首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hugh Thomas  W. Powell  T. Aung 《Euphytica》1980,29(3):635-640
Summary The regular meiotic behaviour of the cultivated oat Avena sativa (2n=6x=42) is genetically controlled. The factors which control the diploid-like meiotic behaviour also restrict the amount of pairing that occurs between alien chromosomes and their homoeologues in A.sativa, and hence increases the difficulties of introducing desirable variation from wild species into the cultivated oat. A genotype of the diploid species A.longiglumis which interferes with the regular meiotic behaviour of A. sativa can be used to induce pairing between alien chromosomes and their corresponding chromosomes in A. sativa. Using this procedure the dominant gene conferring mildew resistance has been transferred from the tetraploid weed species A. barbata into the cultivated oat.  相似文献   

2.
Detection of H. villosa chromosomes in telosomic addition and translocation lines of common wheat was undertaken using genomic in situ hybridization (GISH), C-banding techniques and polyacrylamide gels electrophoresis. The result of GISH on mitotic metaphase cells of the addition line `95039' indicated that the added telochromosomes originated from H. villosa, and it was probably 6VS or 7Vs of H. villosa according to the C-banding pattern. Furthermore, the analysis of gliadin profiles demonstrated that the telochromosome was 6VS. A pair of 1RS/1BL translocation chromosome was also found in `95039'. In addition, mitotic GISH analysis showed that the 6VS/6AL translocation chromosome remained unchanged after being transferred into new wheat background. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Two amphiploids, AF-1(Triticum aestivum L. cv. Anyuepaideng–Secale africanum Stapf.) and BF-1 (T. turgidum ssp. carthlicum–S. africanum), were evaluated by chromosomal banding and in situ hybridization. The individual S. africanum chromosomes were identified in the BF-1 background by sequential C-banding and genomic in situ hybridization (GISH), and were distinguishable from those of S. cereale, because they exhibited less terminal heterochromatin. Fluorescence in situ hybridization (FISH) using the tandem repeat pSc250 as a probe indicated that only 6Ra of S. africanum contained a significant hybrid signal, whereas S. cereale displayed strong hybridization at the telomeres or subtelomeres in all seven pairs of chromosomes. Extensive wheat–S. africanum non-Robertsonian translocations were observed in both AF-1 and BF-1 plants, suggesting a frequent occurrence of chromosomal recombination between wheat and S. africanum. Moreover, introgression lines selected from the progeny of wheat/AF-1 crosses were resistant when field tested with widely virulent strains of Puccinia striiformis f. sp. tritici. Three highly resistant lines were selected. GISH and C-banding revealed that resistant line L9-15 carried a pair of 1BL.1RS translocated chromosomes. This new type of S. africanum derived wheat–Secale translocation line with resistance to Yr9-virulent strains will broaden the genetic diversity of 1BL.1RS for wheat breeding.  相似文献   

4.
Summary Although wild oats (Avena fatua L.) have been considered a potential source of genes for cultivated oat (Avena sativa L.) improvement, most progenies of A. sativa/A. fatua crosses have weak straw and are very susceptible to crown rust (Puccinia coronata CDA. var. avenae Fraser and Led.). Backcrossing to A. sativa has been suggested as a method of improving progeny lines while introducing new genes from wild oats to cultivated oats. In this study, A. sativa/A. fatua F1 hybrids were backcrossed twice to A. sativa, and lines from three backcross populations were selected on the basis of agronomic performance in segregating generations. The A. sativa recurrent parents were Dal (tall and late) and Stout (short and early).Backcross lines and recurrent parents were evaluated in five performance trails from 1983 through 1985. There was significant variation among backcross lines for most traits, but most backcross lines did not produce higher grain and straw yields than their A. sativa parent. Several backcross lines were higher than their recurrent parent in test weight and groat percentage. A line derived from Stout, 175BC2-6, was considered the most promising backcross line in the study. This line produced more grain, had heavier kernels, and headed 3.3 days earlier than Stout. Although 175BC2-6 does not have sufficient straw strength and crown rust resistance to be released as a cultivar, it is considered to be a new source of high grain yield, high test weight and earliness for oat breeding.  相似文献   

