol and to cause Fusarium head blight (FHB) in spring wheat cultivars. The objectives of this study were to determine (1) whether 3-ADON isolates differ in aggressiveness, as measured by the FHB index, and DON production from 15-ADON isolates under field conditions, and (2) whether the performance of resistant host cultivars was stable across isolates. Field tests of all isolates were conducted with three replicates at each of two locations in Canada and Germany in 2008 with three host genotypes differing in FHB resistance level. The resistant host genotype showed resistance regardless of the chemotype or location. The differences between mean FHB indices of 3-ADON and 15-ADON isolates were not significant for any wheat genotype. In contrast, average DON production by the 3-ADON isolates (10.44 mg kg−1) was significantly (P < 0.05) higher than for the 15-ADON isolates (6.95 mg kg−1) at three of the four locations where moderately resistant lines were tested, and at both locations where susceptible lines were evaluated. These results indicate that 3-ADON isolates could pose a greater risk to food safety. However, as the mean aggressiveness and DON production of 3-ADON and 15-ADON chemotypes was similar on highly resistant lines, breeding and use of highly resistant lines is still the most effective measure of reducing the risks associated with DON in wheat.  相似文献   

3.
ABSTRACT Gibberella zeae, causal agent of Fusarium head blight (FHB) of wheat and barley and Gibberella ear rot (GER) of corn, may be transported over long distances in the atmosphere. Epidemics of FHB and GER may be initiated by regional atmospheric sources of inoculum of G. zeae; however, little is known about the origin of inoculum for these epidemics. We tested the hypothesis that atmospheric populations of G. zeae are genetically diverse by determining the genetic structure of New York atmospheric populations (NYAPs) of G. zeae, and comparing them with populations of G. zeae collected from seven different states in the northern United States. Viable, airborne spores of G. zeae were collected in rotational (lacking any apparent within-field inoculum sources of G. zeae) wheat and corn fields in Aurora, NY in May through August over 3 years (2002 to 2004). We evaluated 23 amplified fragment length polymorphism (AFLP) loci in 780 isolates of G. zeae. Normalized genotypic diversity was high (ranging from 0.91 to 1.0) in NYAPs of G. zeae, and nearly all of the isolates in each of the populations represented unique AFLP haplotypes. Pairwise calculations of Nei's unbiased genetic identity were uniformly high (>0.99) for all of the possible NYAP comparisons. Although the NYAPs were genotypically diverse, they were genetically similar and potentially part of a large, interbreeding population of G. zeae in North America. Estimates of the fixation index (G(ST)) and the effective migration rate (Nm) for the NYAPs indicated significant genetic exchange among populations. Relatively low levels of linkage disequilibrium in the NYAPs suggest that outcrossing is common and that the populations are not a result of a recent bottleneck or invasion. When NYAPs were compared with those collected across the United States, the observed genetic identities between the populations ranged from 0.92 to 0.99. However, there was a significant negative correlation (R = -0.59, P < 0.001) between genetic identity and geographic distance, suggesting that some genetic isolation may occur on a continental scale. The contribution of long-distance transport of G. zeae to regional epidemics of FHB and GER remains unclear, but the diverse atmospheric populations of G. zeae suggest that inoculum may originate from multiple locations over large geographic distances. Practically, the long-distance transport of G. zeae suggests that management of inoculum sources on a local scale, unless performed over extensive production areas, will not be completely effective for the management of FHB and GER.  相似文献   

