首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A broiler growth study was conducted to compare the effect of different concentrations of an Escherichia coli-derived phytase on performance, apparent metabolisable energy (AME), nitrogen (N), amino acid and mineral metabolisability, sialic acid excretion and villus morphology when fed to broiler chickens. 2. Female Ross 308 broilers (480) were reared in floor pens from 0 to 28 d of age. All birds were fed on nutritionally complete starter (0 to 21 d of age) and grower diets (21 to 28 d of age) with the exception that they were low in P (28 and 23 g/kg available P, respectively). These maize-soy diets were supplemented with 0, 250, 500 or 2500 phytase units (FTU)/kg feed. 3. Between 21 and 28 d of age, two birds from each floor pen were selected, and each pair placed in one of 32 metabolism cages (two birds per cage). Feed intake was recorded and excreta collected for the last 2 d of the feeding period, and AME, N, amino acid and mineral metabolisability coefficients and endogenous losses were determined following a total collection procedure. 4. Feed intake and weight gain increased in a linear manner in response to phytase dose, with an average increase of approximately 11.7 and 13.5%, respectively, compared with chickens fed on the low-P diet. Birds given diets with 2500 FTU weighed 6.6% more and had a 2.4% higher feed conversion efficiency (FCE) than those fed on diets containing 500 FTU. 5. Enzyme supplementation increased the intake of AME and metabolisable N by 10.3 and 3.9%, respectively, principally through increases in feed intake. Birds given enzyme-supplemented diets also improved their intake of metabolisable amino acids and P by approximately 14 and 12.4%, respectively, compared with birds fed on the control diet. Enzyme supplementation did not affect ileal villus morphometry of the birds.  相似文献   

2.
1. The effects of myo-inositol hexaphosphate (IP6) and phytase (EC 3.1.3.26) on the excretion of endogenous compounds were investigated using growing broiler chickens. 2. A total of 32 female Ross broilers were used in a precision feeding assay involving a 2 x 2 factorial arrangement of treatments. The materials administered were glucose, glucose + 1000 units of phytase activity (FTU), glucose + 1 g of IP6 and glucose + 1 g of IP6 + 1000 FTU. Excreta were collected quantitatively over a 48-h period following intubation of the test materials. The excretion of nitrogen, amino acids, minerals, sialic acid and phytate phosphorus was determined. 3. The ingestion of 1 g of IP6 by broilers increased the excretion of endogenous nitrogen, amino acids, iron, sodium, sulphur and sialic acid compared with birds fed on glucose. Supplementation of IP6 with exogenous phytase reduced the excretion of endogenous amino acids, calcium, sodium, phytate phosphorus and sialic acid compared with birds fed IP6. 4. It can be concluded that IP6 increases the excretion of endogenous minerals and amino acids in broiler chickens. Part of the beneficial effects of the addition of exogenous phytases to the diets of poultry appears to be mediated through a reduction in endogenous losses of these nutrients.  相似文献   

3.
1. Four diets were offered to broiler chickens from 7 to 17 d of age; these included a phosphorus-adequate positive control (PC) (4·7 g/kg available P), a sub-optimal P negative control (NC, 2·5 g/kg available P) with (500 and 12500 FTU/kg) and without phytase. Dietary apparent metabolisable energy (AME), dietary net energy for production (NEp), the efficiency of AME retention (Kre), heat production and total tract amino acid digestibility coefficients were determined. The determination of NEp involved a comparative slaughter technique in which growing chickens were fed the experimental diets ad libitum. 2. Feed intake, weight gain and feed conversion efficiency increased significantly in a dose dependent manner in response to dietary phytase activity. Overall, the NEp of the phytase supplemented diets significantly improved by approximately 15·6% compared with the negative control, while dietary AME was unaffected. Although phytase did not affect AME, the large increase in the NEp demonstrated that dietary phytases improves energy utilisation, i.e. diverting more energy, not accounted for in the AME procedure, for production. This is largely a result of the stimulatory effect that phytase has on feed intake rather than on digestibility of the diet. 3. Overall, the diet supplemented with 12500 FTU had 6·4% significant improvement in total tract digestibility coefficients of the total amino acids compared with the negative control. With regard to individual amino acids, the impact of phytase was far more pronounced for threonine, an important component of the gastrointestinal mucin, than for other amino acids. 4. Dietary NEp was more highly correlated with performance criteria than dietary AME and seems to be a more sensitive way to evaluate broiler response to phytase supplementation.  相似文献   

