首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 613 毫秒
1.
建立了超高效液相色谱-二极管阵列检测器检测二氰蒽醌和吡唑醚菌酯在苹果中残留量的分析方法,并对2种农药在苹果中的消解动态及最终残留量进行了研究。结果表明:在0.1~5 mg/kg添加水平下,二氰蒽醌和吡唑醚菌酯在苹果中的平均回收率为72%~98%,相对标准偏差为2.0%~9.7%;2种农药在苹果中的定量限均为0.1 mg/kg。二氰蒽醌和吡唑醚菌酯在苹果中的消解半衰期分别为3.0~6.5 d和13.5~23.6 d。采用16%唑醚·氰蒽醌水分散粒剂对水施药有效成分质量浓度为0.43和0.64 g/L,分别施药3~4次,距最后一次施药21 d时,苹果中二氰蒽醌残留量为 < 0.1~0.80 mg/kg,吡唑醚菌酯残留量为 < 0.10~0.34 mg/kg,均低于中国国家标准中规定的苹果中二氰蒽醌和吡唑醚菌酯最大残留限量值5.0 mg/kg和0.5 mg/kg。建议采用16%唑醚·氰蒽醌水分散粒剂在苹果上的最大施药剂量为有效成分质量浓度0.43 g/L,施药间隔期7 d,最多施药3次,安全间隔期为21 d。  相似文献   

2.
吡唑醚菌酯在杨梅和土壤中的残留及消解动态   总被引:1,自引:0,他引:1  
为明确吡唑醚菌酯在杨梅和土壤中的残留消解规律和最终残留量,于2017年在浙江、重庆、湖南和云南4地进行了吡唑醚菌酯在杨梅及土壤中的田间残留及消解动态试验。建立了超高效液相色谱-串联质谱检测吡唑醚菌酯在杨梅和土壤中残留的分析方法。样品经乙腈水溶液提取,N-丙基乙二胺 (PSA) 和C18净化,利用超高效液相色谱-串联质谱仪 (UPLC-MS/MS) 进行检测。结果表明:在0.0005~0.5 mg/L范围内,吡唑醚菌酯的质量浓度与其峰面积间呈良好的线性关系,相关系数均大于0.99。在0.01、0.5和5.0 mg/kg添加水平下,吡唑醚菌酯在杨梅中的回收率为92%~97%,相对标准偏差 (RSD) 为1.0%~2.7%;在土壤中的回收率为86%~96%,RSD为1.5%~4.1%。吡唑醚菌酯在杨梅和土壤中的定量限 (LOQ) 均为0.01 mg/kg。田间试验结果表明:吡唑醚菌酯在杨梅和土壤中的消解动态均符合一级反应动力学方程,在杨梅中的半衰期为6.6~11.8 d,在土壤中的半衰期为5.0~11.1 d。采用60%唑醚 ? 代森联水分散粒剂分别按有效成分800 mg/kg和1200 mg/kg施药3、4 次,分别于距离最后一次施药21、25和28 d采样检测发现,吡唑醚菌酯在杨梅中的最高残留量为1.4 mg/kg,均低于中国规定的其在杨梅上的最大残留限量(3.0 mg/kg)。建议采用60%唑醚 ? 代森联水分散粒剂有效成分最高使用剂量为800 mg/kg,施药间隔期7 d,最多施药3 次,采收安全间隔期为21 d。  相似文献   

