首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用简单重复序列(SSR)分子标记技术,对19份分别来源于同一花序的贵州野生白三叶样品进行遗传多样性及亲缘关系研究。结果表明,利用20对引物共扩增出207个条带,其中178个条带具有多态性。20对引物多态性位点的比例为76. 92%~92. 31%,平均多态性为85. 99%。20对引物对19份白三叶材料SSR的PCR扩增条带的多态信息含量为0. 380 6~0. 499 7,平均为0. 463 2。在相似系数为0. 60时,把19份白三叶材料划分为3大类。第1类是W18,最早被分开独立成一类,从SSR标记来看,W18与其余材料的亲缘关系较远。第2类包括W2和W13,表明这2个居群间亲缘关系较近,遗传差异不大。第3类为剩下的16个品种,居群间的遗传关系较复杂。  相似文献   

2.
基于SSR标记的茶树新品种遗传多样性分析及指纹图谱构建   总被引:1,自引:0,他引:1  
采用EST-SSR标记对14个茶树新品种进行了遗传多样性分析和分子指纹鉴定。结果表明:10个SSR标记在14个品种中共检测到29个等位基因,平均每个标记2.9个,PIC和遗传多样性指数平均值分别为0.387和0.756,参试品种中多态性适中。不同等位基因的出现频率有较大差异,其变异范围在3.57%~89.29%。参试品种的Nei′s遗传距离(D)在0.036~0.472之间,当D=0.12时,可将14个茶树品种聚为三类。利用4个核心标记即可区分全部14个品种,并根据获得的等位基因带型,构建了各个品种的分子指纹图谱。  相似文献   

3.
为了解重庆市玉米自交系的遗传多样性,提高育种效率,利用32对 SSR引物对66份玉米自交系进行检测,分析其遗传相似系数,并进行聚类分析,掌握材料间的亲缘关系。结果表明:1)共检测出307个条带,每对引物检测到条带4~25个,平均9.59个,其中多态性条带占80.78%;多态性信息量(PIC 值)变幅为0.516~0.988,平均为0.721;供试自交系间遗传相似系数变化范围为0.54~0.88,平均0.68,遗传相似系数在0.60~0.70间分布最多,占60.33%,供试材料亲缘关系较近,但也有一定的遗传差异。2)聚类分析将供试材料分为6大类群,其中,改良 Reid 群和旅大红骨类群分别占24.24%和60.60%。  相似文献   

4.
5.
利用SSR标记对高州野生稻遗传多样性的研究   总被引:4,自引:0,他引:4  
利用24对SSR引物比较了来自我国广东高州、江西、福建、云南等地区及东南亚国家共计240份普通野生稻材料的遗传多样性。结果表明,24对引物中平均有17个位点表现出多态性,平均多态位点比率为69%;平均总等位基因数、平均每个位点的等位基因数、多态位点的平均等位基因数分别为51、2.04、2.43个,平均基因多样性为0.8447。指出高州野生稻5个居群间已经出现了较显著的分化,高州镇江镇朋山村普通野生稻的遗传多样性最高。  相似文献   

6.
SSR标记分析谷子遗传多样性   总被引:10,自引:0,他引:10  
简单重复序列(SSR)是进行遗传多样性研究的一种有效分子标记。选用来自山西、西藏、黑龙江等省区的品种共96份,利用SSR分子标记技术,引用小麦的SSR引物进行扩增,采用聚类分析方法对供试材料进行了遗传多样性分析。从100多对引物中筛选到5对有多态性、扩增稳定、重复性好的引物,34个多态位点的平均PIC值为0.7324,96份材料被聚成5大类。  相似文献   

7.
利用25对SSR分子标记对30份陕西茶树紫阳群体种种质和9份茶树对照品种的遗传多样性进行了研究,结果共扩增出清晰、稳定条带236条,平均每对标记扩增9.44条,其中多态性条带数为225条,多态率达95.34%。茶树紫阳群体种不同种质间的遗传距离在0.195~0.736之间,平均遗传距离为0.591,其中ZY01与ZY18之间的遗传距离最大(0.736),亲缘关系最远;ZY10与ZY12之间的遗传距离最小(0.195),亲缘关系最近。当遗传距离为0.640时,可将39份茶树材料聚类为13类,其中30份茶树紫阳群体种种质被聚为10类。结果表明安康茶树紫阳群体种种质资源的遗传多样性较高。  相似文献   

8.
9.
为明确糯玉米自交系间的亲缘关系,利用19对简单重复序列(SSR)标记对32份糯玉米自交系进行遗传多样性分析,共检测到80个等位基因变异,每个位点可检测到2~7个等位基因变异,平均每个位点检测到4.21个。通过NTSYS聚类分析方法,在遗传相似系数为0.53处将32份糯玉米自交系划分为6个类群,分别包含3份、2份、11份、11份、2份和3份,其中亲缘关系较近的白糯6和突变体N17聚在了一起,3个杂交种(郑黄糯2号、石彩糯和京科糯)的父母本被划分在不同的类群中,进一步从分子水平上揭示了亲本种质的遗传差异与玉米杂种优势的关系,为玉米育种和改良奠定了理论基础。  相似文献   