4.
1. A 3-week feeding trial with 96 sexed d-old broiler chickens was conducted to examine the effects of microbial phytase supplementation (Natuphos 5000) at 2 dietary energy concentrations on their performance, and the utilisation of nitrogen (N), phosphorus (P), calcium (Ca) and zinc (Zn) and on tibiae ash, Ca, P and Zn concentrations. Four replicate pens (6 birds per pen) of a completely randomised design were used in a 2x2 factorial arrangement of treatments with 2 contents of metabolisable energy (11.72 and 12.55 MJ ME/kg) and 2 additions of phytase (0 and 500 U of microbial phytase/kg). 2. Phytase supplementation significantly improved the utilisation of N, P, Ca and Zn (as a percentage of intake) and increased the concentration of Ca and Zn in the tibiae (P<0.05) because of higher intakes of dry matter, N, P, Ca and Zn. Phytase also significantly reduced the amount of P in the excreta (P<0.05). 3. The AME content of the diet influenced significantly (P<0.05) the excretion of N, P, Ca and Zn and the concentration of P and Ca in tibiae with the birds fed on the high AME diet excreting more minerals and having a smaller percentage of these minerals in their tibiae. However, there were strong interactions between phytase addition and AME in tibia ash and P, with the phytase supplementation producing a higher ash content at the higher AME a and a lower P content at the lower AME.  相似文献   

5.
  1. The effects of high dose of microbial phytase and an emulsifier on the performance, apparent metabolisable energy (AME) and nitrogen (N) retention in broilers fed on diets containing different fat sources were examined in a 5-week trial. Two fat sources (soy oil and tallow), two inclusion levels of E. coli phytase (500 or 1000 phytase units (FTU)/kg diet) and two inclusion levels of lysolecithin emulsifier (0 or 3.5 g/kg of diet) were evaluated in a 2 × 2 × 2 factorial arrangement of treatments.

  2. Throughout the 5-week trial, soy oil supplementation improved weight gain and feed per gain compared with tallow, but had no effect on feed intake.

  3. The high dose of phytase increased the weight gain and feed intake and lowered the feed per gain during d 1–21, but had no effect on performance parameters over the whole trial period.

  4. An effect of emulsifier was observed for feed intake during d 1–21 and over the whole trial period. Addition of emulsifier increased feed intake compared with diets without emulsifier.

  5. During weeks 1, 2, 3 and 5, birds fed on soy oil–based diets had higher nitrogen-corrected AME (AMEN) compared with those fed on tallow-based diets. During weeks 2, 3 and 5, the effect of phytase was significant for AMEN, with the high dose increasing the AMEN. During week 2, AMEN was increased with emulsifier addition.

  6. During weeks 1, 2, 3 and 5, birds fed on soy oil–based diets had higher fat retention compared with those fed on tallow-based diets. The high dose of phytase improved the retention of fat during week 5 and the addition of emulsifier resulted in higher fat retention during week 1.

  7. During weeks 2, 3 and 5, an interaction between fat source × phytase × emulsifier was observed for N retention. In soy oil–based diets, emulsifier plus 1000 FTU/kg phytase increased N retention compared with other groups, while in tallow-based diets, emulsifier addition increased N retention in diets with 500 FTU/kg, but not in 1000 FTU/kg diet.

  8. Overall, the present data suggest that the dietary fat source influenced performance, AMEN and fat retention in broiler chickens. There is opportunity to improve bird performance during d 1–21, AMEN and fat retention with higher doses of microbial phytase. Addition of the emulsifier increased the AMEN during week 2 and tract retention of fat during week 1, but this effect was not translated into improvements in performance.