3.
壬菌铜和吡唑醚菌酯在苹果和土壤中的残留及消解动态   总被引:2,自引:2,他引:0  
建立了同时测定苹果及其土壤中壬菌铜和吡唑醚菌酯残留的分散固相萃取-高效液相色谱-串联质谱(DSPE-HPLC-MS/MS)方法,并采用该方法研究了24%吡唑醚菌酯·壬菌铜微乳剂在苹果和土壤中的残留及消解动态。其中壬菌铜以硫化钠为破络剂,将其转化为壬基酚磺酸后进行检测。样品用乙腈提取,同时加入硫化钠,经N-丙基乙二胺(PSA)净化后,采用C18色谱柱,以甲醇-水为流动相梯度洗脱分离,于多反应监测模式下经正负离子同时扫描进行定性,基质匹配标准曲线外标法定量。结果表明:在0.1~10 mg/kg添加水平下,壬菌铜在苹果及土壤中的回收率范围为92%~103%,相对标准偏差(RSD)为1.3%~5.1%;在0.01~1 mg/kg添加水平下,吡唑醚菌酯在苹果及土壤中的回收率范围为96%~105%,RSD为2.4%~4.6%。苹果及土壤中壬菌铜和吡唑醚菌酯的最低检测浓度(LOQ)分别为0.1和0.01 mg/kg。2014-2015年,中国宁夏、北京和山东两年三地的田间残留试验表明:壬菌铜在苹果和土壤中的消解半衰期分别为2.7~5.4和2.0~5.8 d,吡唑醚菌酯在苹果和土壤中的消解半衰期分别为4.3~8.3和3.6~10.2 d;采用24%吡唑醚菌酯·壬菌铜微乳剂,分别按推荐剂量(有效成分300 mg/kg)和推荐剂量的1.5倍(有效成分450 mg/kg)于苹果幼果期施药,最多施药4次,距末次施药14 d时,壬菌铜在苹果中的最大残留量为0.31 mg/kg,远低于日本规定的最大允许残留限量(MRL)值(5 mg/kg),吡唑醚菌酯在苹果中的最大残留量为0.27 mg/kg,低于中国规定的MRL值(0.5 mg/kg)。  相似文献   

4.
采用乙腈提取、固相萃取净化和高效液相色谱法,分析测定了啶虫脒在露地和大棚2种种植条件下黄瓜和土壤中的残留及消解动态。结果表明:9%啶虫脒可湿性粉剂同时在露地和大棚中按有效成分30.375 g/hm2剂量(推荐高剂量的1.5倍)施药1次,啶虫脒在露地和大棚黄瓜及其土壤中的原始沉积量分别为0.20、0.13 mg/kg和0.29、0.14 mg/kg,露地黄瓜和土壤中的原始沉积量均分别低于大棚;相应地,啶虫脒在黄瓜和土壤中的半衰期分别为9.7、9.4 d(露地)和10.1、11.9 d(大棚)。9%啶虫脒可湿性粉剂同时在露地和大棚中按有效成分20.25 g/hm2和30.375 g/hm2的剂量施药1次和2次,在相同施药剂量、施药次数和采收间隔期情况下,除个别情况外,露地黄瓜中啶虫脒的最终残留量均低于大棚,分别为0.01~0.05 mg/kg(露地)和0.01~0.09 mg/kg(大棚)。  相似文献   

5.
黄瓜中醚菌酯的残留及风险评估   总被引:1,自引:1,他引:0  
建立了醚菌酯在黄瓜中的残留分析方法,并在广州和天津进行了30%醚菌酯可湿性粉剂在黄瓜上残留的田间试验,研究了醚菌酯在黄瓜上的消解动态和最终残留,采用风险商值法对黄瓜中醚菌酯可能产生的膳食风险进行了评估。黄瓜样本用乙腈提取,高效液相色谱-串联质谱法(HPLC-MS/MS)检测。在添加水平为0.01、0.05和0.5 mg/kg时,平均添加回收率在91%~95%之间,相对标准偏差为3.74%~9.99%,检出限(LOD)为0.001 mg/kg,定量限(LOQ)为0.01 mg/kg。田间试验结果表明,醚菌酯在广州和天津黄瓜中的半衰期分别为1.5 d和2.1 d,消解迅速,施药3 d后最终残留量为0.08~0.23 mg/kg,施药5 d后最终残留量均低于LOQ值。风险评估结果表明,施药后3 d时黄瓜中醚菌酯的残留风险商值均远远低于1。表明喷施30%醚菌酯可湿性粉剂防治黄瓜白粉病,按照推荐剂量使用对人体健康是安全的。  相似文献   