10.
为了解无翼坡垒(Hopea reticulate Tardieu)的遗传多样性和不同龄级间的遗传结构,利用11对微卫星标记评估海南省甘什岭保护区的无翼坡垒的遗传多样性,并根据胸径将无翼坡垒划分为幼龄、中龄和成熟龄3个龄级,明确不同龄级间的遗传差异,探究其濒危机制,并从遗传角度提出保护策略。结果表明:无翼坡垒的等位基因数(Na=3.636)和期望杂合度(He=0.599)低于同属的非濒危种H. dryobalanoides(Na=5.600,He=0.678),明显高于同属且同域分布的另一濒危种坡垒(Na=2.417,He=0.432),但不同龄级的遗传多样性没有明显差异。无翼坡垒低频等位基因的比例明显低于龙脑香科的非濒危种,揭示种群很可能经历了瓶颈,种群规模缩小导致大量低频等位基因丢失。由于本种在甘什岭集中分布,现存个体数量比零星分布的坡垒更多,因此,遗传多样性较坡垒略高。基于微卫星变异研究的结果,建议在维持无翼坡垒现有变异的基础上,通过人工抚育,促进种群更新,恢复遗传多样性和进化潜力,实现无翼坡垒的稳定续存。  相似文献   

11.
为促进萝卜种质资源保存以及萝卜品种改良,分别以白萝卜品种734、理想大根、大将军、黄州萝卜和红萝卜品种红宝、红园、七叶红、262和一尺红为试验材料,利用SSR对上述萝卜地方品种以及常规品种开展遗传多样性研究。首先对上述萝卜材料的田间性状(叶型、皮色)进行了观察,进而利用筛选得到的9对SSR(微卫星DNA,简单重复序列)引物对上述萝卜样品进行检测。结合电泳条带和NTSYS软件对九种萝卜的遗传多样性进行分析。结果显示9个品种之间被分为两大类群,类群一包括除七叶红之外的8个品种,且每个品种在不同的相似系数间表现出了多样性,类群二则仅包括七叶红。第一个类群内又有两个明显的分支,其中一个分支包括理想大根、724、大将军、黄州萝卜4种,其皮色表现为白色;另一个分支包括一尺红、红宝、262和红园4种,其皮色表现为红色,与田间观察的情况一致。  相似文献   

12.
探究以贵州为主的西南地区朝天椒种质遗传多样性,为朝天椒种质的保续、利用与分子标记辅助选择提供准确参考依据。利用20个SSR(简单串联重复序列)分子标记,对112份西南地区朝天椒种质资源进行遗传多样性分析。结果表明,20对SSR引物共检测出65个等位变异,每对引物的等位变异为2~4个,平均每对引物3.25个等位变异,平均有效等位基因数为1.829 4,平均多态性信息量(PIC)为0.544 0,平均Shannon’s信息指数(I)为0.723 4,观测杂合度(Ho)、期望杂合度(He)、Nei’s期望杂合度的平均值分别为0.492 0、0.433 7、0.431 8,所筛选出的20对SSR引物多态性较高,能较好地反映朝天椒不同地方种间的遗传多样性信息。聚类结果表明,供试材料居群间遗传相似系数(GS)值为0.569 2~0.953 8,平均值为0.773 3,朝天椒种质间的遗传相似性相对较高,材料间的亲缘关系比较接近。在GS值0.767 0处将供试材料分为4类,显示出112份朝天椒材料总体情况与地理分布有一定关联,但也存在区域间和省内外间的互相渗透,每个类别均聚集了不同地理来源的种质。  相似文献   

13.
[目的]应用SSR分子标记对8个油棕品种进行遗传结构及多样性分析,以期通过分析具有高杂合度油棕品种的遗传结构来辅助育种.[方法]利用SSR分子标记及PCR银染显色技术筛选多态性引物,分析8个油棕品种的等位基因频率(P)、观测杂合度(Ho)和期望杂合度(He),计算每个转座子的平均等位基因(Na)、每个多态转座子的平均等位基因数(Na/pl)及有效等位基因数(Ne),计算固定指数(Fis)和F-统计量值(Fit和Fst),并基于遗传距离对8个油棕品种进行聚类分析.[结果]开发出27对多态性SSR引物,从中选取15对结果较好的多态性引物对油棕大样本进行检测,挖掘出57个等位基因(Na),平均每个转座子的Na为3.8个,表明8个油棕品种的遗传变异较明显.平均有效等位基因数(Na)和期望杂合度(He)分别为0.6248和0.5902.此外,发现一个高水平的种群分化,F-统计量值(Fst)变化范围为0.1029~0.6010,平均为0.3664.利用多态性SSR分析8个油棕品种的遗传距离,结果发现品种1和品种3的遗传距离最远(1.674),品种3和品种5的遗传距离最近(0.065).[结论]8个油棕品种的多态性相对丰富,物种间杂交程度较小,物种亲缘关系较远,遗传多样性良好.  相似文献   