  相似文献   

6.
One‐hundred and fifty male chickens were used to evaluate the effects of different activities (0, 250, 500, 12 500 FTU/kg) of phytase on their performance and antioxidant concentration in the liver. The chicks were housed in 30 cages and were allocated to six replicates of five dietary treatments. All diets were formulated to be adequate in energy and protein (12.90 MJ/kg metabolizable energy, 214 g/kg crude protein), however, the negative control (NC) was lower in available P compared with the positive control (PC) (2.5 vs. 4.5 g/kg diet). The other three diets were the NC supplemented with phytase at 250, 500 and 12 500 FTU/kg (NC + 250, NC + 500 and NC + 12 500 FTU respectively). The concentration of antioxidants in the liver of the birds was determined using HPLC at 21 days of age. Low P diets (NC) reduced weight gain, however, supplementation with phytase improved weight gain to the extent that it was better than the PC at the 12 500 FTU treatment (p < 0.05). Feed conversion ratio was also improved by the high level of phytase supplement more than other treatments (p < 0.05). Feed consumption was not affected either by dietary phosphorus concentration or by different phytase supplementation. The antioxidant data showed that the unsupplemented diet with low phosphorus (NC) decreased the concentration of coenzyme Q10 and retinol‐linoleate in the liver compared with that of birds on the adequate phosphorus treatment (PC). Phytase supplementation, especially at the higher doses (500 and 12 500 FTU) increased the level of coenzyme Q10 to the same level as the PC treatment. In addition, the highest dose (12 500 FTU) of phytase increased retinol concentration in the liver of chickens compared with those on the NC treatment. The highest inclusion level of phytase increased the α‐tocopherol level in the liver compared with the lower levels of phytase (NC + 250 and NC + 500 FTU).  相似文献   

7.
1. A total of 40 female BUT9 turkeys were used in a precision-feeding assay to investigate the effect of dietary phytase on true metabolisable energy corrected for N retention (TME(N)), coefficients of true dry matter (TDMD), mineral, amino acid and nitrogen (TND) digestibilities and the excretion of endogenous mucin, measured as sialic acid (SA). 2. Five treatments were used in this study: control (C), C + 250 phytase units (FTU) per kg feed, C + 500 FTU, C + 2500 FTU, and glucose only for endogenous losses estimation. Diets were formulated to be nutritionally adequate with the exception that the P content was relatively low (3·6 g/kg non-phytate P). 3. Inclusion of phytase increased TND in a quadratic manner with the optimum being achieved at approximately 500 FTU, at which TND was 37 % greater than in the control. The concentration of SA in the excreta decreased linearly with increased phytase supplementation. Dietary TME(N), TDMD and true mineral digestibility coefficients were not significantly affected by phytase supplementation. 4. Phytase inclusion increased digestibility coefficients for indispensable, dispensable and total amino acids in a linear manner. The scale of the response to phytase was greatest with threonine and least with lysine digestibility, suggesting a specific mechanism of action that benefits gut health. 5. The strong negative relationship between secretion of SA and threonine digestibility suggests that a large part of the threonine benefit may be from reduced mucin synthesis. This supports the hypothesis that dietary phytase may play a role in improving the health status of the intestine and, as a result, reduces the maintenance energy requirements of turkeys.  相似文献   

8.
432只艾维因肉仔鸡用于研究小麦基础日粮中添加木聚糖酶(320FXU/kg)或添加750U/kg植酸酶降低日粮中0.08%的非植酸磷后,对生长性能、日粮表观代谢能、粗蛋白和植酸磷表观消化率的影响。试验结果表明:无论是单一添加木聚糖酶或植酸酶,还是同时添加这两种酶,都能提高1-6周龄肉仔鸡的增重和饲料转化率,降低死亡率。添加木聚糖酶可提高肉仔鸡小麦日粮的表观代谢能2.14%,增加氮的存留量2.58%。750U/kg的植酸酶完全可以降低肉仔鸡小麦日粮中0.08%非植酸磷。添加植酸酶的处理组可提高植酸磷的表观消化率43.25%,减少植酸磷排泄量55.0%。植酸酶和木聚糖酶对全期饲料转化率和植酸磷的表观消化率表现有明显的正互作效应(P<0.05)。  相似文献   

