首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据其他物种中保守的SOS1基因序列,设计简并引物,利用RT-PCR和RACE的方法克隆得到RcSOS1(NCBI注册号:KX943304.1)基因序列,开放阅读框包含3 432个核苷酸,推导编码的蛋白质有1 143个氨基酸残基组成,与麻疯树SOS1基因的同源性最高,达到了80.4%,编码一种Na~+/H~+逆向转运蛋白。疏水性分析显示RcSOS1基因编码蛋白N-末端具有12个跨膜结构域,C-末端具有一个很长且面向质膜内腔的亲水尾部。RcSOS1蛋白二级结构以α-螺旋,无规则卷曲为主,其次为延伸链和β-转角,所占比例最少。三级结构分析表明,RcSOS1蛋白是位于质膜上的Na~+/H~+逆向转运蛋白。根据RcSOS1全长序列设计带有Bam HⅠ和SalⅠ位点的全长扩增引物扩增基因全长,用Bam HⅠ和SalⅠ双酶切后与表达载体p CG-1301连接,成功构建了RcSOS1基因的正义表达载体,为深入研究RcSOS1基因的功能及耐盐的调控作用提供了帮助。  相似文献   

2.
利用RT-PCR和RACE技术,从珍稀观赏植物金花茶(Camellia nitidissima)花瓣中克隆得到了一个番茄红素ε-环化酶(lycopeneε-cyclase,LCYE)基因c DNA全长,命名为CnLCYE。碱基序列分析显示,CnLCYE基因全长2 149 bp,包含291 bp的5'非翻译区(untranslated regions,UTR)、265 bp的3'UTR和1 593 bp编码530个氨基酸的开放阅读框。该基因编码的蛋白质含有2个跨膜结构域,一个NADB_Rossmann superfamily结构域以及番茄红素ε-环化酶结构域(PLN02697)。CnLCYE蛋白二级结构以无规则卷曲为主,其次为α-螺旋,β-折叠所占比例最少。氨基酸序列比对分析结果显示,CnLCYE与茄科、蔷薇科等植物LCYE蛋白同源性都在70%以上,与普洱茶(Camellia sinensis var.assamica)LCYE同源性最高。根据该CnLCYE全长序列设计带有KpnⅠ和Bam HⅠ位点的全长扩增引物扩增基因全长,用KpnⅠ和Bam HⅠ双酶切后与表达载体p CAMBIA1300连接,成功构建了CnLCYE基因的正义表达载体,为深入研究CnLCYE基因的功能及其对花色的调控作用提供了帮助。  相似文献   

3.
《分子植物育种》2021,19(14):4672-4680
在载体yy449的CaMV 35S minimal启动子序列与LUC基因序列之间增加BglⅡ限制性内切酶位点,构建yy621载体。用PCR的方法分别扩增CaMV 35S minimal启动子序列与LUC基因。引物设计要满足如下条件:CaMV 35S minimal启动子序列扩增片段的上游应包括Bam HⅠ、下游应包括BglⅡ限制性内切酶位点;LUC基因序列扩增片段的上游应包括BglⅡ、下游应包括XbaⅠ限制性内切酶位点。以上两个片段先用BglⅡ限制性内切酶消化后进行连接,得到CaMV 35S minimal启动子序列与LUC基因序列之间含BglⅡ限制性内切酶的识别位点的片段,然后再用Bam HⅠ和XbaⅠ限制性内切酶进行消化,插入到载体yy449的Bam HⅠ和XbaⅠ酶切位点之间,替换原有的CaMV 35S minimal启动子序列与LUC基因序列。经菌落筛选、PCR鉴定和测序验证,阳性菌落中的CaMV 35S minimal启动子序列与LUC基因序列之间包含BglⅡ限制性内切酶的识别位点,载体yy621构建成功。本实验中构建的荧光素酶表达载体yy621,适于今后用抗性相关基因替换LUC基因,测定合成启动子对抗性相关基因的具体调控与赋予植物对不良环境的具体抗性表现,或者用全长启动子序列替换CaMV 35S minimal启动子序列(-46~+1),对进一步观察LUC基因的表达调控具有重要的意义。  相似文献   

