首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increased photosynthetic rates following partial defoliation may arise from changes in leaf biochemistry, water relations or nutrient status. Twelve-month-old field-grown Eucalyptus globulus Labill. seedlings were pruned from below to reduce the green crown depth by 50 (D50) or 70% (D70). Photosynthetic responses to light and CO2 concentration were examined before and one, three and five weeks after partial defoliation. One week after defoliation, photosynthetic rates were greater in seedlings in the D50 (21 micromol m(-2) s(-1)) and D70 (23 micromol m(-2) s(-1)) treatments than in control seedlings (15 micromol m(-2) s(-1)); however, there was little difference in photosynthetic rates between partially defoliated seedlings and control seedlings after 5 weeks. An analysis of the sensitivity of photosynthesis to biochemical parameters revealed that the transient increase in photosynthetic rate in response to partial defoliation was largely a function of the maximum rate of carboxylation (85-87%) and the maximum rate of RuBP regeneration (55-60%) rather than stomatal conductance (12-13%). Nitrogen increased in leaves following partial defoliation (increases of 0.6 and 1.2 g m(-2) for D50 and D70, respectively), but was accumulated in a non-photosynthetic form (i.e., there was no increase in nitrogen concentration of Rubisco or chlorophyll). Increased photosynthetic rates immediately following partial defoliation were primarily a result of increased activity rather than amount of photosynthetic machinery. There was no evidence that phosphorus was responsible for the increase in photosynthetic rates after partial defoliation.  相似文献   

2.
Plant responses to defoliation are complex. We established a field experiment in a nine-month-old Eucalyptus globulus Labill. plantation to examine the effects of pattern (upper crown versus lower crown removal), frequency (single, double or triple defoliation within a 12-month period) and severity (25 versus 38% of leaf area removed) of defoliation and the effect of soil nitrogen (N) on photosynthetic processes and stem growth. The photosynthetic responses observed following defoliation could be attributed to changes in source:sink ratios. Light-saturated CO(2) uptake (A(max)) increased with increasing severity and frequency of defoliation irrespective of defoliation pattern. Seedlings defoliated in autumn did not exhibit increases in A(max) until the following spring, whereas there was no such delay in photosynthetic responses associated with spring defoliation. Application of N before defoliation allowed trees to compensate for the effect of defoliation on stem diameter growth, which could not be explained simply in terms of increases in A(max). The observed increases in stem diameter increment following N fertilization of defoliated trees suggested increases in leaf area development, and there were changes in the leaf area:leaf dry mass ratio that may have increased light absorption by the crown. Nitrogen fertilization also increased partitioning of dry mass to branches at the expense of main stems, suggesting that N supply was important in rebuilding crowns following a defoliation event.  相似文献   

3.
Mixtures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman are twice as productive as E. globulus monocultures growing on the same site in East Gippsland, Victoria, Australia, possibly because of increased nitrogen (N) availability owing to N(2) fixation by A. mearnsii. To investigate whether N(2) fixation by A. mearnsii could account for the mixed-species growth responses, we assessed N(2) fixation by the accretion method and the (15)N natural abundance method. Nitrogen gained by E. globulus and A. mearnsii mixtures and monocultures was calculated by the accretion method with plant and soil samples collected 10 years after plantation establishment. Nitrogen in biomass and soil confirmed that A. mearnsii influenced N dynamics. Assuming that the differences in soil, forest floor litter and biomass N of plots containing A. mearnsii compared with E. globulus monocultures were due to N(2) fixation, the 10-year annual mean rates of N(2) fixation were 38 and 86 kg ha(-1) year(-1) in 1:1 mixtures and A. mearnsii monocultures, respectively. Nitrogen fixation by A. mearnsii could not be quantified on the basis of the natural abundance of (15)N because such factors as mycorrhization type and fractionation of N isotopes during N cycling within the plant confounded the effect of the N source on the N isotopic signature of plants. This study shows that A. mearnsii fixed significant quantities of N(2) when mixed with E. globulus. A decline in delta(15)N values of E. globulus and A. mearnsii with time, from 2 to 10 years, is further evidence that N(2) was fixed and cycled through the stands. The increased aboveground biomass production of E. globulus trees in mixtures when compared with monocultures can be attributed to increases in N availability.  相似文献   