9.
An experiment was conducted with Arbor Acres broiler chickens that were fed 3 experimental diets—a control diet containing an adequate level of available phosphorus (AP) and 2 diets that were deficient in AP but supplemented with phytase at a level of either 500 or 750 phytase units/kg—to assess the effects of a novel microbial phytase supplement in broilers fed AP-deficient diets on growth performance and mineral utilization. Similar average daily gain, feed intake, and feed efficiency (P > 0.05) were obtained among broilers fed different diets. Compared with broilers fed the control diet, broilers fed diets with phytase had greater (P < 0.05) retention of Ca, P, and Zn. Moreover, the levels of Cu, Zn, Mg, and Mn in the tibia bone at 28 d of age, and Zn and Mn at 42 d of age in birds fed diets with phytase exceeded (P < 0.05) those of birds fed the control diet. Supplementation of phytase increased Zn and Mg contents in the plasma at 42 d of age. Birds responded similarly to phytase supplemented at a level of 500 or 750 phytase units/kg in terms of growth performance, mineral retention, and mineral content in the serum and bone. Therefore, with the supplementation of this novel phytase, it is possible to reduce the dietary levels of P and other minerals to below the recommended levels of the Feeding Standard of Chicken in P. R. China (ZB B 43005-86).  相似文献   

10.
Background: The reduction of crude protein levels in diets for broiler chickens may generate economic,environmental and flock welfare and health benefits; however, performance is usually compromised. Whole grain feeding and phytase may improve the utilization of reduced crude protein diets.Results: The effects of pre-pellet cracked maize(0, 15% and 30%) and phytase(0, 750 and 1500 FTU/kg) in isoenergetic maize-soy diets with three levels of crude protein(22%, 19.5% and 17%) were evaluated via a BoxBehnken response surface design. Each of 13 dietary treatments were offered to 6 replicate cages(6 birds/cage) of male Ross 308 broiler chicks from 7 to 28 d post-hatch. Model prediction and response surface plots were generated from experimental data via polynomial regression in R and only significant coefficients were included and discussed in the predicted models. Weight gain, feed intake and FCR were all influenced by pre-pellet cracked maize, phytase and crude protein level, where crude protein level had the greatest influence. Consequently, the reduction from 22% to 17% dietary crude protein in non-supplemented diets reduced weight gain, feed intake,relative gizzard weight, relative gizzard content and relative pancreas weight but improved FCR. However, the inclusion of 30% cracked maize to 17% crude protein diets restored gizzard weight and 1500 FTU phytase inclusion to 17% crude protein diets increased relative gizzard contents and pancreas weights. Cracked maize and phytase inclusion in tandem to 17% crude protein diets increased weight gain, feed intake and FCR; however, this FCR was still more efficient than broilers offered the non-supplemented 22% crude protein diet. Broilers offered the prepellet cracked maize and phytase inclusions reduced AME in 22% crude protein diets but improved AME by 2.92 MJ(14.16 versus 11.24 MJ; P 0.001) in diets containing 17% crude protein. Ileal N digestibility was greater in broilers offered diets with 17% crude protein than those offered the 22% crude protein diet; irrespective of phytase and pre-pellet cracked maize.Conclusion: Pre-pellet cracked maize and phytase inclusions will improve the performance of broilers offered reduced crude protein diets.  相似文献   

11.
本试验研究了玉米-豆粕型日粮中添加高剂量不同水平的植酸酶对0~3和4~6周肉鸡养分利用率的影响。选用1日龄AA肉鸡公雏576只,随机分为6组,每组8个重复,每个重复12只。试验日粮分0~3和4~6周两个阶段,6个处理组:正对照组(前期为总磷0.69%,0.45% NPP;后期为总磷0.59%,0.35% NPP);负对照组(前期总磷0.60%,0.35% NPP;后期为总磷0.49%,0.25% NPP);4个试验组在负对照日粮中分别添加500、2000、8000和32000 FTU/kg 4种植酸酶水平。结果显示:①日粮添加高剂量不同水平的植酸酶显著影响生长前期(17~21日龄)肉鸡的钙、磷的消化利用率(P<0.05),随着植酸酶添加水平增加,钙的消化利用率显著增加(P<0.05)。②日粮添加高剂量不同水平的植酸酶显著影响38~42日龄肉鸡磷的消化利用率(P<0.05)。在负对照组日粮中随着植酸酶水平添加的提高,钙的消化利用率呈现先增加后降低的趋势,磷的养分利用率反而显著减少。③日粮添加高剂量不同水平植酸酶显著增加生长前期(17~21日龄)肉鸡的粗蛋白质的消化利用率和表观代谢能(P<0.05),在生长后期(38~42日龄)对肉鸡的粗蛋白质的消化利用率和表观代谢能提高达到显著水平(P <0.05)。因此,高剂量不同水平的植酸酶显著提高肉鸡AME和粗蛋白质、钙、磷的消化利用率,添加高水平植酸酶可以适当调低日粮能量和蛋白质水平,日粮中总磷(tP)水平应低于NRC标准,减少无机磷和钙的添加量,以提高钙、磷在体内的存留量。  相似文献   

12.
1. The current study was conducted to investigate the effect of high phytase doses on growth performance and real-time gastric pH measurements in broiler chickens and pigs.

