首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyroid function was evaluated in 20 healthy dogs by thyrotropin (TSH) response testing. Two dose regimens were used: 5 IU of TSH given IV and 1 IU of TSH given IV. Blood samples were collected prior to and at 4 and 6 hours after TSH administration. Serum was obtained and analyzed for total 3,5,3'-tri-iodothyronine and thyroxine (T4) concentrations by radioimmunoassay. All dogs were classified as euthyroid on the basis of response to 5 IU of TSH at 4 and 6 hours. The 1-IU dose of TSH failed to induce adequate increase in T4 concentration in 7 dogs at 4 and 6 hours when the criteria for normal response were post-TSH serum concentration T4 greater than or equal to 3.0 micrograms/dl and serum T4 increase by greater than or equal to 100% over baseline serum T4 concentration. One IU of TSH induced increase in serum T4 concentration over baseline; however, the increase was significantly (P less than 0.05) less than that in response to a 5-IU dose at 6 hours after administration of TSH.  相似文献   

2.
Thyrotropin (thyroid stimulating hormone; TSH) stimulus to thyroid cells of horses and dogs resulted in increased serum triiodothyronine (T3) concentrations that were detected earlier than those of thyroxine (T4). Doubling of the base-line T3 values in horses was detected 0.5 hours after injection of 5 IU of TSH IV, with peak response of 5 times base-line value detected 2 hours after injection. Doubling of T4 values in horses was noticed between 2 and 3 hours, with the peak response of 2.4 times base-line value at 4 hours after injection of TSH. Doubling of base-line T3 values in dogs in response to 0.2 IU TSH/kg of body weight (IV-5 IU maximum dose) was noticed at 1 hour, whereas T4 response doubled between 1.5 and 2 hours. Peak release of T3 and T4 in response to TSH in dogs had not developed by 4 hours; however, the percentage increase over base-line values was greater for T3 than T4 at early sampling time points, and this response has resulted in an increased T3/T4 ratio in hypothyroid dogs. Thus, in both dogs and horses, these studies indicated that T3 response to TSH could be used as a measure of thyroid function at earlier time intervals after TSH administration than one measures T4 response.  相似文献   

3.
Thyroid function was evaluated in 18 healthy dogs by thyrotropin (TSH) stimulation. Two dose regimens were used in each dog: 0.1 IU/kg body weight of freshly reconstituted lyophilized TSH and 1 IU/dog of previously frozen and stored TSH (up to 200 days), both given intravenously. Blood samples were collected prior to and at four and six hours after TSH administration. Serum was evaluated for total thyroxine concentrations by radioimmunoassay. All dogs were classified as euthyroid on the basis of response to 0.1 IU/kg body weight of freshly reconstituted TSH at four and six hours. The 1 IU dose of TSH, previously frozen for up to 200 days, induced increases in serum total thyroxine concentration over baseline at four and six hours that were not significantly different from those resulting from the use of the higher dose of fresh TSH. In all test groups, there were no statistically significant differences between total thyroxine concentrations at four and six hours post-TSH administration. It was concluded that an adequate TSH response can be achieved with the use of 1 IU of TSH/dog for clinically normal dogs between 29.0 kg and 41.6 kg body weight, even if this TSH has been frozen at -20 degrees C for up to 200 days. Further, blood collection can be performed at any time between four and six hours. Similar studies are needed to evaluate this new protocol in hypothyroid dogs and euthyroid dogs suffering nonthyroidal systemic diseases.  相似文献   