4.
ABSTRACT Gibberella zeae (anamorph Fusarium graminearum) causes Fusarium head blight (FHB) of wheat and barley and has been responsible for several billion dollars of losses in the United States since the early 1990s. We isolated G. zeae from the top, middle, and bottom positions of wheat spikes collected from 0.25-m(2) quadrats during severe FHB epidemics in a single Kansas (KS) field (1993) and in a single North Dakota (ND) field (1994). Three amplified fragment length polymorphism (AFLP) primer pairs were used to resolve 94 polymorphic loci from 253 isolates. Members of a subset of 26 isolates also were tested for vegetative compatibility groups (VCGs). Both methods indicated high levels of genotypic variability and identified the same sets of isolates as probable clones. The mean number of AFLP multilocus haplotypes per head was approximately 1.8 in each population, but this value probably underestimates the true mean due to the small number of samples taken from each head. Isolates with the same AFLP haplotype often were recovered from different positions in a single head, but only rarely were such apparently clonal isolates recovered from more than one head within a quadrat, a pattern that is consistent with a genetically diverse initial inoculum and limited secondary spread. The KS and ND samples had no common AFLP haplotypes. All G. zeae isolates had high AFLP fingerprint similarity (>70%, unweighted pair group method with arithmetic means similarity) to reference isolates of G. zeae lineage 7. The genetic identity between the KS and ND populations was >99% and the estimated effective migration rate was high (Nm approximately 70). Tests for linkage disequilibrium provide little evidence for nonrandom associations between loci. Our results suggest that these populations are parts of a single, panmictic population that experiences frequent recombination. Our results also suggest that a variety of population sampling designs may be satisfactory for assessing diversity in this fungus.  相似文献   

5.
A total of 82 fungal isolates was obtained from wheat kernel samples affected by fusarium head blight collected from 20 locations in southern Brazil. Polymerase chain reaction (PCR) assays were used to characterize trichothecene mycotoxin genotypes [deoxynivalenol (DON), nivalenol (NIV) and two acetylated derivatives of DON]. To identify isolates that producing DON and NIV, portions of the Tri13 gene were amplified. To identify 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) genotypes, portions of Tri3 and Tri12 were amplified. Nearly all of the isolates studied (76/82) were of the DON/15-ADON genotype. Six of the isolates were of the NIV genotype. The DON/3-ADON genotype was not observed. Portions of three genes were sequenced from representative isolates of the NIV and DON/15-ADON genotypes and compared with sequences from curated reference isolates of Fusarium in GenBank. blast queries for individual gene sequences and pairwise comparisons of percentage identity and percentage divergence based on 1676 bp of concatenated DNA sequence suggested that the isolates representing the DON/15-ADON genotype were Fusarium graminearum sensu stricto and the isolates representing the NIV genotype were Fusarium meridionale . This is the first detailed report of trichothecene mycotoxin genotypes of F. graminearum and F. meridionale in Brazil.  相似文献   

6.
Fusarium graminearum is an important pathogen causing Fusarium head blight (FHB) on wheat and barley and Fusarium ear rot (FER) on maize, and harvested grains often are contaminated with trichothecenes such as deoxynivalenol (DON) and nivalenol (NIV) that are a major health and food safety concern due to their toxicity to humans and farm animals. In this study, species identity and trichothecene toxin potential of 294 members of the Fusarium graminearum species complex (FGSC) collected from wheat, barley and maize in France in 2011 was determined using a microsphere-based multilocus genotyping assay. F. graminearum was predominant on all three hosts, but three isolates of F. cortaderiae and two isolates representing F. graminearum × F. boothii hybrids were also identified from maize. The 15-ADON trichothecene chemotype predominated on all three hosts, representing 94.7 %, 87.8 % and 85.4 % of the strains on barley (N?=?19), wheat (N?=?90), and maize (N?=?185), respectively. However, the NIV chemotype was found in 12.2 % of the wheat isolates and in 14.6 % of the maize isolates. Only a single FGSC isolate from this study, originating from barley, was found to have the 3-ADON chemotype. Regional differences could be observed in the distribution of the 15-ADON and NIV chemotypes, with the NIV producing-isolates being present at higher frequency (21.2 %) in the South of France compared to the rest of the country (4.4 %). Such information is critical because of the increased concern associated with NIV contamination of cereals. In addition, these results are needed to develop management strategies for FHB and FER in France and to improve understanding of the distribution and significance of FGSC diversity in Europe and worldwide.  相似文献   