2. In the first experiment, 576 male Ross 308 broilers were fed in two phases (0–21 and 21–42 d) with 4 treatment groups, with diets meeting nutrient requirements containing 0, 500, 1500 or 2500 FTU/kg phytase. In the second, 64 Landrace weaners were fed on diets meeting nutrient requirements with or without phytase (0 or 2500 FTU/kg) in two phases (0–21 and 21–42 d). Heidelberg pH capsules were administered to 7 broilers and approximately 13 pigs per treatment group, pre- and post-phase change, with readings monitored over several hours.

3. Addition of phytase into an adequate Ca and P diet had no significant effect on broiler performance although phytase tended (< 0.07) to improve feed conversion in pigs over the entire experimental period. Real-time pH capsule readings in broilers demonstrated an increase (< 0.05) in gizzard pH when phytase was dosed at 500 or 1500 FTU/kg, while higher doses of 2500 FTU/kg phytase lowered pH to a level comparable to control birds. Gastric pH increased (< 0.01) when animals were exposed to dietary phase change, signifying a potential challenge period for nutrient digestibility. However, pigs fed 2500 FTU/kg were able to maintain gastric pH levels through diet phase change. In contrast, spear-tip probe measurements showed no treatment effect on gastric pH.

4. These findings demonstrate dietary manipulation of gastric pH and the value of real-time pH capsule technology as a means of determining phytase dose response.  相似文献   

13.
1. Male broilers (n=900) were fed on wheat-sorghum-soyabean meal based diets containing 3 concentrations of phytic acid (10.4, 13.2 and 15.7 g/kg; equivalent to 2.9, 3.7 and 4.4 g/kg phytate P), 2 concentrations of non-phytate (or available) phosphorus (2.3 and 4.5 g/kg) and 3 concentrations of microbial phytase (0, 400 and 800 FTU/kg) from day 7 to 25 post-hatch. The dietary concentrations of phytic acid were manipulated by the inclusion of rice pollards. All diets contained celite (20 g/kg) as a source of acid-insoluble ash. 2. The apparent metabolisable energy (AME) concentrations of the diets were determined using a classical total collection procedure during the 3rd week of the trial. On d 25, digesta from the terminal ileum were collected and analysed for phosphorus, nitrogen and amino acids. Nutrient digestibilities were calculated using acid-insoluble ash as the indigestible marker. 2. Ileal digestibilities of nitrogen and essential amino acids were negatively influenced by increasing dietary levels of phytic acid but these negative effects were overcome by the addition of phytase. 3. Supplemental phytase increased AME, ileal digestibilities of phosphorus, nitrogen and amino acids and the retention of dry matter, phosphorus and nitrogen in broilers. There were no differences in the phytase responses between additions of 400 and 800 FTU/kg. 4. The responses in all variables, except AME, were greater in low non-phytate phosphorus diets. 5. In the case of AME, the response to added phytase was greater in adequate non-phytate phosphorus diets. Supplemental phytase increased AME values from 13.36 to 13.54 MJ/kg dry matter in low non-phytate phosphorus diets and from 12.66 to 13.38 MJ/kg dry matter in adequate non-phytate phosphorus diets.  相似文献   