4.
为探明大豆中HKT蛋白基因的耐盐作用机理,从耐盐大豆材料中克隆到GmHKT6;2基因完整的cDNA序列,GmHKT6;2基因的开放阅读框(ORF)全长1 644 bp,编码547个氨基酸。序列比对与进化树分析表明:GmHKT6;2是大豆中的一个新HKT蛋白基因;GmHKT6;2基因在大豆的根、茎及叶中均能表达,150 mmol/L NaCl处理后,该基因在大豆根、茎及叶中的表达被强烈诱导并高效表达。结构域分析结果表明:大豆GmHKT6;2基因拥有10个可能的跨膜结构域(TMD)和阳离子转运蛋白保守结构域,推测其是通过调节相关阳离子的转运来调控大豆的耐盐性。  相似文献   

5.
谷胱甘肽转移酶(glutathione transferases,GSTs)在植物抵御逆境胁迫中具有非常重要的作用.从高羊茅叶片中克隆获得FaGST基因,对其进行酶切位点分析,设计酶切引物,通过Bam HI和PstⅠ双酶切将目的基因片段连接在真核表达载体pCAMBIA 1300-35 S上,成功构建pCAMBIA 13...  相似文献   

6.
为探讨蓖麻钙依赖蛋白激酶29基因(RcCDPK29)在蓖麻耐盐中的作用,以蓖麻叶片为材料,设计特异性引物,克隆蓖麻钙依赖蛋白激酶29基因(RcCDPK29),并对所得序列进行生物信息学分析。结果表明,蓖麻钙依赖蛋白激酶29基因(RcCDPK29)序列全长1 590 bp;编码528个氨基酸;蛋白分子量为59.74 ku;等电点(pI)值6.21;是典型的非跨膜蛋白;亲水性数值为负值,属于亲水性蛋白;RcCDPK29蛋白α-螺旋占比最高有228个;RcCDPK29与拟南芥CDPK(SMTL ID:3q5i.1)相似度为40.41%,具有较高可信度(>30%)。将木薯、麻枫树、巴西橡胶树、柑橘、石榴、毛果杨与蓖麻RcCDPK29氨基酸序列进行同源性比对。其中,与麻枫树的同源性最高,为82.29%。RcCDPK29蛋白包含1个Ser/Thr蛋白激酶催化结构域和4个与Ca2+结合的EF-hand型结构域。通过qRT-PCR技术,分析RcCDPK29在不同水平盐胁迫下蓖麻不同组织中的表达,结果表明,RcCDPK29基因主要在茎中表达,盐处理12 h表达量最高。随着盐处...  相似文献   

7.
为了在大肠杆菌中表达抗鹅细小病毒(GPV) NS1蛋白单克隆抗体轻链可变区(VL)和重链可变区(VH)基因,并测定其与NS1蛋白结合活性。对抗GPV NS1蛋白单克隆抗体VL、VH基因核苷酸序列依据大肠杆菌偏爱密码子进行优化,人工合成获得了含有可变区基因的重组质粒pUC57-VL和pUC57-VH。然后用Bam HⅠ/XhoⅠ双酶切pUC57-VL、pUC57-VH,回收340 bp的VL基因和370 bp的VH基因。目的基因通过Bam HⅠ/XhoⅠ多克隆位点分别插入至原核表达载体pET-32a,获得重组质粒pET-VL和pET-VH。重组质粒经Bam HⅠ单酶切和Bam HⅠ/XhoⅠ双酶切及测序鉴定。重组质粒分别转化大肠杆菌Rosetta(DE3),经IPTG诱导,获得了重组蛋白TRX-VL和TRX-VH的表达,分子量分别为30.3,31.4 ku。纯化后的重组蛋白能与His标签单克隆抗体发生特异性结合,鉴定结果表明,获得的纯化蛋白为目的蛋白。间接ELISA分析表明,0.4μg的TRX-VH可与25 ng的GST-NS1蛋白特异性结合而0.4μg的TRX-VL不能与各包被量的GST-NS1蛋白特异性结合,TRX-VH与GST-NS1蛋白的特异性结合可被1∶200稀释的GPV感染鹅血清完全阻断。  相似文献   

