首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Peripheral blood lymphocytes (PBL) from non-vaccinated dogs and from dogs either vaccinated intramuscularly (IM) or subcutaneously (SC) with an inactivated rabies virus vaccine (Rabguard-TC, Norden Laboratories, Lincoln, NE) or intramuscularly with an attenuated rabies virus vaccine (Endurall-R, Norden Laboratories, Lincoln, NE) were exposed in vitro to rabies virus. Blastogenesis of PBL was measured by incorporation of 3H-thymidine into the DNA of proliferating cells in the presence of a suboptimal concentration of phytohemagglutinin (PHA). Following the first vaccination, there was no difference in the blastogenic response of lymphocytes from dogs vaccinated IM with either the inactivated or attenuated rabies virus vaccines. The inactivated rabies vaccine stimulated as great or greater blastogenic response when it was given SC. The PBL from non-vaccinated control dogs were not stimulated by rabies virus. Dogs vaccinated with the inactivated vaccine developed a lymphocyte blastogenic response to rabies virus following challenge with virulent street rabies virus. Nonvaccinated control dogs did not develop a lymphocyte blastogenic response to rabies virus following challenge with virulent street rabies virus.  相似文献   

2.
Evaluation in swine of a subunit vaccine against pseudorabies   总被引:2,自引:0,他引:2  
A subunit vaccine against pseudorabies virus (PRV) was prepared by treating a mixture of pelleted virions and infected cells with the nonionic detergent Nonidet P-40 and emulsifying the extracted proteins incomplete Freund's adjuvant. Three 7-week-old pigs without antibodies against PRV were given 2 IM doses of this vaccine 3 weeks apart. Thirty days after the 2nd vaccination, 10(6) median tissue culture infective doses (TCID50) of a virulent strain of PRV were administered intranasally. Tonsillar and nasal swabs were collected daily between 2 and 10 days after challenge exposure. The pigs vaccinated with the subunit vaccine were not found to shed virulent PRV. Two groups of five 7-week-old pigs vaccinated with commercially available vaccines, either live-modified or inactivated virus, and subsequently exposed to 10(6) TCID50 of virulent PRV, shed virulent virus for up to 8 days. The subunit vaccine induced significantly higher virus-neutralizing antibody titers than either the live-modified or inactivated virus vaccine.  相似文献   

3.
The vaccine efficacy of a genetically engineered deletion mutant strain of pseudorabies virus, strain 783, was compared with that of the conventionally attenuated Bartha strain. Strain 783 has deletions in the genes coding for glycoprotein I and thymidine kinase. In experiment 1, which had a 3-month interval between vaccination and challenge exposure, strain 783 protected pigs significantly (P less than 0.05) better against virulent virus challenge exposure than did the Bartha strain. The growth of pigs vaccinated with strain 783 was not arrested, whereas that of pigs vaccinated with the Bartha strain was arrested for 7 days. Of 8 pigs given strain 783, 4 were fully protected against challenge exposure; none of the pigs given strain Bartha was fully protected. In experiment 2, which had a 3-week interval between vaccination and challenge exposure, the growth of pigs vaccinated with strain 783 was arrested for 3.5 days, whereas that of pigs vaccinated with the Bartha strain was arrested for 6 days. In experiment 3, pigs with moderate titer of maternal antibodies were vaccinated twice IM or once intranasally with either strain 783 or Bartha and were challenge-exposed 3 months after vaccination. Pigs given strain 783 twice IM were significantly (P less than 0.05) better protected than were the other pigs. They had growth arrest of only 6 days, compared with 9 days for pigs of other groups, and shed less virus after challenge exposure. Results of this study indicate that the vaccine based on the deletion mutant strain 783 is more efficacious than is the Bartha strain of pseudorabies virus.  相似文献   