6.
为评价38%唑醚·啶酰菌悬浮剂 (有效成分质量分数:12.8%吡唑醚菌酯,25.2%啶酰菌胺) 在农产品和环境中的安全性,于2015年和2016年在中国北京及山东分别进行了该药剂在草莓及土壤中的残留及消解动态试验,建立了同时测定草莓及土壤中吡唑醚菌酯和啶酰菌胺残留量的高效液相色谱-串联质谱 (HPLC-MS/MS) 检测方法。样品用乙腈提取,经N-丙基乙二胺 (PSA) 净化,电喷雾多反应监测模式HPLC-MS/MS检测,基质匹配标准曲线外标法定量。结果表明:在草莓和土壤中添加0.015~3.0 mg/kg吡唑醚菌酯,平均回收率分别为97%~107%和94%~106%,相对标准偏差 (RSD) 分别为1.8%~3.9%和2.2%~4.1%,定量限 (LOQ) 为0.015 mg/kg;添加0.03~6.0 mg/kg啶酰菌胺,平均回收率分别为90%~101%和92%~97%,RSD为4.6%~13%和2.9%~14%,LOQ为0.03 mg/kg。田间试验结果表明,吡唑醚菌酯和啶酰菌胺在草莓和土壤中的消解动态均符合一级动力学方程,在草莓中的半衰期分别为4.8~6.0 d和5.1~11 d,在土壤中为3.4~10.0和3.4~6.0 d。采用38% 唑醚·啶酰菌悬浮剂,分别按有效成分228和342 g/hm2于草莓幼果期施药,最多施药 4 次,采样时间距离最后一次施药的间隔时间为3、5、7 d。吡唑醚菌酯在草莓中的最大残留量为 0.13 mg/kg,低于欧盟规定的最大残留限量 (MRL)(0.5 mg/kg);啶酰菌胺在草莓中的最大残留量为 0.78 mg/kg,低于中国的 MRL值 (3.0 mg/kg)。建议38%唑醚·啶酰菌悬浮剂在草莓上的安全间隔期为3 d,试验结果为农药在草莓中的安全使用和农产品的食用安全提供了数据支持。  相似文献   

7.
嘧菌酯在大豆中的残留及消解动态   总被引:3,自引:0,他引:3  
建立了大豆中嘧菌酯残留的气相色谱测定方法,并研究了其在植株和大豆籽粒中的消解动态和最终残留。样品经乙腈提取,弗罗里硅土玻璃层析柱净化,通过气相色谱-电子捕获检测器(GC- ECD)测定。结果表明,在0.025、0.25、2.0 mg/kg 3个添加水平下,嘧菌酯的平均回收率为93.4%~101.1%,相对标准偏差(RSD)为1.2%~7.5%;最小检出量为1×10-12 g,最低检测浓度为0.025 mg/kg。施药剂量为推荐剂量的1.5倍(有效成分337.5 g/hm2)时,嘧菌酯在大豆植株中的半衰期为0.8~3.6 d。在225、337.5 g/hm2剂量下施药3~4次,测得收获期大豆中嘧菌酯的残留量均低于国际食品法典委员会(CAC)规定的最大残留限量(MRL) 0.5 mg/kg。按照推荐剂量225 g/hm2处理,建议我国嘧菌酯在大豆上的MRL值可暂定为0.5 mg/kg,安全间隔期为14 d,施药次数不超过3次。  相似文献   