14.
The objective of this study was to investigate the effect of dietary phytate and phytase on the metabolic parameters of lipid, protein, enzyme, electrolyte in the blood or intestinal mucosa of broiler chickens. Diets containing phytate phosphorus (0.22% or 0.44%) with phytase supplementation (0, 500 or 1000 U/kg) were administrated to 504 Cobb chicks for 4 weeks. Results showed that the serum concentrations of total cholesterol (T‐CHO), albumin, albumin/globulin, total superoxide dismutase (T‐SOD), total antioxidant capacity (T‐AOC) and glutamic pyruvic transaminase (GPT) were decreased by 9–41% in high phytate diets (p < 0.05) and the concentrations of blood P, K, Fe, Cu, Zn and Mg were decreased by 4–14% for birds fed high phytate diets (p < 0.05), whereas inclusion of phytase compensated these adverse influences. In the duodenum, phytate decreased the level of T‐AOC by 13% (p < 0.05), whereas phytase increased the levels of T‐SOD, T‐AOC and alkaline phosphatase (ALP) by 9–16% (p < 0.05). Also, in the jejunum, diets with high phytate showed lower activity of T‐SOD, T‐AOC and glutamic oxaloacetic transaminase (GOT) (p < 0.05), and phytase increased T‐SOD, T‐AOC and ALP (p < 0.05). However, phytase decreased transaminase activity in the low phytate basal diets (p < 0.05). This study suggests that dietary phytate can adversely interfere with the metabolisms of lipid and protein, as well as the antioxidation of blood and intestinal cells, while phytase supplementation may compensate these effects for broiler chickens.  相似文献   

15.
The objective of this study was to eval- uate the effects of inorganic phosphorus source and phytase addition on performance, nutrient digestibility and bone mineralization in broiler chickens. In Exp. 1,150 two-day old, male broiler chicks were fed a corn-soybean meal basal diet supplemented with phos- phorus provided by dicalcium phosphate, tricalcium phosphate or defluorinated rock phosphate. Five cages containing 10 birds were allotted to each of the three treatments. In Exp. 2,120 three-day old, male broiler chicks were fed the basal diet from Exp. 1 supplemen- ted with 0,250,500 ,or 1,000 P-'rU phytase per kg of diet. Six cages containing five chicks were allotted to each of the four treatments. In Exp. 1, there was no difference in weight gain, feed intake or feed conver- sion as a result of feeding the different sources of in- organic phosphorus. The digestibility of phosphorus was significantly lower (P =0.01 ) for chicks fed di- ets supplemented with tricalcium phosphate than for chicks fed the other two diets. However, despite the lower digestibility, serum phosphorus levels did not differ among the three treatments. For Exp. 2, feedconversion showed a linear improvement (P = 0.03 ) with increasing levels of phytase inclusion ( days 0 to 33 ). Phytase supplementation resulted in linear increa- ses in the digestibility of dry matter (P = 0.02 ), crude protein ( P --- 0.04 ) and energy ( P 〈 0.01 ). Chicks fed 1,000 FTU/kg phytase had significantly higher bone calcium ( P = 0.05 ) and bone breaking strength (P = 0.04 ) than chicks fed the basal diet on day 33. In conclusion, the results of the current study indicated that the performance of birds fed diets sup- plemented with dicalcium phosphate, tricalcium phos- phate or defluorinated phosphate was similar and therefore production costs could be lowered by choo- sing the cheapest inorganic phosphorus source when formulating diets for poultry. When diets were formu- lated to meet dietary phosphorus requirements, the growth of broilers was not enhanced with phytase sup- plementation. However, increases in feed conversion and bone breaking strength and its potential to impact culling and mortality in broiler operations may be suf- ficient justification for the routine inclusion of phytase in diets fed to broilers.  相似文献   

