首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The single-dose disposition kinetics of cefonicid were determined in clinically normal lactating goats (n = 6) after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration of a conventional formulation, and after subcutaneous administration of a long-acting formulation (SC-LA). Cefonicid concentrations were determined by high performance liquid chromatography with ultraviolet detection. The concentration–time data were analysed by noncompartmental pharmacokinetic methods. Steady-state volume of distribution (Vss) and clearance (Cl) of cefonicid after IV administration were 0.14 ± 0.03 L/kg and 0.51 ± 0.07 L/h·kg, respectively. Following IM, SC and SC-LA administration, cefonicid achieved maximum plasma concentrations of 14.46 ± 0.82, 11.98 ± 1.92 and 17.17 ± 2.45 mg/L at 0.26 ± 0.13, 0.42 ± 0.13 and 0.83 ± 0.20 hr, respectively. The absolute bioavailabilities after IM, SC and SC-LA routes were 75.34 ± 11.28%, 71.03 ± 19.14% and 102.84 ± 15.155%, respectively. After cefonicid analysis from milk samples, no concentrations were found above LOQ at any sampling time. From these data, cefonicid administered at 20 mg/kg each 12 hr after SC-LA could be effective to treat bacterial infections in lactating animals not affected by mastitis problems.  相似文献   

2.
Summary

Some pharmacokinetic parameters of an ampicillin/sulbactam (2:1) combination were studied in six goats, after intravenous and intramuscular injection at a single dosage of 20 mg/kg bodyweight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam). The drugs were distributed according to an open two‐compartment model. The apparent volumes of distribution calculated by the area method of ampicillin and sulbactam were 0.34 ± 0.04 l/kg and 0.45 ± 0.15 1/kg, respectively, and the total body clearances were 0.72 ± 0.11 and 0.38 ± 0.07 l/kg.h. The half‐lives of ampicillin after intravenous and intramuscular administration were 0.32 ± 0.04 h and 0.71 ± 0.14 h, respectively. For sulbactam the half‐lives were 0.79 ± 0.18 h and 1.13 ± 0.21 h after administration by the same routes. The bioavailability after intramuscular injection was high and similar for both drugs (98,29% for ampicillin and 101.84% for sulbactam). The mean peak plasma levels of ampicillin (0.43 ± 0.27 h) and sulbactam (0.34 ± 0.14 h) were reached at a similar time, and peak concentrations were also similar and non‐proportional to the dose of the products administered (11.02 ± 3.11 mg/l of ampicillin and 9.5 ± 0.98 mg/l of sulbactam).  相似文献   

3.
OBJECTIVE: To determine the pharmacokinetics after SC administration of an experimental, long-acting parenteral formulation of doxycycline hyclate in a poloxamer-based matrix and after IV and IM administration of an aqueous formulation of doxycycline hyclate in goats. ANIMALS: 30 clinically normal adult goats. PROCEDURES: Goats were allocated to 3 groups (10 goats/group). One group of goats received doxycycline hyclate (10 mg/kg) IM, a second group received the same dosage of doxycycline hyclate IV, and the third group received the long-acting parenteral formulation of doxycycline hyclate SC. Serum concentrations of doxycycline were determined before and at various intervals after administration. RESULTS: The long-acting parenteral formulation of doxycycline hyclate had the greatest bioavailability (545%); mean +/- SD maximum serum concentration was 2.4 +/- 0.95 microg/mL, peak time to maximum concentration was 19.23 +/- 2.03 hours, and elimination half-life was 40.92 +/- 4.25 hours. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the long-acting parenteral formulation of doxycycline hyclate distributed quickly and widely throughout the body after a single dose administered SC, and there was a prolonged half-life. Bioavailability of the longacting parenteral formulation of doxycycline hyclate after SC administration was excellent, compared with bioavailability after IV and IM administration of an aqueous formulation of doxycycline hyclate. Although no local tissue irritation and adverse effects were detected, clinical assessment of drug-residues and toxicologic evaluations are warranted before this long-acting parenteral formulation of doxycycline hyclate can be considered for use in goats with bacterial infections.  相似文献   

4.
5.
The pharmacokinetic profile and bioavailability of a long-acting formulation of cephalexin after intramuscular administration to cats was investigated. Single intravenous (cephalexin lysine salt) and intramuscular (20% cephalexin monohydrate suspension) were administered to five cats at a dose rate of 10 mg/kg. Serum disposition curves were analyzed by noncompartmental approaches. After intravenous administration, volume of distribution (Vz), total body clearance (Clt), elimination constant (λz), elimination half-life (t½λ) and mean residence time (MRT) were: 0.33 ± 0.03 L/kg; 0.14 ± 0.02 L/h kg, 0.42 ± 0.05 h−1, 1.68 ± 0.20 h and 2.11 ± 0.25 h, respectively. Peak serum concentration (Cmax), time to peak serum concentration (Tmax) and bioavailability after intramuscular administration were 15.67 ± 1.95 μg/mL, 2.00 ± 0.61 h and 83.33 ± 8.74%, respectively.  相似文献   