4.
Response to thyrotropin (TSH) was evaluated in 2 groups of mixed-breed dogs. Thyrotropin (5 IU) was administered IV to dogs in group 1 (n = 15) and IM to dogs in group 2 (n = 15). Venous blood samples were collected immediately before administration of TSH and at 2-hour intervals for 12 hours thereafter. In group 1, the maximum mean concentration (+/- SD) of thyroxine (T4; 7.76 +/- 2.60 micrograms/dl) and 3,5,3'-triiodothyroxine (T3; 1.56 +/- 0.51 ng/ml) was attained at postinjection hours (PIH) 8 and 6, respectively. However, the mean concentration of T4 at PIH 6 (7.21 +/- 2.39 micrograms/dl) was not different (P greater than 0.05) from the mean concentration at PIH 8. The maximum mean concentration of T4 (10.10 +/- 3.50 micrograms/dl) and T3 (2.22 +/- 1.24 ng/ml) in group 2 was attained at PIH 12 and 10, respectively. Because dogs given TSH by the IM route manifested pain during injection, had variable serum concentrations of T3 after TSH administration, and may require 5 IU to achieve maximal increases in serum T4 concentrations, IV administration of TSH is recommended. The optimal sampling time to observe maximal increases in T3 and T4 after IV administration of TSH was 6 hours. Repeat IV administration of TSH may cause anaphylaxis and, therefore, is not recommended.  相似文献   

5.
The present study was designed to compare basal and stimulated concentrations of 3,5,3'-triiodothyronine (T3), thyroxine (T4), and cortisol in serum of dogs fasted 12 or 18 hours (to represent overnight fasting) or 24 or 36 hours (to represent prolonged inappetence) with those of dogs that were not fasted. Twenty-five adult Beagle bitches were allotted to 5 experimental fasting groups (0, 12, 18, 24, and 36 hours). Blood samples for hormonal analyses were obtained 4, 3, 2, and 1 hour before food was removed; at the time of food removal; 1 hour after food was removed; and every 2 hours during experimental fasting until 0800 hours on the day fasting ended. Dogs were injected with 5 IU of thyrotropin, IV, and 2.2 IU of adrenocorticotropin/kg, IM, to evaluate thyroidal and adrenocortical endocrine reserves. Additional blood samples were collected 0.5, 1, 2, 3, and 4 hours after injections were given. Serum concentrations of T3, T4, and cortisol were determined by validated radioimmunoassays. Body weights and ages of the dogs and food consumption during a 2-hour preliminary feeding period before dogs were fasted did not differ among fasting groups. Length of fasting did not affect serum concentrations of T3 or T4 in dogs at 12, 18, 24, or 36 hours after food was removed. Mean serum concentrations of cortisol in dogs fasted 12 or 24 hours were lower than those in dogs that were not fasted. Serum concentrations of the hormones after thyrotropin and adrenocorticotropin were injected were not affected by fasting.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The relationships among exogenous adrenocorticotropin (ACTH), plasma corticosteroids, and circulating leukocytes were studied in 7 lactating cows. Blood samples were obtained from jugular cannulas at -2, -1, and 0 hours before ACTH was injected (base line) and 0.25, 0.50, 1, 2, 3, 6, and 24 hours after injection. Plasma corticosteroids were increased progressively by injecting doses of ACTH between 1 and 200 IU. Plasma corticosteroids reached peak concentrations between 15 and 30 minutes and returned to base line within 1 to 3 hours after 1, 5, and 10 IU doses of ACTH were injected, but required as long as 6 hours after injection of 100 and 200 IU. Base line counts of circulating leukocytes averaged 7.3 X 10(3) cells/mm3 and remained unchanged after injecting 0 and 1 IU of ACTH (P less than 0.05). Significant dose-dependent increases in circulating leukocytes were detected within 2 hours after administering 5, 10, and 100 IU of ACTH. Responses to 100 and 200 IU were similar. The average concentration of leukocytes increased up to 6 hours after ACTH administration and returned to base line values within 12 to 24 hours in cows injected with 5 and 10 IU, but not until 48 hours in cows injected with 100 and 200 IU of ACTH. In contrast to the delayed and sustained responses observed for leukocytes, corticosteroid responses were rapid and transient. Moreover, the administration of 200 IU of ACTH was considered to increase circulating corticosteroids and leukocytes beyond that found in dairy cattle exposed to stress associated with overmilking, acute coliform mastitis, or parturition.  相似文献   