8.
 以新疆陆地棉品种新陆早19的DNA为模板,克隆了棉花纤维特异启动子GhCesA4,GenBank登录号:EU183119 ,将启动子基因序列克隆到pMD19-T载体中,由载体通用引物M13-47、RV-M 经PCR鉴定获得pMD19-T/GhCesA4重组载体。测序和序列分析表明,该启动子序列由1503 bp核苷酸组成,与GenBank中GhCesA4基因启动子序列同源性高达98%。分别用限制性内切酶ClaⅠ和BamⅠ双酶切重组质pMD19-T/GhCesA4和双元植物表达载体pBI121,分别回收pMD19-T/GhCesA4重组质粒中的GhCesA4小片段和pBI121 植物表达载体中缺失CaMV35S组成型启动子的大片段,经连接、转化、酶切及测序鉴定,获得由GhCesA4驱动报告基因GUS的新型植物表达载体,命名为pBI-GhCesA4  相似文献   

9.
在耐盐相关基因芯片基础上,我们筛选到盐诱导显著上调表达(Ratio>2)的N-乙酰氨基葡糖转移酶基因.选取耐盐材料中9806为材料,根据耐盐性抑制消减文库EST序列设计引物,利用RACE及RT-PCR技术获得该基因cDNA全长1970 by,命名为GhGnT.通过Blast比对,发现该基因与蓖麻乙酞氨基葡萄糖转移酶基因...  相似文献   

10.
液泡膜型钠氢逆向转运蛋白(Tonoplast Na~+/H~+antiporters,NHX)在植物耐盐方面具有重要意义。本研究利用RACE方法克隆了蓖麻Rc NHX2基因的3'端和5'端片段。最后设计全长引物获得蓖麻Rc NHX2全长序列,并对其进行生物信息学分析。结果表明,蓖麻液泡膜型钠氢逆向转运蛋白基因的c DNA完整的开放阅读框序列为1 626 bp,推测其可编码541个氨基酸;含有典型的液泡膜型钠氢逆向转运蛋白典型的Na~+/H~+交换泵(~(50)NES~(52))和氨氯吡嗪咪的结合位点(~(84)LFFIYLLPPI~(93));存在12个跨膜结构域,属于跨膜蛋白;预测其定位于细胞质膜和液泡膜及内质网膜。  相似文献   

11.
肉桂醇脱氢酶(cinnamyl alcohol dehydrogenase, CAD)在木质素生物合成中有着重要作用,为了探讨辣椒中CAD基因在木质素合成中的作用,本研究利用RT-PCR方法从黄灯笼辣椒幼嫩叶片中克隆得到CAD1基因全长cDNA,命名为CcCAD1。序列分析表明,CcCAD1 cDNA序列全长1 074 bp,编码357个氨基酸。同源比对显示其与番茄CAD1蛋白的一致性高达96.09%。荧光定量PCR检测结果显示,CcCAD1基因在辣椒根、茎、叶、胎座和果肉中的表达量差异显著,其相对表达量为叶果肉茎根胎座。利用Bam HⅠ和SacⅠ双酶切连接成功构建pBI121-CcCAD1植物表达载体,为CcCAD1基因转化以及后续的功能分析提供依据。  相似文献   

12.
植物HKT转运蛋白研究进展   总被引:4,自引:2,他引:2  
HKT(high—affinity K^+ transporter)转运蛋白即高亲和K^+转运载体,是与植物耐盐胁迫有关的一类Na^+或艮转运体或Na^+-K^+共转运体。根据HKT类蛋白的结构及具体功能的不同该家族可以分成两个亚家族,亚家族1最重要的功能区域所含氨基酸为丝氨酸,是Na^+特异性载体,而亚家族2在该点则是甘氨酸,是Na^+-K^+的协同运输体或Na^+-K^+的单一转运体。具体到不同基因,不同植物,以及不同环境条件下HKT的具体作用不尽相同。本文综述了近年来国内外对HKT类蛋白的研究成果与进展,涉及到HKT家族的命名,亚家族的分类,HKT家族各个基因同源性以及其表达部位等。对HKT的深入研究对提高作物K^+的利用效率,减少盐渍危害,具有十分重要的意义。  相似文献   