6.
The pharmacokinetics of orbifloxacin was studied after a single dose (7.5 mg/kg) of intravenous or intramuscular administration to crucian carp (Carassius auratus ) reared in freshwater at 25°C. Plasma samples were collected from six fish per sampling point. Orbifloxacin concentrations were determined by high‐performance liquid chromatography with a 0.02 μg/ml limit of detection, then were subjected to noncompartmental analysis. After intravenous injection, initial concentration of 5.83 μg/ml, apparent elimination rate constant (λz) of 0.039 hr?1, apparent elimination half‐life (T1/2λz) of 17.90 hr, systemic total body clearance (Cl) of 75.47 ml hr?1 kg?1, volume of distribution (Vz) of 1,948.76 ml/kg, and volume of distribution at steady‐state (Vss) of 1,863.97 ml/kg were determined, respectively. While after intramuscular administration, the λz, T 1/2λz, mean absorption time (MAT ), absorption half‐life (T 1/2ka), and bioavailability were determined as 0.027 hr?1, 25.69, 10.26, 7.11 hr, and 96.46%, respectively, while the peak concentration was observed as 3.11 ± 0.06 μg/ml at 2.0 hr. It was shown that orbifloxacin was completely but relatively slowly absorbed, extensively distributed, and slowly eliminated in crucian carp, and an orbifloxacin dosage of 10 mg/kg administered intravenously or intramuscularly would be expected to successfully treat crucian carp infected by strains with MIC values ≤0.5 μg/ml.  相似文献   

7.
Levosulpiride (LSP) is the l‐enantiomer of sulpiride, and LSP recently replacing sulpiride in several EU countries. Several studies about LSP in humans are present in the literature, but neither pharmacodynamic nor pharmacokinetic data of LSP is present for veterinary species. The aim of this study was to assess the pharmacokinetic profile of LSP after intravenous (IV), intramuscular (IM), and oral (PO) administration in goats. Animals (n = 6) were treated with 50 mg LSP by IV, IM, and PO routes according to a randomized cross‐over design (3 × 3 Latin‐square). Blood samples were collected prior and up to 24 hr after LSP administration and quantified using a validated HPLC method with fluorescence detection. IV and IM administration gave similar concentration versus time curve profiles. The IM mean bioavailability was 66.97%. After PO administration, the drug plasma concentrations were detectable only in the time range 1.5–4 hr, and the bioavailability (4.73%) was low. When the AUC was related to the administered dose in mg/kg, there was a good correlation in the IV and IM groups, but very low correlation for the PO route. In conclusion, the IM and IV administrations result in very similar plasma concentrations. Oral dosing of LSP in goats is probably not viable as its oral bioavailability was very low.  相似文献   

8.
This study aimed to define the pharmacokinetic profiles of dexmedetomidine and methadone administered simultaneously in dogs by either an oral transmucosal route or intramuscular route and to determine the bioavailability of the oral transmucosal administration relative to the intramuscular one of both drugs, so as the applicability of this administration route in dogs. Twelve client‐owned dogs, scheduled for diagnostic procedures, were treated with a combination of dexmedetomidine hydrochloride (10 μg/kg) and methadone hydrochloride (0.4 mg/kg) through an oral transmucosal route or intramuscularly. Oral transmucosal administration caused ptyalism in most subjects, and intramuscular administration caused transient peripheral vasoconstriction. The results showed reduced and delayed absorption of both dexmedetomidine and methadone when administered through an oral transmucosal route, with median (range) Cmax values of 0.82 (0.42–1.49) ng/ml and 13.22 (2.80–52.30) ng/ml, respectively. The relative bioavailability was low: 16.34% (dexmedetomidine) and 15.5% (methadone). Intramuscular administration resulted in a more efficient absorption profile, with AUC and Cmax values for both drugs approximately 10 times higher. Dexmedetomidine and methadone administered simultaneously by an oral transmucosal route using injectable formulations were not well absorbed through the oral mucosa. Nevertheless, additional studies on these drugs combination using alternative administration routes are recommended.  相似文献   