7.
A sandwich enzymeimmunoassay (EIA) for pregnant mare serum gonadotropin (PMSG) using a microtiter plate was developed. Sensitivity of the assay to PMSG was 15.6 mIU/ml (0.2 ng/well). The PMSG levels in serum were measured with the EIA in superovulated and anti-PMSG rabbit antiserum treated mice and heifers. In mice, the PMSG blood level was measurable in the serum 4-6 days after intraperitoneal injection of 5-30 IU of PMSG. The administration of anti-PMSG antiserum at the same dose level as PMSG caused a rapid decrease in the PMSG blood level, declining to undetectable levels within 17 hours. In heifers, the PMSG level was measurable at 10-11 days after the injection of 2500 or 3000 IU of PMSG. When antiserum was injected 48 hours after the PMSG injection, the clearance rate of PMSG was affected by the route of the administration. The administration of 3000 units of anti-PMSG antiserum intravenously caused a rapid decline and the disappearance of circulating PMSG within 17 hours. When 3000 units of anti-PMSG antiserum was injected intra-muscularly, the PMSG blood level also decreased and became unmeasurable 24 hours after administration; however, it was still detectable for up to 17 hours. These results indicate that the administration of anti-PMSG antiserum at the proper timing and dosage could lead to successful superovulation through the improvement of hormonal conditions.  相似文献   

8.
The synthesis and secretion of trypsin (trypsin model serine protease) inhibitors are regulated in ovarian follicles by gonadotropins. The superovulation stimulations with 400 IU FSH, 1000 IU PMSG, 1000 IU HCG, 750 IIU PMSG + 750 IU HCG influence in a different way the trypsin inhibiting activities (TIA) of blood plasma (BP) (Figs 1 and 2) and follicular fluid (fig. 3); this points to a possibility of local effects. An increase in the average values of TIA in BP was statistically significant during the whole experiment: P less than 0.05 to P less than 0.001 (following the administration of PMSG+HCG, or PMSG, and HCG); Antisergon administered in 68 hours after PMSG reduced this increase. The changes in the fraction of low-molecular TIA in BP (after BP treatment with perchloric acid) were of converse nature; a decrease in the average values ranged from P less than 0.02 to P less than 0.001 (following PMSG or other stimulations). Antisergon did not influence this decrease. The changes observed on particular days of the trial (Figs. 1 and 2) also indicate different effects of the preparations, mainly of the component LH, which resulted in the occurrence of large nonovulating follicles (greater than 10 mm--"cystic" ones). No such follicles were observed in nonstimulated ewes and after FSH stimulation. The administration of antisergon (goat's antiserum against PMSG) 68 hours after PMSG administration did not prevent their creation. The TIA of follicular fluid (FF) of antral follicles was on average tenfold in comparison with that of blood plasma; and the TIA FF of follicles greater than 10 mm was higher (up to P less than 0.001) than the TIA FF of follicles less than 10 mm. The administration of Antisergon in shorter intervals following PMSG administration (12, 24, 48 and 58 hours) influenced the average values of TIA BP in 120 hours (since PMSG administration) in dependence on time (Tab. I). The effects of Antisergon administered in 12 and 24 hours after PMSG administration on the TIA BP were insignificant if it was administered in 48 and 58 hours the TIA BP increased (P less than 0.02; P less than 0.001) in comparison with the interval of 12 hours. The TIA FF of follicles less than 5 mm, 5-10 mm and greater than 10 mm varied in dependence on the time intervals of Antisergon administration (Fig. 4). The statistical significance of these changes in shown in Tab. II.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Concentrations of serum thyroxine (T4) and 3,3',5-triiodothyronine (T3) were determined in 7 clinically healthy adult dogs before and after administration of freshly reconstituted thyrotropin (TSH) and TSH that had been previously reconstituted and frozen for 1, 2, and 3 months. The 4 TSH response tests were performed at 30-day intervals by collecting blood samples for serum T4 and T3 determinations before and 4 and 6 hours after IV administration of TSH (0.1 U/kg of body weight). Baseline serum concentrations of T4 and T3 were similar at each of the 4 sample collection times over the 3-month period of the study. Mean serum concentrations of T4 and T3 increased significantly (P less than 0.01) over baseline values after administration of freshly reconstituted TSH or TSH that had been previously frozen for 1, 2, or 3 months. Significant difference was not found in the mean post-TSH serum T4 or T3 concentration after injection of freshly reconstituted TSH or TSH that had been previously frozen for 1, 2, or 3 months. In 2 of the 7 dogs, mild reactions--mild ataxia and weakness--were observed during the last of the series of TSH response tests (ie, after IV administration of TSH that had been previously frozen for 3 months). Results of this study suggest that for use in dogs, reconstituted TSH stored at -20 C maintains adequate biological activity for at least 3 months. The ability to store reconstituted TSH for a longer period than the recommended 48 hours represents an economic advantage, because it allows clinicians to perform more TSH response tests per vial of TSH.  相似文献   