13.
热激蛋白(heat shock proteins,HSP)是生物体在不利环境条件因素刺激下应激合成的一组在进化上高度保守的蛋白质。前期转录组测序的结果发现马铃薯Favorita的小热激蛋白(small heat shock proteins,s HSPs)基因(PGSC0003DMG400009255)在接种晚疫病菌(Phytophthora infestans)24 h后表达量显著上调。因此,以马铃薯Favorita为材料,根据PGSC0003DMG400009255基因序列设计引物,并在引物5'端加上Bam HⅠ和SalⅠ酶切位点,从接种P.infestans 24小时后的Favorita的RNA中通过RT-PCR的方法获得PGSC0003DMG400009255的基因片段,并命名为s HSP-F,该基因最大开放阅读框(ORF)为594 bp,编码197个氨基酸。通过酶切连接将s HSP-F连接至表达载体p CAMBIA1301中。通过测序和酶切验证,表明s HSP-F基因成功克隆到表达载体中,该工作为进一步研究该基因的功能提供了基础。  相似文献   

14.
以马蔺幼根总RNA为模板,通过RT-PCR方法扩增得到马蔺H+-PPase全长序列并克隆到p MD19-T载体,命名为Il VP。序列分析表明该基因的开放阅读框为2 316 bp,编码771个氨基酸,推测等电点为5.16,分子量为80.7 k D,所得到的序列与Gen Bank中注册的高等植物液泡膜H+-PPase的核苷酸序列相比,其同源性均达到70%以上,其氨基酸序列的同源性则达到79%以上。用SmaⅠ和SacⅠ分别对目的基因质粒和植物表达载体p BI121进行双酶切,在DNA连接酶的作用下进行定向连接,构建成植物重组质粒p BI121-35S-Il VP-Nos,再转入根癌农杆菌EHA105中,为该基因在烟草等植物中遗传转化和基因功能研究奠定基础。  相似文献   

15.
根据GenBank已公布的种子特异性的Oleosin蛋白基因启动子序列设计合成引物,利用PCR技术从油菜总基因组DNA中扩增出Oleosin基因启动子序列(SOP),将该序列克隆到pGM-T载体中,经鉴定获得pGM-T-SOP重组载体。测序和序列分析表明,该启动子序列由899 bp核苷酸组成,其核苷酸序列与GenBank中的Oleosin基因启动子序列同源性高达95.6%。分别用限制性内切酶HindⅢ和BamH I双酶切重组质粒pGMT-SOP和双元植物表达载体pBI121,分别回收pGMT-SOP重组质粒中的SOP小片段和pBI121植物表达载体中去掉CaMV35S组成型启动子的大片段,经连接、转化和鉴定,获得由SOP驱动报告基因GUS的新型植物表达载体pBI121-SOP,为外源基因在油菜种子中的定位表达研究奠定基础。  相似文献   

16.
RACE技术是一项扩增基因末端序列的新技术。本研究以蓖麻籽的RNA为模板,以Gen Bank上FAH12基因序列设计特异引物,运用RT-PCR和RACE技术扩增并获得了特异片段。该片段经PCR、酶切和测序验证,证实所克隆序列为蓖麻FAH12的cDNA全长序列。生物信息学分析,此片段包含1 164 bp组成的开放读码框(ORF),编码387个氨基酸,分子量为44 426.21 Da,p I=8.95。同源性分析结果表明,它与麻疯树、陆地棉、百脉根和杏的FAH12基因的同源性均高于70%。构建了系统进化树,蓖麻和麻风树、橡胶、木薯聚类到一起,这与生物学分类相同,都为大戟科植物。成功克隆蓖麻FAH12基因c DNA全长,这为后续进一步的分子生物学研究提供了帮助。  相似文献   