5.
A new secondary reciprocal translocation discovered in Chinese wheat   总被引:2,自引:0,他引:2  
Z.J. Qi  P.D. Chen  D.J. Liu  Q.Q. Li 《Euphytica》2004,135(3):333-338
A new wheat-rye secondary reciprocal translocation involving T1RS·7DL and T7DS·1BL was detected by chromosome C-banding and genomic in situ hybridization (GISH). The meiotic configuration analysis combined with C-banding and GISH on F1 hybrids of this newly discovered translocation with T1RS·1BL and Chinese Spring Dt7DS indicated that the new translocation probably resulted from a secondary reciprocal translocation between the primary translocation T1RS·1BL and 7D in the progenies of Aifeng3//Mengxian201/Neuzucht. On the basis of the cytological analysis of progenies and recombinant inbred lines (RILs) (derived from a cross between T1RS·7DL, T7DS·1BL and T1RS·1BL), the translocation chromosomes T1RS·7DL and T7DS·1BL transmitted readily, and appeared in most of the progenies.  相似文献   

6.
Genomic in situ hybridization (GISH) and restriction fragment length polymorphism (RFLP) were used to identify the Leymus multicaulis (XXNN, 2n = 28) chromosomes in wheat-L. muliticaulis derivatives. Fifteen lines containing L. multicaulis alien chromosomes or chromosomal fragments were identified. All alien chromosomes or fragments in these 15 lines were from the X genome and none were from the N genome. Eleven L. multicaulis disomic addition lines and four translocation-addition lines were identified with chromosome rearrangements among homoeologous groups 2, 3, 6 and 7. Only homoeologous group 1 lacked rearrangements in addition or translocation chromosomes. The results revealed that translocation in non-homoeologous chromosomes widely exists in the Triticeae and therefore it is necessary to identify the alien chromosomes (segments) in a wheat background using these combined techniques. During the course of the work, probe PSR112, was found to detect X genome addition lines involving L. multicaulischromosomes. This may prove to be a valuable probe for the identification of alien chromosomes in a wheat background. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
X. Q. Zhang    X. P. Wang    J.K. Jing    K. Ross    H. Hu    J. P. Gustafson   《Plant Breeding》1998,117(1):7-12
Five wheat-triticale doubled haploid (DH) lines— M08, V209, DH220-14-2, DH696-3-4 and M16 —derived from anther culture of F1s resulting from crosses involving hexaploid or octoploid triticale × hexaploid wheat, were characterized by cytological and biochemical markers. Cytological evidence from genomic in situ hybridization and C-banding indicated that DH lines M08 and V209 (2n= 42) each contained a pair of 1BL/1RS translocation chromosomes. DH220-14-2 (2n= 42) was also a translocated line with two pairs of chromosomes containing small fragments of rye. One of the translocation fragments carried the Sec-1R gene originating from the satellite region of 1RS; the origin of the other one remains unknown. DH696-3-4 (2n= 42) contained a 3D(3R) substitution. In M16 (2n= 44), three pairs of rye chromosomes, 3R, 4R and 6R, were present, 4R as an addition and 3D(3R) and 6D(6R) as substitutions. Biochemical, isozyme and storage protein markers confirmed the cytological conclusions. The advantages of transferring alien chromosomes or chromosome fragments into wheat and creating alien aneuploid lines by anther culture of hybrid F1s are discussed.  相似文献   