16.
The objective of this study was to evaluate the effects of inorganic phosphorus source and phytase addition on performance, nutrient digestibility and bone mineralization in broiler chickens. In Exp. 1, 150 two-day old, male broiler chicks were fed a corn-soybean meal basal diet supplemented with phosphorus provided by dicalcium phosphate, tricalcium phosphate or defluorinated rock phosphate. Five cages containing 10 birds were allotted to each of the three treatments. In Exp. 2, 120 three-day old, male broiler chicks were fed the basal diet from Exp. 1 supplemented with 0, 250, 500, or 1,000 FTU phytase per kg of diet. Six cages containing five chicks were allotted to each of the four treatments. In Exp. 1, there was no difference in weight gain, feed intake or feed conversion as a result of feeding the different sources of inorganic phosphorus. The digestibility of phosphorus was significantly lower (P = 0.01) for chicks fed diets supplemented with tricalcium phosphate than for chicks fed the other two diets.  However, despite the lower digestibility, serum phosphorus levels did not differ among the three treatments. For Exp. 2, feed conversion showed a linear improvement (P = 0.03) with increasing levels of phytase inclusion (days 0 to 33).  Phytase supplementation resulted in linear increases in the digestibility of dry matter (P = 0.02), crude protein (P = 0.04) and energy (P < 0.01).  Chicks fed 1,000 FTU/kg phytase had significantly higher bone calcium (P = 0.05) and bone breaking strength (P = 0.04) than chicks fed the basal diet on day 33. In conclusion, the results of the current study indicated that the performance of birds fed diets supplemented with dicalcium phosphate, tricalcium phosphate or defluorinated phosphate was similar and therefore production costs could be lowered by choosing the cheapest inorganic phosphorus source when formulating diets for poultry. When diets were formulated to meet dietary phosphorus requirements, the growth of broilers was not enhanced with phytase supplementation.  However, increases in feed conversion and bone breaking strength and its potential to impact culling and mortality in broiler operations may be sufficient justification for the routine inclusion of phytase in diets fed to broilers.  相似文献   

17.
Fumaric and sorbic acid as additives in broiler feed   总被引:2,自引:0,他引:2  
The aim of the experiment was to study the effect of dietary organic acids, fumaric and sorbic, on nitrogen corrected apparent metabolisable energy (AME(N)), metabolisability of nutrients, endogenous losses and performance on young broiler chickens. A total of 56 male Ross broilers were used in a growing experiment from 14 to 30d age. Seven experimental wheat-based (655g/kg) diets were formulated. The control diet did not contain organic acids. The other six diets were produced with the addition of fumaric or sorbic acids, replacing 0.5% , 1.0% or 1.5% of the wheat. The organic acid supplemented diets contained higher levels of AME(N) compared to the control diet. Overall, birds offered organic acids had lower feed intake. Dietary organic acids did not significantly affect weight gain or feed efficiency, however, birds offered supplemented diets had lower numbers of Lactic acid bacteria and Coliforms in the ileum and caeca. Birds offered organic acids had lower levels of endogenous losses compared to control fed birds. There was a negative relationship between AME(N) of the diets and excreted endogenous losses, measured as sialic acid. It can be concluded that the decrease in secretions from the gastrointestinal tract in the presence of fumaric and sorbic acids may be a mechanism involved in the mode of action of dietary organic acids.  相似文献   

18.
Considering approaches to efficiently produce broiler chickens, an experiment was conducted to describe the manufacturing and feeding effects of a corn, soybean meal, and wheat based diet with varying levels of corn distillers dried grains with solubles (DDGS) and commercial phytase. Treatments were arranged in a 3 × 2 factorial randomized complete block design varying in phytase (zero, 1,000, and 6,000 FTU/kg) and DDGS inclusion (zero or 5%). Phytase inclusion decreased dietary non-phytate phosphorous (nPP) and total Calcium (Ca) in formulation by 0.12 and 0.1%, respectively. Diets were steam conditioned at 82°C for 10 s, extruded through a 4.7 × 38 mm pellet die, and fed as crumbles (starter and grower) or pellets (finisher). Ten replicate pens of straight-run Hubbard × Cobb 500 chicks consumed one of 6 dietary treatments for 38 days. Phytase improved feed conversion ratio (FCR) in the starter period (P = 0.05), but benefits were not apparent in the grower or finisher periods. Phytase and formulation main effects interacted to affect overall FCR (P = 0.05), demonstrating a 0.05 decrease in FCR when birds were fed a diet containing a super-dose of phytase and without DDGS relative to diets containing a super-dose of phytase and DDGS. The DDGS likely provided reduced nutrient availability relative to their nutrient values used for diet formulation or provided non-starch polysaccharides (NSP) at a level that decreased bird performance. Based on tibia ash measures, performance improvement associated with the super-dose of phytase was likely associated with reducing phytate phosphorus gastrointestinal irritation rather than meeting bird phosphorus requirement.  相似文献   