14.
甜瓜SSR标记遗传多样性的研究   总被引:12,自引:2,他引:12  
采用50对SSR特异引物对甜瓜栽培品种(系)进行分析,其中48对扩增出谱带,46对引物具有多样性。扩增带分子量在250 ̄1750bp之间,187条谱带中有130条谱带具有多态性(占69.52%),平均每个引物可扩增出3.729条带。46份材料经过NTSYS软件分析后分为9组,从9组中再选取21个具有代表性材料重新进行聚类,应用NTSYS软件的立体旋转模拟分析和聚类分析两种方法。结果表明,21份材料分为8组,15份材料具有相同的分析结果,6份材料具有不同的分析结果。聚类结果显示21份材料可分为绿麻瓜类、黄白皮瓜类、白皮瓜类、面瓜类、菜瓜类等几个类型,基本与形态学分类相似,但也有特殊性,如花皮面瓜聚到绿麻瓜一类中。分析结果说明这两种方法具有各自的特点,要根据研究目的来选择和确定分析方法。此外,运用分子标记的方法可以提高甜瓜栽培品种多样性分析的准确性。  相似文献   

15.
为了贵州古茶树资源的有效保护和充分利用提供理论依据,采用EST-SSR标记对40份贵州古茶树资源进行了遗传多样性分析和分子指纹鉴定。结果表明:20个SSR标记在40份资源中共检测到76个等位基因,平均每个标记3.8个,PIC和Shannon信息指数平均值分别为0.462和0.936,多态性适中。76个等位基因在参试古茶树资源中的出现频率差异较大,变异范围为1.32%~89.74%。参试材料的Nei's遗传距离(D)为0.075~0.875,当D≈0.160时,40份古茶树资源可聚为6类,包括3个单独聚类和3个复合聚类。利用4个核心标记即可鉴定40份古茶树资源,并根据等位基因带型,获得18位数的分子指纹图谱号码,构建每份资源的分子指纹图谱。  相似文献   

16.
利用8对SSR分子标记引物分析了安徽黄山地区40份野生刺葡萄资源的遗传多样性,结果表明:8对SSR引物扩增的等位基因数(Na)为36个,每个引物扩增等位基因数(Na)为2~10个,有效等位基因数(Ne)为1.285~5.378个;观测杂合度(Ho)为0.250~0.775,期望杂合度(He)为0.224~0.824;Nei’s多样性指数(H)为0.222~0.814;香农多样性指数(I)为0.417~1.884;多态性信息含量(PIC)为0.202~0.789。依据地理位置将黄山地区刺葡萄资源分为3个群体(POP1,POP2,POP3),3个群体之间遗传相似度为0.829~0.912,遗传距离为0.093~0.188,表明黄山地区刺葡萄资源的遗传差异较少。通过UPGMA方法对黄山地区40份刺葡萄和湖南、福建的3份刺葡萄进行聚类,在遗传相似系数为0.62时,黄山地区刺葡萄聚为一类,湖南、福建的刺葡萄聚为一类。这些结果表明,刺葡萄的基因流限制于短距离,黄山地区刺葡萄主要以有性繁殖为主。  相似文献   

17.
评价了桃种质资源的遗传多样性水平及遗传结构,为其保存提供理论依据。利用12对SSR引物对53份桃种质资源进行了遗传多样性分析,利用Neighbor-Joining聚类对其遗传结构进行了分析比较。结果表明:(1) 12对引物在53个样品中的平均等位基因数(Na)为7.917,Shannon多样性指数(I)为1.409,平均有效等位基因数(Ne)为3.399,平均观察杂合度(Ho)为0.657,期望杂合度(He)平均值为0.678。(2)基于Nei距离的Neighbor-Joining聚类分析表明:53个桃样品被分为3个组,同时能清楚地鉴别出同物异名的种质资源。由此可知,供试的桃种质资源表现出较高的遗传多样性水平;大部分遗传关系较近的品种以及部分形态学性状相近的品种聚在一类,说明聚类分析结果与系谱及生物学特征具有一定的关联性,同时聚类结果与品种的地理分布具有一定相关性。  相似文献   