8.
Liu Shubing  Wang Honggang 《Euphytica》2005,143(1-2):229-233
Among the progenies of a hybrid between common wheat Triticum aestivum L. cv. Yannong 15 and Thinopyron intermedium, plant E99018 was identified with the chromosome number 2n = 42 and stable agronomic traits. An analysis of the metaphase chromosome pairing indicated that it formed 21 bivalents but that 2 univalents were present in the F1 hybrid of this plant with common wheat. Resistance verification by race 15 and with mixed races of Blumeria graminis f. sp. tritici at the seedling and adult stages showed that at both stages, the plant was immune to powdery mildew. In situ hybridization with the genomic Th. intermedium and the St genome DNAs as probes and wheat DNA as a block has shown that it contained a pair of Th. intermedium chromosomes. On the basis of the hybridization pattern of the St genome probe to the critical chromosome, a conclusion was reached that this pair of chromosomes belonged to the E genome. Therefore, plant E99018 was a spontaneously formed substitution line. An analysis by 116 SSR markers indicated that the substituted wheat chromosome was 2D and the most likely substitution in E99018 is 2E(2D).  相似文献   

9.
Summary The somatic karyotype and meiotic chromosome behavior were studied in an 18-chromosome B1 plant derived from backcrossing a triploid (Brassica napus x B. oleracea ssp. capitata) F1 hybrid to cabbage. It is considered that cabbage chromosomes no. 1 and no. 7 were substituted by two shorter B. napus chromosomes. Meiotic disturbances were more apparent during the late stages of second division. Seed fertility of this plant was largely restored in the second backcrosses with both cabbage and broccoli. 18-chromosome B2 plants resistant to race 2 of Plasmodiophora brassicae were recovered among the progenies.Contribution no. J. 725 from the Research Station, Research Branch, Agriculture Canada, St-Jean, Québec J3B 6Z8.  相似文献   

10.
Wheat (Triticum aestivum L.) breeders often utilize alien sources to supply new genetic variation to their breeding programs. However, the alien gene complexes have not always behaved as desired when placed into a wheat background. The introgressed genes of interest may be linked to undesirable genes, expressed at low levels or not at all. The short arm of rye (Secale cereale L.) chromosome one (1RS) contains many valuable genes for wheat improvement. In order to study rye gene response to varying copy number, wheat lines were constructed which contained zero, two or four doses of 1RS. The meiotic behavior of rye chromosome 1R, and wheat/rye translocation chromosomes, 1AL/1RS and 1BL/1RS was studied in the F1 hybrids between wheat lines carrying 1R or the translocation chromosomes. The IRS arm was transmitted at a very high frequency; 98 % of the F2 plants had at least one of the chromosomes with a IRS arm. In addition, 44 % of the F2 plants received at least one copy of the chromosomes from each parent. Analysis of the meiotic behavior of the IRS arm suggested that few euploid wheat gametes were formed. Therefore, most of the pollen must have contained IRS. It is unknown whether the lack of euploid wheat pollen could account for the high transmission frequency of the rye chromosomes. There may have been differential survival of the embryos receiving the rye chromosome as well.  相似文献   

11.
Summary Interspecific substitutions of the nucleus of Helianthus annuus (2n=34) into the cytoplasm of H. petiolaris (2n=34) were obtained by successive backcrossing using cultivated sunflower, H. annuus, as the recurrent pollen parent.Meiosis in the F1 was characterized by multivalents, suggesting that 10 of the 34 chromosomes were heterozygous for chromosomal interchanges. An additional pair of chromosomes also contained a paracentric inversion. Continued backcrossing resulted in rapid elimination of the meiotic aberrations evident in the F1. In the BC1, 1 of 11 plants had normal meiosis and by the BC2, only 13 of 54 plants had meiotic aberrations similar to those of the F1. However, trisomic progeny (2n=35) were found in 3 of the 11 BC1 plants and 20 of the 54 BC2 plants. No meiotic aberrations were observed in BC3 or BC4 plants. Plants with indehiscent anthers, and considered to be male sterile (M.S.), first occurred in the BC1 and, by the BC2, 51 of 54 plants were M.S. All 19 BC3 and 16 BC4 plants were M.S. Preliminary investigations suggest that the pollen from such plants is sterile and that the sterility is cytoplasmic rather than genetic.Disc-flower measurements were a useful technique for selecting samples at the correct stage of microsporogenesis, but could not be used to distinguish between successive backcrosses.  相似文献   