8.
为评价嘧菌酯在枇杷中的消解动态和最终残留,2016年开展了250g/L嘧菌酯悬浮剂在枇杷上的残留田间试验,以期为嘧菌酯在枇杷上的合理使用和制定最终残留限量提供参考。建立了液相色谱串联质谱法(LC-MS/MS)测定枇杷中嘧菌酯的残留量的分析方法。当嘧菌酯在枇杷中的添加浓度为0.05、1.0、2.Omg/kg时,平均回收率为112.4%~117.1%,相对标准偏差(RSD)为5.6%~6.4%,符合农药残留试验要求。消解动态试验结果显示,嘧菌酯在枇杷中的消解动态规律符合一级动力学方程,半衰期为7.9~12.2d,属易降解农药。最终残留试验表明250g/L嘧菌酯悬浮剂按有效成分416.7和625.05 mg/kg,施药3次和4次,,末次施药后7、14、21d,枇杷中嘧菌酯最终残留量分别为0.147~2.051mg/kg、0.145~1.379mg/kg、0.015~1.004mg/kg。建议在枇杷上使用250g/L嘧菌酯悬浮剂时,有效成分用药量321.5~416.7mg/kg,最多施药3次,安全间隔期21d。  相似文献   

9.
为明确氟唑菌酰胺和吡唑醚菌酯在芒果上的残留行为,于2012和2013年在中国广东省和广西自治区进行了氟唑菌酰胺和吡唑醚菌酯在芒果上的田间残留及消解动态试验,建立了芒果中氟唑菌酰胺及吡唑醚菌酯残留量的高效液相色谱检测方法。样品用丙酮提取,乙酸乙酯液-液分配萃取,弗罗里硅土柱层析净化,高效液相色谱-二级管阵列紫外检测器检测,外标法定量。结果表明:氟唑菌酰胺和吡唑醚菌酯在芒果上的消解半衰期分别为7.2~9.1和8.0~11.0 d;采用42.4%吡唑醚菌酯·氟唑菌酯胺悬浮剂(SC),分别按有效成分200和300 mg/L的剂量于幼果期开始施药,施药3~4次,施药间隔期为10~15 d,距最后一次施药后7和14 d采样测定,芒果中氟唑菌酰胺和吡唑醚菌酯的残留量分别为0.004~0.053和0.004~0.072 mg/kg。其中,吡唑醚菌酯残留量符合中国制定的最大残留限量(MRL)标准(0.05 mg/kg),根据试验结果,建议中国可将氟唑菌酰胺在芒果上的MRL值暂定为0.2 mg/kg。  相似文献   

10.
建立了QuEChERS-液相色谱-质谱联用 (LC-MS/MS) 同时测定铁皮石斛茎和叶中氯虫苯甲酰胺和吡唑醚菌酯残留量的分析方法,并采用该方法研究了这2种农药在铁皮石斛中的消解动态及最终残留量。样品经乙腈提取,用N-丙基乙二胺 (PSA)、C18和石墨化碳 (PC) 净化。正离子电离,多反应监测模式,LC-MS/MS测定,外标法定量。结果表明:在0.10~60 mg/kg添加水平下,氯虫苯甲酰胺在铁皮石斛茎和叶中的平均回收率为74%~90%,相对标准偏差 (RSD) 为3.2%~4.1%;吡唑醚菌酯在铁皮石斛茎和叶中的平均回收率为75%~104%, RSD为1.7%~4.4%。样品中氯虫苯甲酰胺和吡唑醚菌酯的定量限 (LOQ) 均为 0.1 mg/kg。氯虫苯甲酰胺和吡唑醚菌酯在铁皮石斛中消解较慢,120 d时,氯虫苯甲酰胺在铁皮石斛茎和叶中的降解率分别为40%和72%,吡唑醚菌酯在铁皮石斛茎和叶中的降解率分别为80%和94%。吡唑醚菌酯在铁皮石斛叶中的消解半衰期为38.1 d。5%氯虫苯甲酰胺悬浮剂按有效成分37.5 g/hm2施药1~2次,施药间隔为7 d,当采收间隔期为30 d时,氯虫苯甲酰胺在茎和叶中的残留量均小于3 mg/kg。25%吡唑醚菌酯水分散粒剂按有效成分187.5 g/hm2施药2~3次,施药间隔为7 d,当采收间隔期为90 d时,吡唑醚菌酯在茎和叶中的残留量均小于8 mg/kg。  相似文献   