10.
Concentrations of serum thyroxine (T4) and 3,5,3'-triiodothyronine (T3) were determined after the administration of freshly reconstituted thyrotropin-releasing hormone (TRH), reconstituted TRH that had been previously frozen, or thyrotropin (TSH) to 10 mature dogs (6 Greyhounds and 4 mixed-breed dogs). Thyrotropin-releasing hormone (0.1 mg/kg) or TSH (5 U/dog) was administered IV; venous blood samples were collected before and 6 hours after administration of TRH or TSH. Concentrations of the T4 and T3 were similar (P greater than 0.05) in serum after administration of freshly reconstituted or previously frozen TRH, indicating that TRH can be frozen at -20 C for at least 1 week without a loss in potency. Concentrations of T4, but not T3, were higher after the administration of TSH than they were after the administration of TRH (P less than 0.01). Concentrations of T4 increased at least 3-fold in all 10 dogs given TSH, whereas a 3-fold increase occurred in 7 of 10 dogs given freshly reconstituted or previously frozen TRH. Concentrations of T4 did not double in 1 dog given freshly reconstituted TRH and in 1 dog given previously frozen TRH. Concentrations of T3 doubled in 5 of 10, 2 of 10, and 5 of 10 dogs given TSH, freshly reconstituted TRH, or previously frozen TRH, respectively. Results suggested that concentrations of serum T4 are higher 6 hours after the administration of TSH than after administration of TRH, using dosage regimens of 5 U of TSH/dog or 0.1 mg of TRH/kg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Superovulation treatment leaves alternations in the controlling regions of the hypothalamus and in the adjacent ependyme after ovulation. The test ewes were synchronized with Agelin (20 mg chlorsuperlutin in one vaginal sponge) and stimulated (after the removal of the sponges) with 750 IU PMSG + 750 IU HCG and with 1000 IU HCG and 750 IU PMSG + 5 ml Antisergon (goat antiserum against PMSG), administered 68 hours after PMSG (i.e. 40 hours after HCG). The control ewes were in different stages of the ovarial cycle. The experimental ewes were killed 120 to 130 hours after the start of stimulation. Routine histological techniques were used to treat the brain samples; this treatment was followed by assessment under light microscope. The ependyme epithelium of the third cerebral chamber was studied under scanning microscope. Preparations with different FSH:LH ratios had different effects on the nucleus ventromedialis. Antisergon administration influenced the secretion of NPV (prevented persistent stimulation), which was observed after administration of PMSG + HCG. On the surface of the lower part of the third cerebral chamber the administration of Antisergon slowed the formation of the miniblebs. Supraependyme cells disappeared after stimulation for superovulation.  相似文献   