4.
We compared 3 modified-live pseudorabies virus (PRV) vaccine strains, administered by the intranasal (IN) or IM routes to 4- to 6-week-old pigs, to determine the effect of high- and low-challenge doses in these vaccinated pigs. At the time of vaccination, all pigs had passively acquired antibodies to PRV. Four experiments were conducted. Four weeks after vaccination, pigs were challenge-exposed IN with virulent virus strain Iowa S62. In experiments 1 and 2, a high challenge exposure dose (10(5.3) TCID50) was used, whereas in experiments 3 and 4, a lower challenge exposure dose (10(2.8) TCID50) was used. This low dose was believed to better simulate field conditions. After challenge exposure, pigs were evaluated for clinical signs of disease, weight gain, serologic response, and viral shedding. When vaccinated pigs were challenge-exposed with a high dose of PRV, the duration of viral shedding was significantly (P less than 0.05) lower, and body weight gain was greater in vaccinated pigs, compared with nonvaccinated challenge-exposed pigs. Pigs vaccinated IN shed PRV for fewer days than pigs vaccinated IM, but this difference was not significant. When vaccinated pigs were challenge-exposed with a low dose, significantly (P less than 0.05) fewer pigs vaccinated IN (51%) shed PRV, compared with pigs vaccinated IM (77%), or nonvaccinated pigs (94%). Additionally, the duration of viral shedding was significantly (P less than 0.05) shorter in pigs vaccinated IN, compared with pigs vaccinated IM or nonvaccinated pigs. The high challenge exposure dose of PRV may have overwhelmed the local immune response and diminished the advantages of the IN route of vaccination.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A comparison of intradermal (ID) versus intramuscular (IM) routes of pig vaccination with deleted Aujeszky's disease (AD) vaccine on the formation of specific postvaccinal and postchallenge humoral immune response was performed. The studies were carried out on 21 eight week-old piglets, divided into three groups--two experimental and one control of 7 piglets each. Animals of first two groups were vaccinated twice in 12 and 16 week of age with deleted, live attenuated AD vaccine Porcilis Begonia (Intervet). Group I was vaccinated with a dose of 2.0 ml (10(6.0) TCID50)) intramuscularly (IM) into neck muscles, and group II received 0.2 ml (10(5.0) TCID50) intradermally (ID) in neck area using needleless apparatus SERENA model SD 1-2 (Emplast, Italy). In group K (control) 2.0 ml PBS IM was used. Seventy days after the first vaccination all pigs were intranasally infected with a dose of 10(5.5) TCID50 of virulent Northern Ireland Aujeszky-3 (NIA-3) strain of Herpesvirus suis type 1 (SHV-1) by instilling 0.5 ml of virus suspension into each nostril. Specific humoral immune response was evaluated using seroneutralization (SN) test and gE-ELISA-Pseudorabies virus gpI Antibody Test Kit (Herd Chek Anti-PRV gpI), IDEXX Lab Inc (USA). It was found that challenge caused anamnestic reaction in both groups of vaccinated pigs, but postchallenge immune response was stronger in ID-vaccinated group--on 14 day post infection (dpi) SN antibody level was considerably higher than in IM-vaccinated group. The obtained results suggest that secondary immunological response after challenge is decidedly more effective in the range of evaluated parameters in animals vaccinated by ID route, which can be linked to, perhaps underestimated yet and seldom utilized, skin immunity mechanisms in specific prophylaxis of infectious diseases. Advantages and disadvantages of SN test and ELISA are also discussed.  相似文献   

6.
OBJECTIVE: To determine the ability of a modified-live virus (MLV) bovine viral diarrhea virus (BVDV) type 1 (BVDV1) vaccine administered to heifers prior to breeding to stimulate protective immunity that would block transmission of virulent heterologous BVDV during gestation, thus preventing persistent infection of a fetus. ANIMAL: 40 crossbred Angus heifers that were 15 to 18 months old and seronegative for BVDV and 36 calves born to those heifers. PROCEDURE: Heifers were randomly assigned to control (n = 13) or vaccinated (27) groups. The control group was administered a multivalent vaccine where-in the BVDV component had been omitted. The vaccinated heifers were administered a single dose of vaccine (IM or SC) containing MLV BVDV1 (WRL strain). All vaccinated and control heifers were maintained in pastures and exposed to BVDV-negative bulls 21 days later. Thirty-five heifers were confirmed pregnant and were challenge exposed at 55 to 100 days of gestation by IV administration of virulent BVDV1 (7443 strain). RESULTS: All control heifers were viremic following challenge exposure, and calves born to control heifers were persistently infected with BVDV. Viremia was not detected in the vaccinated heifers, and 92% of calves born to vaccinated heifers were not persistently infected with BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: These results document that vaccination with BVDV1 strain WRL protects fetuses from infection with heterologous virulent BVDV1.  相似文献   