4.
Relationships between CO(2) assimilation at light saturation (A(max)), nitrogen (N) content and weight per unit area (W(A)) were studied in leaves grown with contrasting irradiances (outer canopy versus inner canopy) and N supply rates in field-grown nectarine trees Prunus persica L. Batsch. cv. Fantasia. Both A(max) and N content per unit leaf area (N(A)) were linearly correlated to W(A), but leaves in the high-N treatment had higher N(A) and A(max) for the same value of W(A) than leaves in the low-N treatment. The curvilinear relationship between photosynthesis and total leaf N was independent of treatments, both when expressed per unit leaf area A(maxA) and N(A)) and per unit leaf weight (A(maxW) and N(W)), but the relationship was stronger when data were expressed on a leaf area basis. Both A(maxA) and N(A) were higher for outer canopy leaves than for inner canopy leaves and A(maxW) and N(W) were higher for leaves in the high-N treatment than for leaves in the low-N treatment. The relationship between A(max) and N resulted in a similar photosynthetic nitrogen-use efficiency at light saturation (A(max)NUE) for both N and light treatments. Photosynthetic nitrogen-use efficiency was similar among treatments throughout the whole light response curve of photosynthesis. Leaves developed in shade conditions did not show higher N-use efficiency at low irradiance. At any intercellular CO(2) partial pressure (C(i)), photosynthetic CO(2) response curves were higher for outer canopy leaves and, within each light treatment, were higher for the high-N treatments than for the low-N treatments. Consequently, most of the differences among treatments disappeared when photosynthesis was expressed per unit N. However, slightly higher assimilation rates per unit N were found for outer canopy leaves compared with inner canopy leaves, in both N treatments. Because higher daily irradiance within the canopies of the low-N trees more than compensated for the lower photosynthetic performances of these leaves compared to the leaves of high-N trees, daily carbon gain (and N-use efficiency on a daily assimilation basis) per leaf was higher for the low-N treatment than for the high-N treatment in both outer and inner canopy leaves.  相似文献   

5.
The responses of juvenile leaves of two Eucalyptus species, with contrasting susceptibility to infection by Mycosphaerella leaf disease, were compared. The anatomical changes, accumulation of phenolics, suberin, lignin and anthocyanin and the retention of chlorophyll were studied in leaf lesions of varying developmental stages caused by species of Mycosphaerella. Enhanced resistance of Eucalyptus nitens in southern Australia was attributed to the formation of an effective lignified and suberized necrophylactic periderm, to restrict pathogen spread. Leaves of E. nitens contained isobilateral palisade which resulted in both abaxial and adaxial cell division and the initiation of a strong reinforced cellular zone from an early lesion stage. Eucalyptus globulus formed a slower, distorted necrophylactic periderm through hypertrophic changes to existing mesophyll and limited cell divisions of the single adaxial palisade layer. Deposits of lignin and suberin did not occur until later in lesion development, which were not effective in preventing further disease development. From this study it is hypothesized that tolerance of eucalypts to Mycosphaerella pathogens may be associated with constitutive mesophyll density.  相似文献   

6.
We characterized the adventitious rooting response of Eucalyptus globulus Labill. to various concentrations of calcium, nitrogen, phosphorus, iron, manganese, zinc, boron and copper. The parameters analyzed were percent rooting, root number, root length and mean rooting time. Root number and root length were significantly affected by mineral nutrition, whereas mean rooting time and rooting percentage seemed to be closely related to auxin availability. Root number was affected by calcium, nitrogen source and zinc, whereas root length was influenced by concentrations of phosphorus, iron and manganese, and by nitrogen source. Based on these results, we evaluated various combinations of several concentrations of these minerals in each rooting phase. Cuttings that were rooted in an optimized mineral nutrient medium and acclimatized to ex-vitro conditions for two months showed significantly higher survival after transplanting and drought stress than cuttings rooted in basal medium and treated in the same way.  相似文献   