12.
OBJECTIVE: To determine whether thyroid function was associated with pregnancy status in broodmares. DESIGN: Prospective study. ANIMALS: 79 Thoroughbred and Standardbred broodmares between 2 and 22 years old. PROCEDURE: Serum triiodothyronine (T3) concentration was measured before and 2 hours after i.v. administration of thyrotropin releasing hormone (TRH), and serum thyroxine (T4) concentration was measured before and 4 hours after TRH administration. Pregnancy status was monitored by means of transrectal ultrasonography beginning 16 days after ovulation. RESULTS: Baseline T3 and T4 concentrations varied widely. In all mares, serumT3 concentration increased in response to TRH administration. Serum T4 concentration increased in response toTRH administration in all but 2 mares. Pregnancy rate was 76%. Baseline and stimulated serum T3 and T4 concentrations were not significantly different between mares that became pregnant and those that did not. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that decreased thyroid function is uncommon in mares and poor thyroid function is not a common cause of infertility. Thus, the practice of indiscriminately treating broodmares with thyroid hormone to enhance fertility appears questionable at this time.  相似文献   

13.
Serum concentrations of thyrotropin (TSH), prolactin, thyroxine, and 3,5,3'-triiodothyronine in 15 euthyroid dogs and 5 thyroidectomized and propylthiouracil-treated dogs after thyrotropin-releasing hormone (TRH) administration were measured. Although thyroidectomized and propylthiouracil-treated dogs had higher (P less than 0.01) base-line concentrations of TSH in serum than did euthyroid dogs, concentrations of TSH after TRH administration varied at 7.5, 15, and 30 minutes with 14 of 45 samples obtained from healthy dogs having lower TSH concentrations than before TRH challenge. Similarly, concentrations of 3,5,3'-triiodothyronine in the serum of euthyroid dogs 4 hours after TRH administration were similar (P less than 0.05) to concentrations before TRH challenge. Although the mean concentration of thyroxine in serum was elevated (P less than 0.05) 4 hours after administration of TRH to euthyroid animals, as compared with base-line levels, the individual response was variable with concentrations not changing or decreasing in 4 dogs. Therefore, the TRH challenge test as performed in the current investigation was of limited value in evaluating canine pituitary gland function. Although mean concentrations of TSH in serum were higher (P less than 0.05) in euthyroid dogs after TRH administration, the response was too variable among individual animals for accurate evaluation of pituitary gland function. Concentrations of prolactin in the sera of dogs after TRH administration, confirmed previous reports that exogenously administered TRH results in prolactin release from the canine pituitary and indicated that the TRH used was biologically potent.  相似文献   

14.
The effects of exogenous adrenocorticortrophic hormone (ACTH) on the serum corticosterone and cortisol concentrations were determined in 28 mature Moluccan cockatoos (Cacatua moluccensis), a representative of the psittacine species. Birds were randomly assigned to 4 groups (2 ACTH-treated groups and 2 saline-treated controls). Group I (10 cockatoos [5 males and 5 females] ) was given 15 IU of ACTH after blood samples (base line) were taken at 10:00 AM. Blood samples were taken again at 30 minutes and 2.5 hours after ACTH administration. Group II (10 cockatoos) was given similar treatment, but blood samples were taken at 1 and 4 hours after ACTH was administered. Groups III and IV (each of 4 birds) were given saline solution injections as controls. Blood samples were taken at 30 minutes and 2.5 hours after injection (group III) and at 1 and 4 hours after injection (group IV). All serum samples were analyzed for cortisol and corticosterone. Serum corticosterone concentration increased significantly (P less than 0.01) from base-line levels (26 ng/ml) to 108 ng/ml within 30 minutes after ACTH was administered. The high values were maintained for 3 hours and then decreased to 40 ng/ml at the end of 4 hours. Male birds seemed to respond to the ACTH treatment quickly and maintained increased concentration for a shorter period when compared with the responses seen in female birds. Serum cortisol values remained low throughout the experimental period. These results indicate that serum corticosterone was responsive to ACTH administration, but cortisol was not. In addition, there may be a difference in the responses between male and female members of the species.  相似文献   