9.
The pharmacokinetics, penetration into erythrocytes and plasma protein binding of cefotaxime were investigated in cross-bred calves. Following a single intramuscular dose of cefotaxime (10 mg/kg), the absorption half-life and elimination half-life were 0.13±0.03 h and 2.97±0.72 h, respectively. The apparent volume of distribution and total body clearance were 3.28±0.72 L/kg and 0.78±0.08 L/kg per h, respectively. The extent of penetration into erythrocytes was 24–40% of the total blood concentration. Cefotaxime was bound to plasma proteins of calves to the extent of 25.5–33.6%. A satisfactory intramuscular dosage regimen for cefotaxime in calves would be 11 mg/kg followed by 10 mg/kg at 7 h intervals.Abbreviations ATCC American type cell culture - MIC minimum inhibitory concentration - PCV packed cell volume  相似文献   

10.
盐酸多西环素在猪体内的药物动力学及其残留   总被引:5,自引:0,他引:5  
试验建立了反相高效液相色谱(RT-HPLC)法测定盐酸多西环素的浓度,探讨了盐酸多西环素在猪体内的药物动力学和残留特征。结果表明,盐酸多西环素以2.5mg/kg单剂量肌内注射给猪(n=6),药物动力学模型符合有吸收一室模型,药物动力学参数:吸收半衰期(t1/2ka)、消除半衰期(t1/2ke)为(0.400±0.312)h、(9.530±0.956)h,药时曲线下面积(AUC)为(44.414±4.123)mg·h·L-1,最大血药浓度(Cmax)为(2.811±0.136)mg/L,达峰时间(Tp)为(1.910±0.213)h。另外,以相同剂量肌内注射给猪(n=6),每天1次,连续给药4d后,在不同时间测定盐酸多西环素在猪的肌肉、肝脏、肾脏、皮肤和脂肪中的残留量。在给药后16d,盐酸多西环素在各组织均能检测到,且残留均低于残留限量。盐酸多西环素注射液在猪体内消除缓慢,残留期较长,建议休药期不低于16d。  相似文献   

11.
长效盐酸多西环素注射液在猪体内残留的消除规律   总被引:1,自引:0,他引:1  
在常规饲养条件下,对35头健康成年猪按10 mg/kg体质量的剂量肌肉注射10%长效盐酸多西环素注射液,给药2次,给药间隔时间为48 h。第2次给药后12 h及2、5、9、14、192、5 d分别屠宰5头猪,分别采取每头猪的肌肉、肝脏、肾脏、皮肤+脂肪和注射位点肌肉等5种组织,用高效液相色谱法进行残留量测定。结果表明:在第2次给药后19 d,多西环素在各组织均能检测到,且残留均低于残留限量。多西环素残留浓度大小顺序:注射部位(肾脏(肝脏(皮脂(肌肉。采用WT1.4软件制定的统计方法来处理猪组织中药物浓度-时间数据,以制定休药期。  相似文献   

12.
Laber, G. Investigation of pharmacokinetic parameters of tiamulin after intramuscular and subcutaneous administration in normal dogs. J. vet. Pharmacol. Therap. 11 , 45–49.
Kinetic variables for tiamulin in the normal dog have been determined. Serum concentrations of tiamulin were compared after intramuscular (i.m.) and subcutaneous (s.c.) administration of a single dose of tiamulin. Following a single i.m. dose of 10 mg/kg body weight, the compound was calculated to have a Cmax= 0.61 ± 0.15 μg/ml, a T max= 6 h and a t ½= 4.7 ± 1.4 h. Tiamulin showed dose-dependent pharmacokinetics when given as a single s.c. dose of either 10 mg or 25 mg/kg body weight. For the lower dose, the values Cmax= 1.55 ± 0.11 μg/ml, T max= 8 h and 1 max= 4.28 ± 0.18 h were obtained. For the higher dose C max= 3.14 ± 0.04 μg/ml, T max= 8 h and t ½= 12.4 ± 3.4 h were calculated. When tiamulin was administered subcutaneously at a dose rate of 10 mg/kg body weight, higher and better maintained serum levels were achieved than those following i.m. administration. After repeated s.c. doses no significant accumulation of tiamulin occurred. Assuming that a continuous effective serum concentration is necessary throughout the course of therapy, these data would indicate that tiamulin should be given every 24 h.  相似文献   