7.
Summary The kinetics of HCl-catalysed delignification of Eucalyptus globulus wood by 70% (w/w) acetic acid solution were satisfactorily explained by a model in which 5% of the lignin fraction could not be eliminated and the remaining 95% was eliminated by a single process which, in view of the activation energy calculated from the data was attributed to the hydrolysis of -aryl ether bonds. The selectivity of the process was effectively independent of HCl concentration and operating temperature for pulp yields >50%. At high temperature (160 °C) and catalyst concentration (0.027 MHCl), lignin condensation and precipitation became significant and the data were better fitted by a model comprising two consecutive processes: lignin solubilization followed by lignin condensation.The authors are grateful to the CICYT for financial support of this work (Project AGF93-0605) and also to the DGICYT for a research grant awarded to J. González  相似文献   

8.
This paper represents the first part of the results from a glasshouse experiment designed to compare the competition of ECM and VAM fungi on root colonization and effects on growth of two Eucalyptus species (E.globulus and E.urophylla).One ECM fungus(Laccaria lateritia) and three VAM fungi belonging to genera Glomus,Acaulospora and Scutellospora,along with field soil as well,were used to inoculate Eucalyptus seedlings alone or in combination.Both ECM and VAM fungi colonized and formed mycorrhizal associations on roots of inoculated seedlings,though infective rates of VAM and ECM tips per meter varied according to inoculant fungi and plant ages. There were some regressive interactions for colonization between the two fungi,as a general trend for ECM root colonization levels to increase with time at the expense of VAM colonization was observed during 16 weeks. The effect of phosphorus levels in soils on mycorrhizal formation was discussed.  相似文献   

9.
Adventitious rooting is essential for vegetative propagation of woody species. We studied the effects of auxin and light on the development of adventitious roots in cuttings obtained from seedlings of Eucalyptus saligna Smith and E. globulus Labill in an attempt to characterize the adventitious rooting process and identify factors controlling rhizogenesis. Root development was scored as rooting percentage, root density (roots per rooted cutting), mean rooting time and root length. In both species, rooting time was reduced in the presence of auxin. Cuttings from 2-month-old E. saligna seedlings were responsive to lower auxin concentrations than comparable cuttings from E. globulus seedlings. Cuttings from 3-month-old E. saligna seedlings rooted promptly and rooting was not significantly affected by light conditions. In contrast, rooting of cuttings from 3-month-old E. globulus seedlings exhibited recalcitrant behavior and no roots were formed if illuminated during the root formation phase. Effective root regeneration of E. globulus cuttings was obtained by a 4-day exposure to 10 mg l(-1) IBA and culture in darkness during the root formation step. Loss of rooting capacity with seedling age was more pronounced in E. globulus than in E. saligna. The possibility of switching adventitious rooting off and on by manipulating light regime and exogenous auxin supply in E. globulus, and the constitutive nature of rooting in E. saligna may provide useful models for examining the rooting process at the biochemical and molecular levels in Eucalyptus.  相似文献   

10.
Potted cuttings of three Eucalyptus globulus Labill. clones (AR3, CN44, MP11) were either well watered or subjected to one of two soil water deficit regimes for six months in a greenhouse. Reductions in lateral branching, leaf production and leaf expansion were the leading contributors to the large differences observed in biomass production between well-watered and water-stressed plants. Although no significant differences among clones were observed in dry matter accumulation or in the magnitude of the response to soil water deficits, sensitivity of lateral branching, leaf initiation and whole-plant foliage to water stress was significantly lower in CN44 than in AR3 and MP11. When the confounding effect of differences in plant size resulting from the different watering regimes was removed, allometric analysis indicated that the genotypes differed in biomass allocation patterns. In addition to a drought-induced reduction in leaf number, water deficits also resulted in smaller leaves because leaf expansion was inhibited during dehydration events. Resumption of leaf expansion following stress relief occurred in all of the clones, but was particularly evident in severely stressed plants of Clone AR3, possibly as a result of the osmotic adjustment observed in this genotype.  相似文献   