18.
利用13对SSR引物对47份李种质资源进行了遗传多样性分析,结果表明:13对引物在47个样品中的平均等位基因数(Na)为10.846,有效等位基因数(Ne)平均值为4.806,观察杂合度(Ho)平均值为0.746,平均期望杂合度(He)为0.774,Shannon多样性指数(I)平均值为1.817,说明供试的李种质资源具有较高的遗传多样性。基于Nei距离的Neighbor-Joining聚类分析结果表明:47个李样品被分为3个组,同时能够清楚地鉴别出同物异名的种质资源。基于贝叶斯方法的STRUCTURE聚类分析进一步证实了这一结果。表明日本和美国的李品种与我国南方李品种群亲缘关系较近。  相似文献   

19.
评价了桃种质资源的遗传多样性水平及遗传结构,为其保存提供理论依据。利用12对SSR引物对53份桃种质资源进行了遗传多样性分析,利用Neighbor-Joining聚类对其遗传结构进行了分析比较。结果表明:(1) 12对引物在53个样品中的平均等位基因数(Na)为7.917,Shannon多样性指数(I)为1.409,平均有效等位基因数(Ne)为3.399,平均观察杂合度(Ho)为0.657,期望杂合度(He)平均值为0.678。(2)基于Nei距离的Neighbor-Joining聚类分析表明:53个桃样品被分为3个组,同时能清楚地鉴别出同物异名的种质资源。由此可知,供试的桃种质资源表现出较高的遗传多样性水平;大部分遗传关系较近的品种以及部分形态学性状相近的品种聚在一类,说明聚类分析结果与系谱及生物学特征具有一定的关联性,同时聚类结果与品种的地理分布具有一定相关性。  相似文献   

20.
基于SSR标记的中美紫花苜蓿品种遗传多样性研究   总被引:2,自引:0,他引:2  
【目的】紫花苜蓿是世界上最重要的栽培牧草。传统的育种方式对其产量及品质的改良幅度多年来徘徊不前,已经远远不能满足生产需要。对于品种的改良,一方面依赖于所掌握资源的数量,另一方面则是对其农艺性状遗传基础的了解程度。本试验基于SSR分子标记,研究现有中美两国的紫花苜蓿品种遗传变异,分析两国紫花苜蓿种质资源的遗传多样性和群体结构,为利用全基因组关联分析发掘紫花苜蓿重要产量与品质性状显著关联的优异标记、等位位点提供基础,为分子育种提供信息,加快育种进程。【方法】利用覆盖紫花苜蓿全基因组的40对SSR分子标记(每条染色体上选取3-9对SSR标记),采用基于测序的基因型鉴定技术对中美16个紫花苜蓿主栽品种的100个基因型个体(中国每个品种8个基因型个体,美国每个品种4个基因型个体)进行全基因组扫描分析。利用基于混合模型的Structure软件分析紫花苜蓿的群体结构。设定群体数K的估计值范围为1-6,将MCMC(Markov chain monte carlo) 开始时的不作数迭代(length of burn-in period) 设为10 000次,将不作数迭代后的MCMC设为100 000次,每个K值重复数为10次。采用了两种方法来确定最优的群体数K的值,结果由Structure Harvester和Distruct软件来展示。对Structure群体结构结果进一步用主成分分析和聚类分析进行验证。根据群体结构结果,对全体材料及不同群体进行遗传多样性分析。【结果】40对覆盖紫花苜蓿全基因组的SSR分子标记共检测到446个等位基因,每个位点等位基因范围为3-27个,平均每个位点等位基因数为11.2个;基因多样性的变异范围为0.542-0.908,平均值为0.742;多态信息含量的变异范围为0.493-0.901,平均值为0.707。这些参数显示了中美紫花苜蓿所包含的遗传多样性信息含量较高。其中,mtic238、mtic188、bf111、afctt1、bf641851、maa660456、aw361等位点上表现较高的遗传多样性,表明这些位点可以较好地反映中美紫花苜蓿品种的遗传多样性,适用于中美紫花苜蓿品种的遗传多样性检测。就不同染色体而言,第二条和第八条染色体上分布的SSR标记揭示的遗传多样性较高,而第一条相对较低。基于混合模型的方法对紫花苜蓿全体基因型进行群体结构分析,两种不同方法均显示确定最优的群体数K值为2,中美两国16个紫花苜蓿品种共100个基因型个体基本按照来源分为两个亚群体,群体间有少量混杂的情况发生。主成分分析和聚类分析与群体结构的分析结果相一致。中国紫花苜蓿品种多样性略高于美国,但差异不显著。【结论】中美两国紫花苜蓿材料蕴含了比较丰富的遗传变异,显示了较高水平的基因多样性。中美群体间的遗传多样性水平存在一定的差异,中国紫花苜蓿种质多样性水平略高于美国。群体结构不严格按照来源国家的划分而区分,这一现象与紫花苜蓿异花授粉与广泛的基因交流有着密切的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号