11.
马铃薯及土壤中精甲霜灵残留动态   总被引:2,自引:0,他引:2  
研究了精甲霜灵在马铃薯上的消解动态,并对其安全使用标准进行了讨论。山东济南和浙江杭州两地田间试验结果表明,施药浓度为推荐剂量的两倍时(有效成分144 g/hm2),精甲霜灵在马铃薯植株和土壤中的半衰期分别为1.0~3.7 d和 10.5~11.2 d。在有效成分为 72 g/hm2和144 g/hm2 的剂量条件下,施药3~4次,施药后第14 d马铃薯中精甲霜灵残留量均低于0.02 mg/kg。综合多方面因素,按照推荐剂量72 g/hm2处理,建议精甲霜灵在马铃薯上最后一次施药距收获的安全间隔期可考虑暂定为14 d。  相似文献   

12.
百菌清和福美双在蘑菇上的残留研究   总被引:8,自引:1,他引:8  
建立了杀菌剂30%菇丰(12%百菌清和18%福美双)可湿性粉剂在蘑菇中的残留分析方法,并用该方法研究了其在蘑菇中的消解动态和最终残留。样品分别经GC-ECD和HPLC-UV检测。方法的添加回收率分别为90.19%~99.11%和73.94%~86.47%;变异系数分别为0.9%~3.2%和2.6%~15.8%;最小检出量分别为1×10-12g和6×10-9g;最低检测浓度分别为0.01和0.3mg/kg。田间残留动态试验结果表明,百菌清和福美双在蘑菇中的半衰期分别为2.5d和4.2h。在最高推荐剂量(1 800g/hm2)和推荐剂量2倍的条件下,施药12次,施药后第5d,蘑菇中百菌清残留量高于我国规定的MRL值(1mg/kg);而施药后2d福美双残留量已低于MRL值(3mg/kg)。试验结果表明,百菌清不适于在蘑菇中使用,而福美双则可以使用。  相似文献   

13.
烯啶虫胺在水稻和稻田环境中的残留及消解动态   总被引:1,自引:0,他引:1  
采用高效液相色谱-紫外检测器(HPLC-UVD)测定了烯啶虫胺在稻田水、土壤、水稻植株和糙米样品中的消解动态及最终残留。田水样品用二氯甲烷萃取;土壤样品用水提取后经二氯甲烷萃取;水稻植株和糙米样品依次用水、丙酮提取,提取液经液液萃取及柱层析净化;HPLC-UVD检测。当烯啶虫胺在田水和土壤中的添加水平为0.1~5 mg/L和0.1~5 mg/kg,在植株和糙米中的添加水平为0.2~5 mg/kg时,其平均添加回收率在77.2% ~100.3%之间,相对标准偏差 (RSD)在1.9% ~12.9%之间。烯啶虫胺在稻田水、土壤、植株和糙米中方法的定量限(LOQ)分别为0.1 mg/L和0.1、0.2、0.2 mg/kg,检出限(LOD)分别为0.04 mg/L和0.04、0.08、0.08 mg/kg。温室模拟消解动态试验结果显示,以推荐使用高剂量的20倍(有效成分1 500 g/hm2) 施药,烯啶虫胺在稻田水、土壤以及水稻植株中的消解动态规律均符合一级动力学方程,其半衰期分别为0.58、3.31及2.70 d,消解速率较快。最终残留试验表明,于大田分蘖期按推荐使用高剂量的1.5倍(有效成分112.5 g/hm2)分别施药3次和4次,间隔期为7 d,距最后一次施药7 d后采样,糙米中烯啶虫胺的残留量均低于LOD值(0.08 mg/kg)及日本规定的最大残留限量(MRL)值(0.5 mg/kg)。  相似文献   