11.
The formation of reaction and barrier zones was studied in the xylem of Eucalyptus globulus and Eucalyptus nitens tree stems after wounding and artificial inoculation with two white rot fungi. The study had two objectives: to describe host responses in Eucalyptus spp. by light microscopy and to determine whether they would differ in a fungal treatment (wounding and inoculation by one of two fungal isolates) when compared to a control treatment (wounding only). Eucalyptus globulus and E. nitens developed similar reaction and barrier zones. The E. globulus barrier zone was characterized by kino vein formation. In both hosts, the reaction zone was primarily influenced by content and distribution of living tracheids and parenchyma cells within the sapwood. By contrast, the anatomy of the barrier zone showed similarities to the basic xylem structure of each host, except for some cell types that were newly formed (sclereids, kino veins) or increased in number (parenchyma cells, tracheids). Other cell types were reduced in number or completely absent. Host response in terms of barrier zone width appeared to be greater in the fungal than control treatment. Both wood decay fungi appeared to induce a wider barrier zone in both species than that associated with non‐specific damage caused exclusively by wounding. However, the small number of replicates available for this study was possibly insufficient to provide statistical evidence for different barrier zone width between fungal and control treatments.  相似文献   

12.
Nickolas  Henry  Williams  Dean  Downes  Geoff  Tilyard  Paul  Harrison  Peter A.  Vaillancourt  René E.  Potts  Brad 《New Forests》2020,51(1):137-158
New Forests - Eucalyptus globulus is widely grown for pulpwood production in temperate regions of the world. However, there is increasing interest in using it for solid-wood products. We studied...  相似文献   

13.
《Southern Forests》2013,75(2):145-154
Eucalyptus globulus is the main eucalypt species grown in Australian plantations. The focus on seedling deployment systems, coupled with exploitation of large, open-pollinated base populations for breeding purposes over the last two decades, has required a detailed understanding of the reproductive biology of this species. We review our research on the reproductive biology of E. globulus, with a focus on its breeding system and advances made in seed production systems. While most improved seed is still obtained from open-pollinated seedling or grafted seed orchards, the development of the one-stop/single-visit pollination procedure has revolutionised the breeding and deployment of this species. The reduced costs of controlled pollination has meant full pedigree-control can now be maintained in large advanced-generation breeding populations and E. globulus is one of the few eucalypt species where large-scale production of manually pollinated seed for family forestry is being undertaken.  相似文献   

14.
15.
Thirty families of Eucalyptus globulus L., established in a first-generation open-pollinated progeny test, were evaluated for the production of heartwood. Five trees of each family were harvested at 9 years of age, total tree height was measured and a cross-sectional disc was removed at 25 % stem height to estimate the amount of heartwood. The heartwood proportion of the stemwood cross-sectional area averaged 41 % with significant between-family variation (P = 0.016) ranging from 27 to 53 %. There were also important within-family differences with coefficients of variation of the mean between 4 and 48 %. Moderate heritability values were obtained for heartwood diameter and proportion (h 2 = 0.31 and 0.23, respectively) but low estimates were found for sapwood width (h 2 = 0.17). Strong positive genetic and phenotypic correlations of heartwood diameter were found with stem DBH and with heartwood proportion. Both correlation estimates indicated that larger trees tended to have more heartwood. The results indicate that there is an opportunity to reduce heartwood content in E. globulus through selection and breeding.  相似文献   

16.
James SA  Bell DT 《Tree physiology》2000,20(15):1007-1018
Light availability strongly affects leaf structure of the distinctive ontogenetic leaf forms of Eucalyptus globulus Labill. ssp. globulus. Late-maturing plants from St. Marys, Tasmania and early maturing plants from Wilsons Promontory, Victoria (hereafter referred to as Wilsons Prom.) were grown for 9 months in 100, 50 or 10% sunlight. Growth, biomass and leaf area were significantly reduced when plants were grown in 10% sunlight. Provenance differences were minimal despite retention of the juvenile leaf form by the Tasmanian plants throughout the study. The time taken for initiation of vegetative phase change by the Wilsons Prom. saplings increased with decreasing light availability, but the nodal position of change on the main stem remained the same. Both juvenile and adult leaves remained horizontal in low light conditions, but became vertical with high irradiance. Leaf dimensions changed with ontogenetic development, but were unaffected by light availability. Juvenile leaves retained a dorsiventral anatomy and adult Wilsons Prom. leaves retained an isobilateral structure despite a tenfold difference in light availability. Stomatal density and distribution showed ontogenetic and treatment differences. At all irradiances, juvenile leaves produced the smallest stomata and adult leaves the largest stomata. Amphistomy decreased with decreasing irradiance. Detrended, correspondence analysis ordination highlighted the structural changes influenced by ontogenetic development and light availability. Adult leaves had characteristics similar to the xeromorphic, sun-leaf type found in arid, high-light conditions. Although juvenile leaves had characteristics typical of mesomorphic leaves, several structural features suggest that these leaves are more sun-adapted than adult leaves.  相似文献   