15.
Bovine thyrotropin (bTSH) stimulation testing has long been considered the gold standard for diagnosis of canine hypothyroidism. Unfortunately, bTSH is no longer commercially available. Recently, the use of recombinant human thyrotropin (rhTSH) to perform thyroid-stimulating hormone (TSH) stimulation testing in dogs was described. The cost of an rhTSH vial (1.1 mg) limits the practical use of this product. The study reported here was performed to determine the effects of storing rhTSH on the post-TSH increase of serum total (TT4) and free (FT4) thyroxine concentrations during TSH stimulation testing in 12 euthyroid Beagles in a crossover trial. Three TSH tests with recombinant human thyrotropin (rhTSH; 91.5 microg IV) were performed on each dog during 3 different periods: 1 with freshly reconstituted rhTSH (fresh); 1 with rhTSH, reconstituted and stored at 4 degrees C for 4 weeks (refrigerated); and 1 with rhTSH, reconstituted and frozen at -20 degrees C for 8 weeks (frozen). Blood samples for determination of TT4 and FT4 concentrations were collected before and 4 and 6 hours after rhTSH administration. There was no significant difference in TT4 or FT4 concentration after stimulation with fresh, refrigerated, and frozen rhTSH. Furthermore, there was no significant difference between TT4 or FT4 serum concentration observed 4 and 6 hours after rhTSH administration. In conclusion, reconstituted rhTSH can be stored at 4 degrees C for 4 weeks and at -20 degrees C for 8 weeks without loss of biological activity, allowing clinicians to perform more TSH response tests per vial.  相似文献   

16.
Regulation of blood coagulation was studied in 12 dogs, using subcutaneous administration of sodium heparin. Dosage of heparin needed to achieve the desired 1.5- to 2.5-fold increase in the activated partial thromboplastin time (APTT) was 250 to 500 IU/kg of body weight. Increased APTT lasted less than 6 hours. Repeated heparin administration, using the lowest dosage (250 IU/kg) every 6 hours, induced an unacceptable prolongation of clotting times during the first 2 days of treatment. Prolonged administration at a dosage of 200 IU/kg every 6 hours adequately maintained the desired hypocoagulative state initially; after 2 days, however, the prolonged APTT steadily decreased. The decreasing effect was proportionate to a decrease in plasma antithrombin III (AT III). To sustain a correctly balanced hypocoagulative state from prolonged subcutaneous administration of heparin, APTT values should be determined regularly to monitor therapy. In addition, transfusion of AT III-rich donor plasma may be necessary when low plasma AT III reduces the effects of heparin.  相似文献   

17.
Healthy mature cows (n = 6) were injected intrauterinally (IU) with gentamicin (50 ml of a 5% injectable solution) daily for 3 consecutive days. Venous blood and milk samples were collected at postinjection (initial) hours (PIH) 1, 3, 6, 9, 12, 24, 28, 31, 34, 37, 48, 51, 54, 57, 60, and 71, and endometrial biopsies were performed at PIH 6, 25, 48, 73, 95, and 119. Skeletal muscle biopsy samples were taken at PIH 25 and 73, and urine was collected every 1 or 2 hours during 12 consecutive hours after the first IU injection. Serum, milk, urine, and tissue concentrations of gentamicin were measured by radioimmunoassay. The highest mean serum concentration of gentamicin occurred during the 3 hours after each injection (2.49 +/- 1.46, 6.60 +/- 5.47, and 4.98 +/- 2.70 micrograms/ml). The mean peak concentration of gentamicin in milk occurred 3 to 6 hours after each injection. Mean peak urine concentration of gentamicin (256.8 +/- 127.9 micrograms/ml) was measured at PIH 6. The mean percentage of the first dose of gentamicin excreted in the urine within 12 hours was 14.78 +/- 3.56. The highest concentration of gentamicin in endometrial tissue (639.16 +/- 307.22 micrograms/g) was measured at PIH 6, decreasing to 9.64 +/- 3.55 micrograms/g before the next IU dose. Gentamicin was still detectable in endometrial tissue (0.86 +/- 0.43 microgram/g) 71 hours after the 3rd (last) IU injection.  相似文献   