12.
Chromosomes and cytoplasms were analyzed in two lines of a somatic hybrid between onion (Allium cepa L.) and garlic (A. sativum L.). One line of the somatic hybrid had 40 chromosomes and the other 41chromosomes. Genomic in situhybridization successfully revealed the chromosome constitution of the two lines. One line had 20 chromosomes from onion and17 chromosomes from garlic, and the other had 21 chromosomes from onion and 17chromosomes from garlic. Interestingly, both lines had three chimeric chromosomes. PCR-RFLP analyses of chloroplast and mitochondrial DNAs of both lines showed that these were identical to the onion parent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
K. H. Lee  H. Namai 《Euphytica》1992,60(1):1-13
Summary Aneuploids with 2n=21 and 2n=22 derived from crossing of sesquidiploids (2n=29, AAC) and Brassica campestris (2n=20, AA) were selfed successively in order to follow the changes in chromosome number of the progenies for three consecutive generations. Progenies with 2n=22, 23 and 24 obtained after selfing of S0 generation and the succeeding S1, S2 and S3 generations were analyzed in terms of pollen stainability, % seed set as well as cytogenetically based on meiotic behaviour with the aim of determining the possibility of addition of one or more alien chromosomes into n=10 species which may lead to differentiation of single or plural disomic addition lines. The generation of aneuploids with 2n=21 progressed in such a way that most plants seem to revert to the 2n=20 chromosome number of B. campestris after selfing. From 2n=22 aneuploids, however, the succeeding progenies showed high frequency of plants with two additional chromosomes which accounted for 50.6% and 52.9% of total S3 progenies via 2n=22 and 2n=24 S2 generations, respectively. The meiotic behaviour of these progenies indicated evidence for a rule governing the frequency distribution of chromosome number among these addition lines and high possibility to breed such disomic plants with 2n=22. A method of selecting stable aneuploids was suggested in addition to the possible role of pollination biology at various processes of such breeding program.  相似文献   

14.
Summary C-banding andin situ hybridization were used to determine the chromosomal constitution of the greenbug-resistant germplasm GRS 1204. The results showed that this line had the radiation-induced non-homoeologous wheat-rye translocation chromosomes T2AS-1RS·1RL and T2AL·2AS-1RS. C-banding analysis further revealed the presence of a wheat-Agropyron elongatum translocation chromosome T1BL·1BS-3Ae#1L in line GRS 1204, that was derived from Teewon. The greenbug resistance of line GRS 1204 is similar to that of line GRS 1201 that was earlier shown to have the greenbug resistance geneGb6 located on the 1RS arm of the wheat-rye translocation chromosome T1AL·1RS. BecauseGb6 in line GRS 1204 is present on one of the non-homoeologous translocation chromosomes, agronomically line GRS 1201 should be the better adapted source ofGb6 resistance and be used in cultivar improvement.  相似文献   

15.
Taing Aung  Hugh Thomas 《Euphytica》1978,27(3):731-739
Summary The gene for mildew resistance has been succesfully transferred into the cultivated oat from the wild oat species Avena barbata by means of an irradiation-induced translocation. The translocation has been shown to involve the long arm of chromosome ST21 of A. sativa, the short arm, the centromere and a segment of the long arm of the barbata chromosome.The transmission of the translocation is normal in the cultivar Manod in which it was originally isolated. When the translocation was transferred into other cultivars of oats, transmission through the male gametes was found to be impaired in some genotypic backgrounds. However, there was no evidence that the translocation had any deleterious effect on development and fertility in a range of cultivars.The translocation was shown to involve an exchange between nonhomoeologous chromosomes.The behaviour of the translocation in diverse genotypes indicated that the translocation was a new source of mildew resistance that could be easily used in a breeding programme.  相似文献   