7.
禾谷镰孢单端孢霉烯族毒素在小麦组织中的积累   总被引:6,自引:1,他引:6  
 本试验将禾谷镰孢一高产毒菌株B4-1采用单小花注滴法接种于小麦抗赤霉病品种苏麦3号和感病品种宁麦6号,用气/质联检法测定接种后4、8、12、16和20 d组织中的单端孢霉烯族毒素积累量。结果显示,在病组织中有脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)、15-乙酰脱氧雪腐镰刀菌烯醇(15-acetyldeoxynivalenol,15-ADON)和3-乙酰脱氧雪腐镰刀菌烯醇(3-acetyldeoxynivalenol,3-ADON)等3种单端孢霉烯族毒素,但未发现雪腐镰刀菌烯醇(nivalenol)和镰刀菌酮-X (fusarenon-X)等毒素。抗病品种病穗组织中,DON平均含量由接种后4 d的29.5 μg/g dry weight (gdw)下降到20d时的15.7μg/gdw,15-ADON和3-ADON量则较低,分别为1.5~3.6μg/gdw和<1.7μg/gdw;而同期感病品种病穗组织中的DON量则由23.1μg/gdw上升到47.7μg/gdw,15-ADON和3-ADON量均较高,分别达8.6~10.0μg/gdw和2.6~8.3μg/gdw。在抗、感病品种无症状穗组织中,3种毒素的含量均很低(<0.5 μg/gdw)。同时,本研究还首次在感病品种的穗颈(总花梗,peduncle)组织中检测到大量的DON和15-ADON及少量的3-ADON。  相似文献   

8.
Talas F  Kalih R  Miedaner T 《Phytopathology》2012,102(1):128-134
Fusarium head blight (FHB), caused by Fusarium graminearum sensu stricto (s.s.), causes tremendous annual yield losses in wheat worldwide. Variation of aggressiveness of isolates from individual field populations in terms of FHB infection and deoxynivalenol (DON) concentration in the host are important population parameters reflecting parasitic ability. Our main objective was to estimate the variation of both traits within three populations of F. graminearum s.s., each consisting of 30 single-spore isolates collected from small wheat fields in Germany, and to compare it with 11 isolates of a collection (F. graminearum collection) from four countries. The same isolates were characterized using 19 single-sequence repeat markers. All isolates were spray inoculated on a moderately resistant spring wheat cultivar at two field locations over 2 years (i.e., in four environments). The genotypic proportion of phenotypic variance (σ(2)(G)) within populations was significant (P < 0.01) for both traits, and the σ(2)(G) × environment interaction was even more important for mean FHB severity. Ranges in mean FHB severity and DON concentration in the host were only slightly smaller for the field populations than for the F. graminearum collection. Both traits were significantly (P < 0.05) correlated within and across populations. A further partitioning of σ(2)(G) revealed 72% of σ(2)(G) within and 28% of σ(2)(G) across populations for both traits. Molecular variance of the three populations was similarly distributed (73.6% within versus 26.4% between populations). In view of this high within-field variation for traits of parasitic ability and selection, neutral molecular markers, multiple resistance genes of different origin should be employed in wheat breeding programs to obtain a long-term stable FHB resistance.  相似文献   

9.
Gale LR  Ward TJ  Balmas V  Kistler HC 《Phytopathology》2007,97(11):1434-1439
ABSTRACT A collection of 712 Fusarium graminearum sensu stricto (s.s.) strains, predominantly gathered between 1999 and 2000 from nine states within the United States, was examined for population structure and polymerase chain reaction-based trichothecene type. Most strains belonged to a cohesive genetic population characterized by a 15-acetyldeoxynivalenol (15ADON) trichothecene type. However, using a Bayesian model-based clustering method, we also identified genetically divergent groups of strains in some sampled locations of Minnesota and North Dakota. Strains of the major group of divergent populations were of a 3ADON trichothecene type and formed a distinct cluster with a collection of previously gathered strains from Italy, which displayed all three trichothecene types (15ADON, 3ADON, and nivalenol). The co-existence of genetically divergent populations of F. graminearum s.s. in the Upper Midwest allows for the rejection of the hypothesis that F. graminearum s.s. in the United States consists of a single population. These results also suggest that recombination has been insufficiently frequent in this homothallic (selfing) fungal species to homogenize the divergent populations observed in the Upper Midwest.  相似文献   