7.
Various procedures of vaccination for pseudorabies were compared for their effects on shedding, latency, and reactivation of attenuated and virulent pseudorabies virus. The study included 6 groups: group 1 (10 swine neither vaccinated nor challenge-exposed), group 2 (20 swine not vaccinated, but challenge-exposed), and groups 3 through 6 (10 swine/group, all vaccinated and challenge-exposed). Swine were vaccinated with killed virus IM (group 3) or intranasally (group 4), or with live virus IM (group 5) or intranasally (group 6). The chronologic order of treatments was as follows: vaccination (week 0), challenge of immunity by oronasal exposure to virulent virus (week 4), biopsy of tonsillar tissue (week 12), treatment with dexamethasone in an attempt to reactivate latent virus (week 15), and necropsy (week 21). Vaccination IM with killed or live virus and vaccination intranasally with live virus mitigated clinical signs and markedly reduced the magnitude and duration of virus shedding after challenge exposure. Abatement of signs and shedding was most pronounced for swine that had been vaccinated intranasally with live virus. All swine, except 4 from group 2 and 1 from group 4, survived challenge exposure. Only vaccination intranasally with live virus was effective in reducing the magnitude and duration of virus shedding after virus reactivation. Vaccination intranasally with killed virus was without measurable effect on immunity. Of the 55 swine that survived challenge exposure, 54 were shown subsequently to have latent infections by use of dexamethasone-induced virus reactivation, and 53 were shown to have latent infections by use of polymerase chain reaction (PCR) with trigeminal ganglia specimens collected at necropsy. Fewer swine were identified by PCR as having latent infections when other tissues were examined; 20 were identified by testing specimens of olfactory bulbs, 4 by testing tonsil specimens collected at necropsy, and 4 by testing tonsillar biopsy specimens. Eighteen of the 20 specimens of olfactory bulbs and 3 of the 4 tonsil specimens collected at necropsy in which virus was detected by PCR were from swine without detectable virus-neutralizing antibody at the time of challenge exposure. One pig that had been vaccinated intranasally with live virus shed vaccine virus from the nose and virulent virus from the pharynx concurrently after dexamethasone treatment. Evaluation of both viral populations for unique strain characteristics failed to provide evidence of virus recombination.  相似文献   

8.
Outbreaks of infectious bovine rhinotracheitis (IBR) have recently been observed in vaccinated feedlot calves in Alberta a few months post-arrival. To investigate the cause of these outbreaks, lung and tracheal tissues were collected from calves that died of IBR during a post-arrival outbreak of disease. Bovine herpesvirus-1 (BHV-1), the causative agent of IBR, was isolated from 6 out of 15 tissues. Of these 6 isolates, 5 failed to react with a monoclonal antibody specific for one of the epitopes on glycoprotein D, one of the most important antigens of BHV-1. The ability of one of these mutant BHV-1 isolates to cause disease in calves vaccinated with a modified-live IBR vaccine was assessed in an experimental challenge study. After one vaccination, the majority of the calves developed humoral and cellular immune responses. Secondary vaccination resulted in a substantially enhanced level of immunity in all animals. Three months after the second vaccination, calves were either challenged with one of the mutant isolates or with a conventional challenge strain of BHV-1. Regardless of the type of virus used for challenge, vaccinated calves experienced significantly (P < 0.05) less weight loss and temperature rises, had lower nasal scores, and shed less virus than non-vaccinated animals. The only statistically significant (P < 0.05) difference between the 2 challenge viruses was the amount of virus shed, which was higher in non-vaccinated calves challenged with the mutant virus than in those challenged with the conventional virus. These data show that calves vaccinated with a modified-live IBR vaccine are protected from challenge with either the mutant or the conventional virus.  相似文献   

9.
疫苗的接触传播是疫苗免疫接种需要考虑的重要因素,为了检测重组鸡痘病毒载体疫苗水平传播的能力,对隔离条件下饲养的SPF鸡用重组鸡痘病毒基因工程疫苗接种,同时设立非免疫对照鸡,饲养期间特意延长清粪时间以增加感染的机会,1个月之后攻击传染性喉气管炎WG株强毒和鸡痘102株强毒,疫苗免疫鸡全部获得保护,而非免疫鸡则全部发病.在试验动物饲养场的自然条件下,将免疫鸡和试验对照两组鸡饲养在同一个鸡舍内,让疫苗毒的传播更接近自然条件.在每个月的攻毒试验中,对照鸡都没有获得对鸡痘和传染性喉气管炎强毒的保护.在疫苗免疫期间进行连续5个月的跟踪检测,同居未免疫鸡没有检测到抗传染性喉气管炎病毒gB抗体.这些实验结果表明抗鸡传染性喉气管炎重组鸡痘病毒基因工程疫苗不能通过接触传播.  相似文献   