16.
Several upland Japonica breeding lines, WAB450-11-1-3-P40-HB (Abbreviated as WAB450-11), WAB450-11-1-2-P61-HB (WAB450-13), WAB450-l-B-P-91-HB (WAB450-14), IRAT216, IRAT359, and IRAT104, possessing restoring ability for the Dian 1 type cms (cms-D) line Dianyu 1A were recently identified at Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, P. R. China. In this study, the inheritance of restoring ability in these lines was characterized through the production of backcross populations to the male-sterile and maintainer Dianyu 1 lines. Each of the restorer lines was used to pollinate Dianyu 1A to form a F1 hybrid which was then backcrossed (1) with Dianyu 1B producing a BC1F1 population and (2) to the female parent Dianyu 1A producing a BC5F2 population. The lines were also crossed with the japonica restorer line C57, carrying the restorer gene Rf1 that was introgressed from indica, to form F1 hybrids, these hybrids were then testcrossed with Dianyu 1A to study the allelic relationship of their restorer genes to Rf1. The inheritance in these testcross populations indicated that the complete restoring ability of WAB450-11, WAB450-13, WAB450-14, IRAT216, IRAT359, and the partial restoring ability of IRAT104 were controlled by dominant genes, and the gene in WAB450-13, WAB450-14, and IRAT216 was allelic or identical to Rf1. When 136 SSR markers were used to score 143 BC1F1 individuals from Dianyu 1A/WAB450-13//Dianyu 1B, the japonica Rf1 allele was found to be located between RM171 and RM6100 on the long arm of chromosome 10, an interval corresponding to that known for the indica Rf1 allele. The distance between RM171 and Rf1 is 2.8 cM, and that between Rf1 and RM6100 is 4.9 cM. Similar linkage results were obtained from mapping 89 individuals of the corresponding BC5F2 population (Dianyu 1A/6/Dianyu 1A/WAB450-13).  相似文献   

17.
A. Z. Cao    X. E. Wang    Y. P. Chen    X. W. Zou    P. D. Chen 《Plant Breeding》2006,125(3):201-205
To develop markers linked with Pm21 located on chromosome 6VS of Haynaldia villosa, a pair of primers (NAU/xibao15F and NAU/xibao15R) were designed according to the sequence of a serine/threonine kinase gene (Contig17515), whose expression was induced by Blumeria graminis and selected from the gene expression experiment using the Barley GeneChip. Using genomic DNA of various genetic stocks including the wheat variety ‘Yangmai#5’, H. villosa, Triticum durumH. villosa amphiploid, seven T. aestivumH. villosa addition lines involving chromosomes 1V–7V, the translocation line T6VS·6AL, and 21 nullisomic–tetrasomic and eight deletion lines of T. aestivum‘Chinese Spring’ as templates, four amplicons specific for 6VS, 6AS, 6BS and 6DS, respectively, were produced. F2 individuals derived from the cross of ‘Yangmai#5’ × T6VS·6AL were analysed, and data indicate that NAU/xibao15902 could be used as a co‐dominant marker for selecting Pm21 located on 6VS.  相似文献   