14.
采用高效液相色谱(HPLC)法研究了0.2%苄嘧磺隆·丙草胺颗粒剂在稻田环境中的消解动态和最终残留。稻田水、谷壳、稻秆和水稻植株样品用二氯甲烷提取,土壤样品用V(二氯甲烷):V(甲醇)=9:1的混合液提取,糙米样品用V(二氯甲烷):V(甲醇)=7:3的混合液提取后再用二氯甲烷萃取;HPLC法测定。结果表明:当添加水平在0.05~1 mg/kg(或mg/L)时,苄嘧磺隆和丙草胺的平均回收率均在75%~103%之间,相对标准偏差(RSD)为1.6%~13%;苄嘧磺隆和丙草胺的检出限(LOD)均为0.02 mg/L,最小检出量均为4.0×10-10 g,在稻田水中的最低检测浓度(LOQ)均为0.001 mg/L,在稻田土壤中的LOQ均为0.005 mg/kg,在水稻植株、谷壳和糙米中的LOQ均为0.01 mg/kg。在水稻移栽后5~7 d,采用直接撒施法在高剂量(270 kg/hm2,其中苄嘧磺隆有效成分为67.5 g/hm2,丙草胺有效成分为472.5 g/hm2)下施药1次的消解动态试验结果表明:在稻田水、土壤和水稻植株中,苄嘧磺隆的消解半衰期分别为5.06~5.83 d、9.76~11.55 d和4.52~4.82 d,丙草胺的消解半衰期分别为5.94~6.45 d、7.70~9.90 d和4.11~4.89 d。分别按低剂量(180 kg/hm2,其中苄嘧磺隆有效成分为45 g/hm2,丙草胺有效成分为315 g/hm2)和高剂量(270 kg/hm2)施药1次,在正常收获期收获的糙米中均未检出苄嘧磺隆和丙草胺残留。  相似文献   

15.
通过一年两季(春季和冬季)的田间试验,采用C18固相萃取-高效液相色谱分析方法,研究了苦参碱在小白菜及土壤中的残留和消解动态。方法验证试验表明:在0.02~0.5mg/kg添加水平下,苦参碱在小白菜和土壤中的平均回收率为71%~87%,相对标准偏差为5.7%~14%,在小白菜与土壤中的定量限(LOQ)均为0.02mg/kg。消解动态试验结果表明:苦参碱在小白菜及土壤中的消解过程均符合一级动力学方程,消解半衰期分别为1.0d(春季,小白菜)、1.5d(冬季,小白菜)、1.4d(春季,土壤)和1.6d(冬季,土壤)。最终残留结果显示:距最后一次施药7d后,高浓度(有效成分6.71g/hm2)和低浓度(有效成分4.47g/hm2)苦参碱在春季和冬季小白菜中的最终残留量在0.061~0.074mg/kg之间;在土壤中的最终残留量在未检出~0.075mg/kg之间。可见,苦参碱在小白菜及土壤中易消解,为保障小白菜食用安全,建议可将0.1mg/kg作为其最大残留限量,安全间隔期不小于3d。  相似文献   

16.
氯溴异氰尿酸在烟叶及其土壤中的残留分析及消解动态   总被引:1,自引:1,他引:0  
建立了烟叶及其土壤中氯溴异氰尿酸残留的检测方法,并测定了氯溴异氰尿酸在烟叶及其土壤中的消解动态和最终残留。样品经乙腈提取,三氯甲烷、石油醚萃取后,采用高效液相色谱(HPLC-UV)检测。结果表明:在0.01~0.5 mg/kg添加水平下,氯溴异氰尿酸在鲜烟叶、干烟叶和土壤中的平均回收率分别为82.7% ~91.6%、89.2% ~91.8%和89.2% ~94.4%,相对标准偏差(RSD)分别为1.1% ~3.9%、2.6% ~5.5%和1.5% ~4.6%,方法的检出限(LOD)均为0.003 mg/kg, 定量限(LOQ)均为0.01 mg/kg。田间消解动态结果表明,氯溴异氰尿酸在烟叶及其土壤中消解较快,半衰期分别为3.94~4.25 d和2.83~3.41d,施药后14d,其在烟叶和土壤中的消解率均达90%以上。氯溴异氰尿酸可湿性粉剂按有效成分600 g/hm2(推荐高剂量)和900 g/hm2(1.5倍推荐高剂量)于烟草现蕾期对水喷雾施药3~4次,距末次施药后间隔21d采样,烟叶中氯溴异氰尿酸的残留量为1.47~3.52 mg/kg,土壤中的残留量为未检出~0.43 mg/kg。  相似文献   