10.
为探明在小麦不同生育期施用新型杀菌剂丙硫菌唑及施用次数对小麦赤霉病及籽粒DON毒素总量[包括脱氧雪腐镰刀菌烯醇(DON)?3-乙酰脱氧雪腐镰刀菌烯醇(3-ADON)?15-乙酰脱氧雪腐镰刀菌烯醇(15-ADON)]的控制效果, 2020年-2021年通过田间自然发病和人工接种发病试验的方法, 研究了小麦不同生育期施用丙硫菌唑及施用次数对小麦赤霉病的防效, 并通过液相色谱-串联质谱法测定了不同处理小麦籽粒中对DON毒素总含量?结果表明, 30%丙硫菌唑可分散油悬浮剂(OD)防治2次对小麦赤霉病的防效和对DON毒素的控制效果均显著高于防治1次; 防治2次时, 其首次最佳防治时期为小麦齐穗期至扬花20%, 防效为90.25%~95.13%, 毒素控制效果为77.35%~79.97%?30%丙硫菌唑OD作为防控小麦赤霉病的新型药剂具有良好的应用前景, 本研究为该药剂推广应用于小麦赤霉病及籽粒DON毒素的防控提供了科学依据?  相似文献   

11.
The presence of Fusarium spp. causing Fusarium head blight (FHB) of wheat was studied in Flanders (Belgium) in 2007 and 2008. Symptoms, deoxynivalenol content (DON), Fusarium spp. and trichothecene chemotypes were determined at seven locations on different commercial wheat varieties. Overall, significant differences in disease pressure between locations and varieties were observed within 1 year. In addition, we were able to detect consistent and significant resistance differences among the common varieties both under high disease pressure (2007) and low disease pressure (2008). The accumulation of DON was not related to the presence of F. graminearum but showed a clear correlation with rainfall during and after the period of anthesis. During the two-year survey, characterisation of 756 Fusarium samples by species-specific PCR designated F. poae and F. graminearum as the predominant species in Flanders. Furthermore, most of the ears were colonised by multiple FHB pathogens in 2007 whereas the Fusarium population was less complex in 2008. Log-linear analysis of these multiple (two- and three-way) species interactions revealed a clear correlation between F. poae and several pathogens of the FHB disease complex. Finally, chemotype analysis showed that F. culmorum and F. graminearum were respectively of the NIV chemotype and DON chemotype. 3-ADON and 15-ADON chemotypes occurred in more or less equal amounts within the F. graminearum population both in 2007 and 2008. The congruence of these results with observations throughout Europe are discussed.  相似文献   

12.
Gibberella zeae is a pathogen of wheat and other small-grain cereals, causing yield losses and reducing grain quality by producing the trichothecene deoxynivalenol (DON) which is harmful to animals and humans. One hundred and fifty three progeny from a cross between two European DON-producing isolates of G. zeaewere analyzed for aggressiveness and DON production in three environments (location–year combinations) in Germany. Aggressiveness, measured as head blight rating and relative plot yield, and DON production showed continuous distribution for each environment and across environments. There was significant (P=0.01) genotypic variation for all three traits. Transgressive segregants occurred for all three traits. Both repeatability estimates within an environment and heritability estimates on an entry-mean basis for head blight rating and DON production were medium to high (0.5–0.7). Progeny–environment interaction accounted for about 29% of the total variance for the two aggressiveness traits and 19% for DON production. The large genetic variation derived from a cross between two rather similar European parents indicates a potential for increasing fungal aggressiveness in theG. zeae population.  相似文献   