18.
Wheat-barley translocations were identified by genomicin situ hybridization (GISH) in backcross progenies originating from in vitro regenerated wheat (Triticum aestivum L. cv. Chinese Spring) × barley (Hordeum vulgare L. cv. Betzes) hybrids. The regenerated hybrids were pollinated with the wheat line Martonvásári 9 kr1. Five translocated wheat-barley chromosomes were recovered among 51 BC2F2 progeny from the in vitro regenerated wheat × barley hybrids. All were single breakpoint translocations with the relative positions of the breakpoints ranging from the centromere to about 0.8 of the relative arm length. Of the four translocations with intercalary breakpoints, three were transfers of terminal barley segments to wheat chromosomes; one was a transfer of a terminal wheat segment to a barley chromosome. Because of the absence of diagnostic N-bands, the identity of three barley segments could not be determined; in one translocation the barley chromosome involved had a NOR so it must have been 5H or 6H, and the centric translocation was 4HS.2BL. Following selfing, homozygotes of four translocations were selected. The experiment suggests that in vitro culture conditions are conducive for major genome rearrangements in wheat-barley hybrids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
New sources of resistance to crown rust, Puccinia coronata f. sp. avenae (Eriks.), the major fungal disease of cultivated oat, Avena sativa L. (2n = 6x = 42), are constantly needed due to frequent, rapid shifts in the virulence pattern of the pathogen. Crown rust resistance identified in the diploid oat A. strigosa (Schreb.) (2n = 2x = 14) accession CI6954SP was transferred into cultivated oat using two methods: direct cross of the diploid to a hexaploid cultivar facilitated by embryo rescue, and initial cross of the diploid to a wild tetraploid oat to make a synthetic hexaploid for subsequent crossing to a hexaploid cultivar. Two tetraploids, a crown rust resistant A. murphyi (Ladiz.) accession P12 and a susceptible A. insularis (Ladiz.) accession INS-1, were used in the 2x·4x crosses. Resistant backcross-derived lines were recovered by both methods. Although the 2x·4x synthetic method did not require the laborious discovery and rescue of an infrequent initial hybrid embryo of the direct cross, the direct cross method provided more rapid backcross recovery of plants with high fertility, full transmission of resistance, and desired plant and seed phenotypes. A suppressor effect, present initially but segregating in backcrosses, appeared to come from the CI6954SP donor and is the same as, or analogous to, suppression by an oat line with the crown rust resistance gene Pc38. No resistance from A. murphyi P12 was detected in advanced generations when it was introduced either as a component of a synthetic hexaploid or in direct crosses to A. sativa, indicating suppression of its resistance in interploidy combinations. That the dominant resistance gene transferred from CI6954SP and a gene Pc94 introgressed earlier from a different A. strigosa accession may be the same or quite similar to one another is indicated by their in-common specificity to suppression of resistance expression, susceptibility to a newly recovered rust isolate, and close linkage to the molecular marker SCAR94-2. The introgressed resistance genes from the different sources, even if the same, may have different cultivar genomic introgression sites, which would allow tests of dosage effects on resistance expression.  相似文献   

20.
To further understand the nature of hybrid sterility between Oryza sativa and Oryza glaberrima, quantitative trait loci (QTL) controlling hybrid sterility between the two cultivated rice species were detected in BC1F1 and advanced backcross populations. A genetic map was constructed using the BC1F1 population derived from a cross between WAB450-16, an O. sativa cultivar, and CG14, an O. glaberrima cultivar. Seven main-effect QTLs for pollen and spikelet sterility were detected in the BC1F1. Forty-four sterility NILs (BC6F1) were developed via successive backcrosses using pollen sterility plants as female and WAB450-16 as the recurrent parent. Seven NILs, in which the target QTL regions were heterozygous while the other QTL regions as well as most of the reminder of the genome were homozygous for the WAB450-16 allele, were selected as the QTL identification materials. BC7F1 for the seven NILs showed a continuous variation in pollen and spikelet fertility. The four identified pollen sterility QTLs were located one each on chromosomes 1, 3, 7 and 7. Pollen sterility loci qSS-3 and qSS-7a were on chromosomes 3 and 7, respectively, which coincides with the previously identified S19, and S20, while loci qSS-1 and qSS-7b on chromosomes 1 and 7L appear distinct from all previously reported loci. An epistatic interaction controlling the hybrid sterility was detected between qSS-1 and qSS-7a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号