10.
11.
A modified-live intranasal (IN) canine parainfluenza (CPI)-virus Bordetella bronchiseptica vaccine was evaluated in dogs for efficacy against laboratory-induced canine infectious tracheobronchitis. The comparative efficacies of IN and parenteral administrations of the CPI virus fraction were also evaluated. The frequency and duration of clinical tracheobronchitis, blood serum agglutination titer, humoral antibody response, and duration of CPI virus and B bronchiseptica shedding were measured. Group A dogs were vaccinated subcutaneously or IM with an experimental CPI vaccine and challenge exposed with CPI virus. Group B dogs were vaccinated IN with avirulent CPI virus-B bronchiseptica live antigens and challenge exposed with virulent CPI virus and virulent B bronchiseptica. The IN vaccination (group B) significantly reduced (P less than or equal to 0.001) the occurrence of clinical tracheobronchitis by 96%. The combined challenge exposure of virulent CPI and virulent B bronchiseptica produced a synergistic enhancement of the clinical signs of kennel cough. The percentage of days after challenge exposure that virus shedding was detected for controls equaled 70% as compared with 50% and only 1% for parenterally and IN vaccinated dogs, respectively. Isolation of virulent B bronchiseptica microorganisms was reduced 89% in dogs vaccinated IN compared to controls. The geometric mean humoral antibody titers to CPI virus after 2 parenteral vaccinations and 1 IN vaccination were 1:43 and 1:34, respectively.  相似文献   

12.
A subunit vaccine in the form of immunostimulating complex (iscom) was prepared to contain the envelope glycoproteins of bovine herpesvirus type 1 (BHV-1). This iscom preparation was tested in a vaccination experiment on 4-month-old calves seronegative to BHV-1. In this experiment, four groups with three animals per group were used. Two groups were vaccinated with the iscom preparation twice, four weeks apart, one group with 50 micrograms and the other with 100 micrograms per calf. The third group received a commercial inactivated whole-virus vaccine applying the same vaccination program. The fourth group served as control. Two weeks after the second vaccination, all the animals were challenge-infected intranasally with a virulent BHV-1 strain and four days later with a virulent Pasteurella multocida--this in order to mimic hard field conditions. When exposed to challenge infection, all the animals vaccinated with the iscom were fully protected, i.e., no virus could be recovered from their nasal secretions and no clinical symptoms were recorded. In contrast, the animals vaccinated with the commercial vaccine, responded to challenge with moderate fever and loss of appetite, and virus was isolated from the nasal secretions. The animals in the control group developed severe clinical symptoms. In the sera of iscom-vaccinated animals, the virus neutralization titers reached levels of 1/3500 or higher.  相似文献   

13.
Aujeszky's disease virus (ADV) envelope glycoprotein gVI (gp50) was purified from virus-infected Vero cells by ion-exchange and immunoaffinity chromatography and its usefulness as a subunit vaccine was evaluated in active and passive immunization studies. Four-week-old piglets were immunized intramuscularly (IM) with purified gVI twice two weeks apart and challenged intranasally (IN) 10 days after the second immunization with 30 LD50 (10(8)PFU) of a virulent strain of ADV. Pigs, vaccinated with 100 micrograms of purified gVI, produced virus neutralizing antibodies and did not develop clinical signs after challenge exposure. The challenge virus was not isolated from nasal swabs and tonsils of gVI-vaccinated pigs, whereas non-vaccinated control pigs developed illness after challenge exposure with the same virulent ADV strain which was later recovered from their nasal swabs and tonsils. Pregnant sows vaccinated twice with purified gVI (IM) at a three week interval produced virus neutralizing antibodies in colostrum. Four-day-old sucking piglets born of vaccinated sows were passively protected by colostral antibodies against intranasal challenge with a lethal dose of virulent ADV. Sera from gVI-vaccinated pigs were distinguished from experimentally infected swine sera by their differential reactivity in enzyme-linked immunosorbent assay (ELISA) using four major viral glycoproteins (excluding gVI) as antigen purified by the use of lentil-lectin.  相似文献   