13.
Fusarium head blight (FHB) is one of the most destructive diseases of wheat. Twelve small commercial wheat fields (size 1–3 hectares) were sampled in Germany for Fusarium populations at three spots per field with 10 heads each. PCR assays using generic primers confirmed 338 isolates as F.graminearum sensu stricto (s.s.) (64.9%) out of 521 Fusarium spp. that were further analyzed. Populations of F. graminearum s.s. in Germany contain three types of trichothecenes with a dominancy of 15-acetyldeoxynivalenol chemotype (92%) followed by 3-acetyldeoxynivalenol chemotype (6.8%) and a few isolates of nivalenol chemotype (1.2%). All these isolates were genotyped using 19 microsatellite loci. The 12 populations showed a high genetic diversity within the small scale sampling areas resulting in 300 different haplotypes. Genetic diversity within populations (71.2%) was considerably higher than among populations (28.8%) as shown by analysis of molecular variance. Gene flow (Nm) between populations ranged from 0.76–3.16. Composition of haplotypes of one population followed over 2 years changed considerably. No correlation between genetic and geographical distance was found. In conclusion, populations of F. graminearum s.s. in Germany display a tremendous genetic variation on a local scale with a restricted diversity among populations.  相似文献   

14.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum species complex (FGSC) and also by other species of this genus, is one of the most destructive cereal diseases with high yield losses and mycotoxin contamination worldwide. The aim of this study was to identify Fusarium species, characterize their virulence factors such as trichothecene genotypes and cell wall degrading enzymes (CWDEs), and also investigate virulence of the isolates obtained from wheat plants with FHB symptoms in Golestan province of Iran. Among 41 isolates tested, 24 were F. graminearum sensu stricto (s.s.), six were F. proliferatum, four were F. culmorum, three isolates belonged to each of F. subglutinans and F. meridionale species and one isolate of F. asiaticum was identified. Among Fusarium isolates, the nivalenol (NIV) genotype could be found more frequently, followed by 3-acetyl deoxynivalenol (3-ADON) and 15-acetyl deoxynivalenol (15-ADON) genotypes. Production of trichothecenes in autoclaved rice cultures was analyzed by gas chromatography (GC) and confirmed by GC–MS. The mean levels of NIV, 3-ADON and 15-ADON produced by Fusarium spp. were 824, 665 and 622 μg kg?1, respectively. All Fusarium isolates were capable of producing CWDEs, mainly cellulase and xylanase. Lipase and pectinase activities appeared later and at less quantities. In overall, the isolates FH1 of F. graminearum and FH8 of F. proliferatum showed the maximum activity of CWDEs, which was correlated with high level of their virulence and aggressiveness on wheat. On the other hand, correlation was observed between the level and type of trichothecene produced by each isolate and its virulence on wheat. Virulence of trichothecene producing isolates was higher than that of non-trichothecene producing isolates. Our results suggested that CWDEs and trichothecenes, as virulence factors, have considerable roles on virulence and aggressiveness of the pathogen. This is the first report on the effect of trichothecenes and CWDEs on virulence and aggressiveness of Fusarium spp. associated with FHB disease in wheat growing regions of Iran.  相似文献   