17.
建立了超高效液相色谱-串联质谱 (UPLC-MS/MS) 检测氟虫双酰胺和噻嗪酮在茭白中残留的方法。样品采用乙腈提取,乙二胺-N-丙基硅烷 (PSA) 净化,0.1%甲酸-甲醇梯度洗脱,电喷雾正离子扫描,多反应监测模式,超高效液相色谱-串联质谱测定,外标法定量。结果表明:在0.005~1 mg/kg添加水平下,氟虫双酰胺和噻嗪酮在茭白植株和茭白中的平均回收率在81%~107%之间,相对标准偏差在4.2%~11%之间。消解动态规律符合一级动力学方程,氟虫双酰胺和噻嗪酮的半衰期分别为2.3 d和2.8 d,属易降解农药。最终残留试验结果表明:10% 阿维·氟酰胺悬浮剂按制剂用量450~675 g/hm2分别施药2和3次,间隔期5 d,距最后一次施药后7、14和21 d采样,氟虫双酰胺在茭白中的残留量均<0.01 mg/kg;25% 噻嗪酮可湿性粉剂按制剂用量600~900 g/hm2分别施药2和3次,间隔期5 d,距最后一次施药后7、14和21 d采样,噻嗪酮在茭白中的残留量为<0.005~0.078 mg/kg。建议10%阿维·氟酰胺悬浮剂最高制剂用量为450 g/hm2,最多施药2次,安全间隔期以7 d为宜;25%噻嗪酮可湿性粉剂最高制剂用量为675 g /hm2,最多施药2次,安全间隔期以21 d为宜。  相似文献   

18.
采用气相色谱-质谱联用技术,测定了良好农业规范(GAP)条件下3种常用拟除虫菊酯类杀虫剂高效氯氟氰菊酯、高效氯氰菊酯及溴氰菊酯在山东、四川、云南、辽宁和江西5地烟叶中的消解动态及最终残留。样品经乙腈提取,SPE-PSA柱净化,气-质联用、选择离子监测模式(GC-MS/SIM)下测定,外标法定量。结果表明:在0.01 ~1 mg/kg添加水平下,3种农药在鲜烟叶和干烟叶中的平均回收率分别在82.9% ~ 110.9%和85.2%~108.3%之间,相对标准偏差(RSD)分别为1.7% ~4.4%和2.3% ~5.7%;3种农药在鲜烟叶和干烟叶中的定量限(LOQ)均为0.01mg/kg;方法的准确度和精密度均符合农药残留检测要求。烘烤过程中残留农药消解明显,高效氯氟氰菊酯、高效氯氰菊酯和溴氰菊酯的消解率分别高达78%、89%和91%。高效氯氟氰菊酯、高效氯氰菊酯和溴氰菊酯乳油分别按有效成分450~675 g/hm2、600~900 g/hm2及450~675 g/hm2于烟叶采 烤初期喷雾施药2次,距末次施药后14d,干烟叶中3种农药的残留量分别为0.022~ 0.50、0.14~0.82和0.046~0.21 mg/kg,均低于国际烟草合作研究中心(CORESTA)提出的指导性农药残留限量标准(GRL)值(0.5、1和1mg/kg),因此建议其安全间隔期可定为14d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号