19.
The effect of dietary phytate and phytase on carbohydrase activity and hexose transport was investigated in broiler chickens. Diets containing phytate P (2.2 or 4.4 g/kg) with different phytase dose rates (0, 500, or 1,000 phytase units/kg) were fed to 504 female Cobb chicks for 3 wk. Diets containing high phytate concentrations depressed (P < 0.05) BW and G:F, whereas phytase supplementation improved (P < 0.05) the performance of birds. In the duodenum, phytate decreased (P < 0.05) the activities of disaccharidases, Na(+)K(+)-ATPase, and glucose concentrations by 5 to 11%, but phytase enhanced (P < 0.05) the concentrations of amylase, sucrase, maltase, Na(+)K(+)-ATPase, and glucose by 5 to 30%. In the jejunum, phytate decreased (P < 0.05) the concentrations of amylase, sucrase, Na(+)K(+)-ATPase, and glucose by 10 to 22%, and phytase alleviated the negative effect of phytate on the above variables. Ingestion of diets containing phytate also decreased (P < 0.05) serum amylase activity and glucose concentration, and phytase enhanced (P < 0.05) serum concentrations of amylase, sucrase, maltase, Na(+)K(+)-ATPase, and glucose. There were also interactions (P < 0.05) between phytate and phytase on the concentrations of serum amylase, duodenal amylase, sucrase, and jejunal glucose. Enzymatic analysis at a molecular level showed that neither phytate nor phytase influenced the mRNA expression of sucrase-isomaltase in the small intestine. Also, the investigation into the sodium glucose cotransporter gene may challenge the mechanism by which phytate interferes with glucose utilization, as partly indicated by bird performance, and transmembrane transport because diets containing increased phytate upregulated (P < 0.05) the mRNA expression of the sodium glucose cotransporter gene in duodenum and did not influence it in the jejunum. These results indicate that phytate can impair endogenous carbohydrase activity and digestive competence, and phytase can ameliorate these effects for chickens.  相似文献   

20.
The overall objective of the studies reported here was to evaluate the growth and nutrient utilization responses of pigs to dietary supplementation of phytate- or nonstarch polysaccharide-degrading enzymes. In Exp. 1, growth performance and nutrient digestibility responses of forty-eight 10-kg pigs to dietary supplementation of phytase or a cocktail of xylanase, amylase, and protease (XAP) alone or in combination were evaluated. The growth response of one hundred fifty 23-kg pigs to dietary supplementation of phytase or xylanase individually or in combination was studied in Exp. 2 in a 6-wk growth trial, whereas Exp. 3 investigated the nutrient digestibility and nutrient retention responses of thirty 24-kg pigs to dietary supplementation of the same enzymes used in Exp. 2. In Exp. 1, the pigs were used in a 28-d feeding trial. They were blocked by BW and sex and allocated to 6 dietary treatments. The treatments were a positive control (PC) diet; a negative control (NC) diet marginally deficient in P and DE; NC with phytase added at 500 or 1,000 phytase units (FTU)/kg; NC with xylanase at 2,500 units (U)/kg, amylase at 400 U/kg, and protease at 4,000 U/kg; and NC with a combination of phytase added at 500 FTU/kg and XAP as above. In Exp. 2 and 3, the 5 dietary treatments were positive control (PC), negative control (NC), NC plus 500 FTU of phytase/kg, NC plus 4,000 U of xylanase/kg, and NC plus phytase and xylanase. In Exp. 1, low levels of nonphytate P and DE in the NC diet depressed (P < 0.05) ADG of the pigs by 16%, but phytase linearly increased (P < 0.05) ADG by up to 24% compared with NC. The cocktail of XAP alone had no effect on ADG of pigs, but the combination of XAP and phytase increased (P < 0.05) ADG by 17% compared with the NC treatment. There was a linear increase (P < 0.01) in Ca and P digestibility in response to phytase. In Exp. 2, ADG was 7% greater in PC than NC (P < 0.05); there were no effects of enzyme addition on any response. In Exp. 3, addition of phytase alone or in combination with xylanase improved (P < 0.05) P digestibility. Phosphorus excretion was greatest (P < 0.01) in the PC and lowest (P < 0.05) in the diet with the combination of phytase and xylanase. The combination of phytase and xylanase improved P retention (P < 0.01) above the NC diet to a level similar to the PC diet. In conclusion, a combination of phytase and carbohydrases improved ADG in 10-kg but not 23-kg pigs, but was efficient in improving P digestibility in pigs of all ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号