15.
Fusarium head blight (FHB) in Brazil is caused mainly by two members of the Fusarium graminearum species complex, each possessing either a DON/15-ADON chemotype (F. graminearum sensu stricto, Fgss) or a NIV chemotype (F. meridionale, Fmer). In this work, we aimed to characterize and compare isolates belonging to each species, obtained either from wheat or barley, in relation to phenotypic traits (mycelial growth, sporulation and germination) and pathogenicity (in vitro glume infection and in vivo central floret inoculation) to two Brazilian wheat cultivars, Guamirim (moderate susceptible) and BRS 194 (susceptible). Results showed significantly higher growth rates, greater spore production and quicker germination for the Fgss isolates compared to the Fmer isolates, which were also more sensitivity to tebuconazole than the Fgss isolates. All isolates were capable of infecting glume tissues of both varieties, with an overall higher infection frequency for Fgss than Fmer isolates when inoculated in cv. Guamirim than in cv. BRS194, which showed similar infection frequency between the species. Accordingly, in the central-floret inoculation assay, Fgss isolates were also more aggressive than Fmer isolates towards cv. Guamirim, but not towards BRS194, based on the mean area under disease progress curves. It is hypothesized that phenotypic traits and host resistance may play a role in the selection of more aggressive populations under field conditions, thus partially explaining the dominance of Fgss populations associated with FHB of wheat in Brazil.  相似文献   

16.
Fusarium graminearum causes fusarium head blight (FHB) of wheat and gibberella ear rot (GER) of corn in Canada and also contaminates grains with trichothecene mycotoxins. Very little is known about trichothecene diversity and population structure of the fungus from corn in Ontario, central Canada. Trichothecene genotypes of Fgraminearum isolated from corn (= 452) and wheat (= 110) from 2010 to 2012 were identified. All the isolates were deoxynivalenol (DON) type. About 96% of corn isolates and 98% of wheat isolates were 15‐acetyl deoxynivalenol (15ADON) type. The fungal population structures from corn (= 313) and wheat (= 73) were compared using 10 variable number tandem repeat (VNTR) markers. The fungal populations and subpopulations categorized based on host, cultivar groups, years and geography showed high gene (= 0.818–0.928) and genotypic (GD = 0.999–1.00) diversity. Gene flow was also high between corn and wheat population pairs (Nm = 8.212), and subpopulation pairs within corn (Nm = 7.13–23.614) or wheat (Nm = 19.483) populations. Phylogenetic analysis revealed that isolates from both hosts were F. graminearum clade 7. These findings provide baseline data on 3‐acetyl deoxynivalenol (3ADON) and 15ADON profiles of Fgraminearum isolates from corn in Canada and are useful in evaluating mycotoxin contamination risks in corn and wheat grains. Understanding the fungal genetic structure will assist evaluation and development of resistant cultivars/germplasm for FHB on wheat and GER on corn.  相似文献   

17.
Fusarium head blight (FHB), caused principally by Gibberella zeae (Fusarium graminearum), is a devastating disease of small grains such as wheat and barley worldwide. Grain infected with G. zeae may be contaminated with trichothecene mycotoxins such as deoxynivalenol (DON) and nivalenol (NIV). Strains of G. zeae that produce DON may also produce acetylated derivatives of DON: 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON). Gradients (clines) of 3‐ADON genotypes in Canada have raised questions about the distribution of G. zeae trichothecene genotypes in wheat fields in the eastern USA. Tri3 and Tri12 genotypes were evaluated in 998 isolates of G. zeae collected from 39 winter wheat fields in New York (NY), Pennsylvania (PA), Maryland (MD), Virginia (VA), Kentucky (KY) and North Carolina (NC). Ninety‐two percent (919/998) of the isolates were 15‐ADON, 7% (69/998) were 3‐ADON, and 1% (10/998) was NIV. A phylogenetic analysis based on portions of three genes (PHO, RED and URA) from 23 isolates revealed two species of Fusarium (F. graminearum sensu stricto and one isolate of F. cerealis (synonym F. crookwellense)). An increasing trend of 3‐ADON genotypes was observed from NC (south) to NY (north). Punctuated episodes of atmospheric transport may favour a higher frequency of 3‐ADON genotypes in the northeastern USA, near Canada, compared with the mid‐Atlantic states. Discoveries of the NIV genotype in NY and NC indicate the need for more intensive sampling in the surrounding regions.  相似文献   