14.
Broiler chickens were vaccinated at 18 days of age against infectious laryngotracheitis (ILT) using chicken-embryo-origin (CEO) and tissue-culture-origin (TCO) vaccines, each vaccine given either by drinking water, spray, or eyedrop. Controls were not vaccinated. The broilers were challenged 3 weeks later with virulent ILT virus (USDA challenge strain). Serum samples taken before challenge were analyzed by a virus neutralization (VN) test to determine titers due to vaccination. Both vaccines, regardless of route of administration, produced low VN titers, geometric mean titer (GMT) being less than 4.0 in all vaccinated groups. When administered by the same route, the CEO vaccine produced higher titers than the TCO vaccine. Titers following drinking-water or eyedrop administration of vaccines were higher than titers following spray vaccination. There was an inverse relationship between pre-challenge VN titers of groups of birds and the percentage of birds in the groups dying from ILT virus challenge. The drinking-water route of vaccination provided the most protection, while the spray provided the least.  相似文献   

15.
It should be established, whether animals vaccinated intramuscularly (IM) with a live Bovine herpesvirus type 1 (BHV-1) marker vaccine become viremic and/or excrete vaccine virus with nasal discharge. Five cattle, seronegative for BHV-1, were vaccinated with an overdose of the vaccine (Bovilis IBR marker live) via the IM route. Nasal swabs and blood samples were taken at regular intervals and tested for BHV-1 in a virus infectivity assay. In addition, a polymerase chain reaction (PCR) specific for BHV-1 DNA was performed on the blood samples. BHV-1 neutralizing antibody titres were determined in the sera taken prior to the vaccination and four weeks after immunisation. AIl animals were successfully vaccinated as judged by the development of BHV-1 neutralising antibodies. However, all nasal swab samples were tested negative for vaccine virus, and all blood samples were found negative for BHV-1 vaccine virus and BHV-1 specific DNA. From these data it can be concluded that the vaccine virus was not excreted with nasal discharge after IM vaccination and that the vaccinated animals did not have a detectable viremia. Therefore, it is recommended to apply the tested BHV-1 marker live vaccine by the IM route in situations where it is undesirable that the vaccine virus is excreted.  相似文献   

16.
Parenteral vaccination of fattening pigs with either modified live or inactivated Aujeszky's disease virus did not prevent infection with field strain virus or the development of clinical disease. The duration and severity of the clinical syndrome was, however, reduced and vaccinated pigs did not suffer the severe weight loss and high mortality experienced by non-vaccinated pigs in the acute phase of disease. The range of tissues in which challenge virus replication took place was more restricted in vaccinated animals and the concentration of virus in infected tissues was reduced. Vaccination shortened the duration of field virus excretion and carriage in the tonsil. Replication of modified live vaccine virus was restricted to the site of inoculation in the neck and associated lymph nodes for two days after vaccination and it was not excreted by vaccinated pigs. Attempts to infect pigs by feeding them tissues taken from non-vaccinated or vaccinated pigs soon after challenge infection were unsuccessful.  相似文献   

17.
The immune response induced by intradermal vaccination using a needle-less device was evaluated in conventional pigs in comparison with the more conventional intramuscular vaccination; to this purpose, vaccination against Aujeszky’s Disease (AD) was used as a model of antiviral immunity. Two groups of pigs (n = 10 each) were vaccinated 4 weeks apart respectively by the intramuscular (IM group) and intradermal route (ID group; needle-less I.D.A.L.® vaccinator) with an AD modified live virus. Ten pigs injected with the vaccine adjuvant only were kept as sham-vaccinated controls (C group).On blood samples collected at 0, 2, 4, 5, 6 and 7 weeks post-vaccination (PV) ADV-specific virus neutralizing (VN) antibodies, IFN-γ secreting cells (SC), lymphocyte subsets and IFN-γ gene expression in PBMC were evaluated.VN antibodies increased after the 1st vaccination and peaked after the 2nd vaccination in both vaccinated groups. Also IFN-γ SC reached maximum levels in both groups after administration of the booster dose. Pigs in the control group remained negative for both parameters throughout the study. Flow cytometry showed persistently higher levels of CD3−CD8α+ Natural Killer cells in both vaccinated pigs. The ID group showed an earlier and regulated activation characterized by an increase of cytotoxic CD8β+ T lymphocytes and CD25+ cells after the boosting dose. No statistically significant differences between treated and control groups were detected for memory CD4+CD8α+low T cells. Upregulation of IFN-γ gene expression in PBMC was detected in ID and IM pigs after both vaccine administrations, although at a different extent. Overall, the results showed that the intradermal vaccine delivery by a needle-less device can prime a strong humoral and cellular immune response comparable to that obtained by the intramuscular vaccination.  相似文献   