17.
The variation in extractives content in sapwood and heartwood was investigated among 12 trees in each of four commercial plantations of Eucalyptus globulus in central Portugal. The study was carried out at the 15% height level and extractions used successively dichloromethane, ethanol and water. At all sites, heartwood had significantly more extractives than sapwood, on average 3.8 and 2.4%, respectively. Most extractives consisted of ethanol soluble material (on average 52% of total extractives). Among the sites, there was a statistically significant difference in the content of extractives but the most important source of variation was the within-tree variation between sapwood and heartwood. Differences in the content of extractives were also observed among trees. A strong relation between extractives content and heartwood proportion was found. The potential loss of pulp yield and problems associated with accumulation of extractives are directly related to the heartwood proportion in the eucalypt stems. Forest management should take into account heartwood development and selection for minimising heartwood extractives.  相似文献   

18.
High resolution measurements of stem diameter variation provide a means to study short-term dynamics of tree growth and water status. In this 14-month study, daily changes in stem radius of Eucalyptus globulus Labill. seedlings were measured with electronic point dendrometers in a plantation in southern Tasmania, Australia. The daily patterns of stem expansion and shrinkage were classified into three phases: shrinkage; recovery; and increase in diameter from one maximum to the next, or increment. This study showed that rapid onset of even mild drought in irrigated trees caused distinct changes in daily patterns of stem diameter variation, particularly the duration of daily stem increment. The duration of the daily increment phase was directly related to increment magnitude. The dynamics of daily increment were significantly affected by mean minimum temperature, indicating a temperature limitation on metabolic processes underlying diameter growth in these trees. Most likely due to differences in conductance, the duration but not rate of the incremental daily expansion was greater in fast- than in slow-growing trees.  相似文献   

19.
Eucalyptus globulus is the most important forest species in Uruguay, with more than 250,000 ha of commercial plantations. Despite its high susceptibility to diseases, production losses caused by foliar diseases have not been properly quantified in this country. This study analyzes the effects of foliar damage on growth and survival using data from a progeny test of E. globulus naturally infected by Teratosphaeria leaf disease and eucalypt rust (Puccinia psidii). The severity of leaf spots and defoliation were quantified 8 months after planting and tree growth and mortality were evaluated 2, 4 and 6 years later. The trial had a high incidence of foliar damage, with a mean leaf spot severity of 28.7% and a mean defoliation of 37%. The greatest impact of foliar damage, both on growth rate and mortality, occurred in the first 2 years after damage was assessed. During this period, leaf spot severity less than 40% and defoliation below 50% did not affect growth, while survival was affected when leaf damage was 70% or greater. By the sixth year both stem growth and survival were affected by severe foliar damage (spotting or defoliation of 80% or more), with a loss of up to 25% in diameter and an accumulated mortality over 70%. It has been established for the first time that under the intensive Uruguayan productive conditions, E. globulus trees can tolerate a relatively high degree of leaf spotting or defoliation but severe foliar damage in the first months can cause considerable production losses, putting at risk the economical viability of this species.  相似文献   

20.
1994年在昆明、玉溪两试验点营造的直干桉和蓝桉无性系测定林,根据1999年的生长数据分析后看出两地的测定林都是直干桉比蓝桉生长好,玉溪两个树种的生长都比昆明好.在直干桉无性系中两试验点的生长性状差异均达显著或极显著水平,而蓝桉无性系在两试验点都不显著.在昆明试验点测定林保存完好的无性系中,直干桉有5个、蓝桉有3个无性系的材积超过对照(实生木),其中超过30%有6个(直干桉4个,蓝桉2个).玉溪试验点参试的7个直干桉无性系有6个的材积超过对照,其中材积显著大于对照的有两个;蓝桉3个无性系中没有1个超过对照.根据云南省目前的经济技术水平,走选优、建园的遗传改良途径更为积极稳妥.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号