18.
Thyroid function tests in euthyroid dogs treated with L-thyroxine   总被引:1,自引:0,他引:1  
The effects of treatment with L-thyroxine (1 mg/m2 of body surface/d, PO, for 8 weeks) on the thyroxine (T4) and triiodothyronine (T3) responses to thyrotropin (TSH) and thyrotropin-releasing hormone (TRH) administration were determined in 10 euthyroid Beagles; 4 other dogs acted as controls. The TSH response test was performed before treatment and at weeks 2, 4, and 8 of treatment in all dogs and at 2 and 4 weeks after cessation of treatment in 6 dogs. The TRH response test was performed before treatment and at week 6 of treatment in all dogs and at 5 weeks after cessation of treatment in 6 dogs. Suppression of the T3 response to TSH was evident at treatment week 2, whereas the T4 response was suppressed at week 4 and remained suppressed for the duration of the study. Four weeks after stopping treatment, T4 and T3 responses to TSH in 2 dogs were within the hypothyroid range. The T4 response to TRH was completely suppressed after 6 weeks of thyroxine treatment, but returned to pretreatment values by 5 weeks after cessation of treatment. Suppression of thyroid and pituitary function is evident after administration of a replacement dose of L-thyroxine to euthyroid dogs.  相似文献   

19.
Plasma concentrations of vitamins A and E were examined in sheep, and a transitory decrease was observed after a single massive dose of vitamin D3 (5 X 10(6) IU) was administered orally or parenterally. Administration of a large dose of vitamin E to sheep decreased plasma retinol concentrations within 72 hours, but thereafter, the plasma retinol concentrations returned to near baseline values. Oral administration of a single pharmacologic dose of dl-alpha-tocopherol (5 g) to sheep caused a slow increase of this vitamin in the blood plasma. In cattle, a single IM administration of 3 liposoluble vitamins (A, D3, and E) at acceptable concentrations had no detectable influence on plasma alpha-tocopherol concentrations with the sampling intervals used. Plasma concentrations of alpha-tocopherol in these cattle showed a marked seasonal pattern; the concentrations increased from January to a peak in July, with a subsequent decrease in the fall. Also reported are estimates of inter- and intraindividual variation in plasma liposoluble vitamin concentrations.  相似文献   

20.
The effect of ACTH administration on plasma cortisol concentrations in purebred and crossbred pigs was investigated. Pigs were given either 25 IU of ACTH or physiologic saline solution IM. Blood samples were collected immediately before and 1 hour after ACTH or saline solution administration. Administration of ACTH resulted in a significant (P less than 0.01) increase in plasma cortisol concentration compared with that resulting from administration of saline solution; mean values after ACTH administration were similar in both breed groups. In contrast, a fivefold range of differences was observed among individual pigs of the same age, sex, and body weight, irrespective of breed group. The type and magnitude of the adrenocortical response was consistent and repeatable in pigs over a 3-month period, suggesting that pigs have a consistent capacity for adrenocortical response to ACTH administration. Development of a dynamic test allowed the high and low responding extremes in a population to be detected. The most suitable dose of synthetic ACTH was established to be 50 IU, and the best time for blood sample collection was 60 minutes after ACTH administration. The classification of individual pigs as high or low responders was repeatable and was not affected by prior short-term exposure to ACTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号