17.
本研究根据截形苜蓿(Medicago truncatula)根部的几丁质酶基因保守序列(GenBank登录号:AF167328)设计引物,通过RT-PCR直接扩增的方法得到了紫花苜蓿(Medicago Sativa L.)根部几丁质酶基因保守序列.根据得到的保守序列设计3'端和5'端特异引物,分别从3'端和5'端扩增延长该片段,最后通过序列拼接获得紫花苜蓿根部一种几丁质酶基因的全长cDNA序列,命名为MsChiⅣ(GenBank登录号:FJ487629).MsChiⅣ基因全长为1 025 bp,开放性阅读框全长为849 bp,编码282个氨基酸,分子量为30.5 kD,预测等电点为4.66,其结构包括信号肽、几丁质结合区、糖苷水解酶区,为Ⅳ类几丁质酶,属于几丁质酶第19家族,在氨基酸水平上与截形苜蓿几丁质酶蛋白同源性最高,达到98%.蛋白结构分析表明该基因编码蛋白为非跨膜蛋白,存在于细胞质中.  相似文献   

18.
为探讨RcCNGC2在蓖麻耐盐中的作用,以通蓖5号叶片为材料,克隆获得环核苷酸门控离子通道RcCNGC2完整编码区序列(CDS),并对该序列进行序列比对、蛋白结构分析,构建多元表达载体,分析了在盐胁迫下蓖麻RcCNGC2基因根、茎、叶组织中6个时间点的表达量变化。结果显示,RcCNGC2 CDS长度为2 148 bp,编码715个氨基酸,蛋白分子量为34.15 ku,等电点为9.96,存在5个跨膜结构域。氨基酸序列一致性分析表明,RcCNGC2与橡胶树一致性最高,达89.15%。qRT-PCR分析结果显示,NaCl处理后RcCNGC2表达量在根中上调且差异显著,在茎、叶中随NaCl处理时间延长而显著减少。综上,RcCNGC2在蓖麻受到盐胁迫时起重要信号传导作用。  相似文献   

19.
本研究根据GenBank公布的木霉几丁质酶基因(chitinase)序列设计一对引物,采用RT-PCR方法从木霉(Trichoderma spp.)中克隆获得了几丁质酶基因全序列,编码区共1275bp,推测其编码424个氨基酸,该基因与哈茨木霉(Trichoderma harzianum)的内切几丁质酶基因chit42(GenBank accession No.L14614)具有99%的同源性。在此基础上,将获得的几丁质酶基因从pGEM-T载体中用XbaⅠ和BamHⅠ切下,克隆到pBI121植物表达载体的XbaⅠ和BamHⅠ位点,构建了植物表达载体pBI-chit并将其转入根癌农杆菌菌株EHA105。该菌株转化野生蕉(Musa itinerans Cheesm.)胚性细胞悬浮系,经过抗性筛选、胚的诱导和萌发,获得成熟体细胞胚和再生苗。通过GUS组织化学法检测和PCR方法鉴定,结果表明外源基因已经成功转入到野生蕉中。本研究为下一阶段转化香蕉栽培品种和筛选抗香蕉枯萎病新种质奠定一定的基础。  相似文献   

20.
阳离子转运载体HKT(high-affinity K~+transporter)类蛋白既是高亲和的K~+转运载体,也是一种Na~+转运体,具有Na~+和K~+转运的双重功能,对调节细胞内Na~+/K~+动态平衡起着决定性作用。胡杨长期生长在盐渍化和干旱的土壤环境,对高盐和干旱形成了极强的适应能力,是典型的耐盐抗旱植物,成为研究多年生林木抗逆适应机制的理想材料。以胡杨根系为材料,本研究克隆鉴定了一个胡杨Peu HKT1基因,该基因含有3个外显子和2个内含子;其c DNA全长为1 076 bp,包括13 bp的5'端非翻译区(5'UTR)和232 bp的3'端非翻译区(3'UTR);长831 bp的开放阅读框(open reading frame,ORF)可编码276个氨基酸;其编码蛋白含有丰富的α-螺旋,存在多个跨膜结构域,蛋白质相对分子量(MW)为31.54 k D;理论等电点(p I)9.36;实时定量PCR技术构建了Peu HKT1基因在高盐胁迫条件下的动态表达模式,探讨了该基因参与胡杨高盐胁迫响应的信号转导途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号