18.
OBJECTIVE: To evaluate the efficacy of an inactivated bovine herpesvirus-1 (BHV-1) vaccine to protect against BHV-1 challenge-induced abortion and stillbirth. DESIGN: Prospective study. ANIMALS: 35 beef heifers. PROCEDURES: Before breeding, heifers were vaccinated with a commercially available BHV-1 inactivated vaccine SC or IM. The estrous cycle was then synchronized, and heifers were artificially inseminated 30 to 60 days after vaccination. Heifers (n = 21) were challenge inoculated IV at approximately 180 days of gestation with virulent BHV-1. Fourteen control heifers were not vaccinated. Clinical signs of BHV-1 infection were monitored for 10 days following challenge; serologic status and occurrence of abortion or stillbirth were evaluated until time of calving. RESULTS: 18 of 21 (85.7%) heifers that received vaccine were protected from abortion following challenge, whereas all 14 control heifers aborted. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that an inactivated BHV-1 vaccine can protect against abortion resulting from a substantial challenge infection, with efficacy similar to that of modified-live BHV-1 vaccines.  相似文献   

19.
Two commercial marker vaccines against classical swine fever virus (CSFV) and companion diagnostic tests were examined in 160 conventional pigs. To test the vaccines in a "worst case scenario", group of 10 weaners were vaccinated using a single dose of an E2 (gp55) based vaccine at days -21, -14, -10 or -7, and subsequently challenged at day 0. The challenge virus was CSFV 277, originating from a recent outbreak of classical swine fever (CSF) in Germany. In all groups, only 5 out of 10 pigs were challenged; the remaining 5 pigs served as vaccinated contact controls. Also, three control groups, each consisting of 10 non-vaccinated pigs, were challenged in parallel to the vaccinated animals. CSFV could be isolated from all non-vaccinated pigs. Among these pigs 40% displayed a chronic course of the infection (virus positive for more than 10 days). Pigs vaccinated 21 or 14 days before challenge displayed no clinical signs of CSFV after challenge. However, they were still able to replicate CSFV when challenged, as measured by reisolation of CSFV from leukocytes of the directly challenged pigs. CSFV could be isolated from the leucocytes of 25% of the pigs vaccinated 21 days before challenge and 50% of the pigs vaccinated 14 days before challenge. Chronic infection was not observed, but transmission to one vaccinated contact pig occurred. From all pigs vaccinated 10 or 7 days before challenge, CSFV could be reisolated. We observed a chronic course of infection in 5% of pigs vaccinated 10 days before challenge and in 30% of pigs vaccinated 7 days before challenge. The mortality rate was 20% in the pigs vaccinated 10 days before challenge, and varied between 20 and 80% in pigs vaccinated 7 days prior to challenge. The contact animals had lower mortality (0-20%) than directly challenged pigs, probably mirroring the delayed time point of infection. There was thus some protection against clinical illness by both marker vaccines, but not a solid protection against infection and virus shedding. The efficacy of the vaccine was best if used 3 weeks before challenge and a clear correlation between time interval from vaccination to challenge and the level of virus shedding was observed. Each vaccine had its own accompanying discriminatory ELISA, but 18% of the virus positive pigs never seroconverted in these tests.  相似文献   

20.
The objective of this study was to determine whether a commercially available, saponin-adjuvanted, inactivated bovine respiratory syncytial virus (BRSV) vaccine would protect calves from experimental infection with virulent BRSV. This was a randomized controlled trial comprising 14, 8- to 9-week-old calves seronegative for BRSV Group 1 calves (n = 8) were not vaccinated and group 2 calves (n = 6) were vaccinated on days 0 and 19 with an inactivated BRSV vaccine. All calves were challenged with virulent BRSV on day 46. Clinical signs, arterial PO2, and immune responses were monitored after challenge. Calves were euthanatized on day 54 (8 d after challenge) and lungs were examined for lesions. Vaccination elicited increases in BRSV-specific immunoglobulin (Ig) G and virus neutralizing antibody titers. Challenge with BRSV resulted in severe respiratory tract disease and extensive pulmonary lesions in control calves, but no signs of clinical disease and minimal or no pulmonary lesions in vaccinated calves. Arterial blood oxygen values on day 53 (7 d after challenge) in control calves were significantly lower than those in vaccinated calves, which remained within normal limits. Control calves shed BRSV for several days after challenge, whereas BRSV was not detected on deep nasal swabs from vaccinated calves. In summary, the results indicated that this inactivated BRSV vaccine provided clinical protection from experimental infection with virulent virus 27 d after vaccination and significantly decreased the prevalence and severity of pulmonary lesions. Efficacy was similar to that reported for other commercial inactivated and modified-live BRSV vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号