18.
Fusarium crown rot (FCR), caused predominantly by Fusarium pseudograminearum (Fp) in Australia, is an important fungal disease of wheat and barley. FCR causes significant yield losses and reduced grain quality worldwide. This study investigated the population dynamics of FCR-causing F. pseudograminearum isolates from Western Australia (WA), a major wheat-growing region. Wheat samples were collected from a total of seven different sites in 2008 and 2015. Two sites, Tammin and Karlgarin, with moderate to high FCR incidence, were intensively sampled in both years. The results revealed significant increase in Fp isolation frequency between 2008 and 2015. Over 86% of 1100 Fusarium isolates were Fp in 2015 compared with 59% of 639 isolates from 2008. Mating type idiomorphs, toxin chemotypes and population genetic structures were determined for a subset of 279 Fp isolates (132 isolates from 2008 and 165 from 2015). Mating type analysis revealed differences in MAT1-1 and MAT1-2 distributions between Tammin and Karlgarin for both years. Results also showed that 97.6% of Fp isolates analysed had the 3-ADON trichothecene chemotype. Additionally, for the first time in Australia, the 15-ADON chemotype was identified in 2.3% and 2.4% of Fp isolates from 2008 and 2015, respectively. The genetic structure of Fp population determined using 21 cleaved amplified polymorphic sequence (CAPS) markers revealed a high level of genetic variation within and between populations. In addition, 2015 isolates from Tammin and Karlgarin were significantly more aggressive (P < 0.0001) than 2008 isolates. This finding may have implications in managing this significant fungal disease.  相似文献   

19.
Fusarium head blight (FHB) can affect wheat and barley and is a devastating disease caused by a complex of Fusarium species. Here we report on a large-scale survey on the genetic diversity of isolates collected from barley in China. Ten VNTR markers were tested on a representative set of 40 isolates covering 14 sampling areas along the Yangtze River. VNTR4 and VNTR7, with 13 and 6 alleles, each were applied to a total of 1106 single-spore isolates to reveal the population structure of F. asiaticum. The F. asiaticum population showed high genetic diversity and a clear genotypic substructure within China. Pair-wise comparisons of allele frequencies between the mountainous provinces of Sichuan and Chongqing in Western China, Hubei Province in the centre or the eastern provinces of Zhejiang, Jiangsu and Shanghai showed significant differences. Even between counties of the same province, significant differences between allele frequencies were found (P?<?0.001). Our results indicate serious constraints for migration of this pathogen in the major cereal-growing areas of China.  相似文献   

20.
Choo TM  Vigier B  Shen QQ  Martin RA  Ho KM  Savard M 《Phytopathology》2004,94(10):1145-1150
ABSTRACT Fusarium head blight (FHB) or scab is a destructive disease of barley in many countries. A better understanding of the interrelationships between plant traits and FHB resistance should help in the development of effective and efficient breeding strategies for FHB-resistant cultivars. Recent mapping studies indicate that many of the quantitative trait loci (QTL) for FHB resistance coincide with the QTL for plant height, heading date, and spike characteristics. Therefore, a study was conducted to investigate the relationship of morphological and physiological traits to FHB infection and deoxynivalenol (DON) accumulation in a barley doubled-haploid (DH) population derived from a Léger x CI9831 cross. Approximately 190 DH lines were grown at Ottawa (Ontario) for 2 years, Charlottetown (Prince Edward Island) for 1 year, and Hangzhou (Zhejiang) for 2 years. The field plots were inoculated with Fusarium graminearum at each location. FHB incidence was positively correlated with DON content. Resistance to FHB was associated with two-row spike, purple lemma, long glume awn, tall stature, and resistance to lodging, but it was not associated with long rachilla hairs, rough lemma awn, or heading date. Two-row spike was associated with tall stature and resistance to lodging. These associations as well as its spike characteristics helped reduce FHB infection and DON accumulation in two-row lines compared with six-row lines. The association between long glume awn and FHB resistance could be due to genetic linkages. Therefore, trait associations should be taken into consideration when breeding for FHB resistance and interpreting data from FHB experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号