13.
The objective of this study was to investigate the pharmacokinetics of cefquinome following single intramuscular (IM) administration in six healthy male buffalo calves. Cefquinome was administered intramuscularly (2 mg/kg bodyweight) and blood samples were collected prior to drug administration and up to 24 hr after injection. No adverse effects or changes were observed after the IM injection of cefquinome. Plasma concentrations of cefquinome were determined by high‐performance liquid chromatography. The disposition of plasma cefquinome is characterized by a mono‐compartmental open model. The pharmacokinetic parameters after IM administration (mean ± SE) were Cmax 6.93 ± 0.58 μg/ml, Tmax 0.5 hr, t½kα 0.16 ± 0.05 hr, t½β 3.73 ± 0.10 hr, and AUC 28.40 ± 1.30 μg hr/ml after IM administration. A dosage regimen of 2 mg/kg bodyweight at 24‐hr interval following IM injection of cefquinome would maintain the plasma levels required to be effective against the bacterial pathogens with MIC values ≤0.39 μg/ml. The suggested dosage regimen of cefquinome has to be validated in the disease models before recommending for clinical use in buffalo calves.  相似文献   

14.
The pharmacokinetics of cefquinome (2 mg/kg every 24 hr for 5 days) was determined following intramuscular administration alone and co-administration with ketoprofen (3 mg/kg every 24 hr for 5 days) in goats. Six goats were used for the study. In the study, the crossover pharmacokinetics design with 20-day washout period was performed in two periods. Plasma concentrations of cefquinome were assayed using high-performance liquid chromatography by ultraviolet detection. The mean terminal elimination half-life (t1/2ʎz), area under the concentration–time curve (AUC0–24), peak concentration (Cmax), apparent volume of distribution (Vdarea/F), and total body clearance (CL/F) of cefquinome after the administration alone were 4.85 hr, 11.06 hr*µg/ml, 2.37 µg/mL, 1.23 L/kg, and 0.17 L/h/kg after the first dose, and 5.88 hr, 17.01 hr*µg/mL, 3.04 µg/mL, 0.95 L/kg, and 0.11 L/h/kg after the last dose. Ketoprofen significantly prolonged t1/2ʎz of cefquinome, increased AUC0–24 and Cmax, and decreased Vdarea/F and CL/F. Cefquinome exhibited low accumulation after the administration alone and in combination with ketoprofen. These results indicated that ketoprofen prolonged the elimination of cefquinome in goats. The 24-hr dosing intervals at 2 mg/kg dose of cefquinome, which co-administered with ketoprofen, may maintain T> minimum inhibitory concentration (MIC) values above 40% in the treatment of infections caused by susceptible pathogens with the MIC value of ≤0.75 μg/ml in goats with an inflammatory condition.  相似文献   

15.
1. The antibacterial agent doxycycline hyclate (Dox) is usually administered to broilers in drinking water or as a feed supplement. Parenteral injection is not the usual route for administration, so a long-acting formulation (Dox-LA) was tested to evaluate if serum concentrations can achieve the pharmacokinetic/pharmacodynamic (PK/PD) ratios regarded as adequate for the drug.

2. A poloxamer-based matrix was used to provide Dox-LA. Serum and tissue concentrations of Dox vs time were determined in two day-old broilers after subcutaneous (SC) injection of Dox-LA or oral administration of a single bolus of aqueous Dox (Dox-PO), at a dose of 20?mg/kg. Weight gain, feed conversion rate, haematological variables, aspartate aminotransferase and alanine aminotransferase activities, blood urea and creatinine were determined and compared for Dox-LA with Dox-PO and non-medicated controls.

3. Dox-LA had a high relative bioavailability (1200%). Maximum serum concentrations were not statistically different (5·1?±?1·1?µg/ml for Dox-LA and 6·1?±?1.4?µg/ml for Dox-PO), but half-life of Dox-LA was much greater than the value obtained for Dox-PO (73·0?±?0·9?h and 2·0?±?0·02?h, respectively). Tissue concentrations were higher, and stayed higher for longer periods in the Dox-LA group.

4. In conclusion, considering the minimum effective serum concentration against Mycoplasma spp is 0·5?µg/ml, a dose-interval of 180?h can be achieved with Dox-LA, but only for 24?h after Dox-PO. Better PK/PD ratios for Dox-LA should result in improved clinical outcomes compared with Dox-PO.  相似文献   

16.
The pharmacokinetics of amoxicillin (AMX) were investigated in sheep following intravenous (i.v.) and intramuscular (i.m) injection, comparing two different drug formulations, a conventional and a long-acting AMX-trihydrate suspension. For the i.m. application two different injections sites, the neck area and the hind limb were used to identify possible differences in the kinetic parameters related to the site of injection. A three-compartment open model could best describe AMX disposition after i.v. administration. Data analysis after i.m. administration of the conventional suspension at both injection sites revealed the occurrence of a flip-flop phenomenon, clearly indicating that absorption of AMX is the rate-limiting step of its overall disposition. A moderate effect of the injection site was observed with a tendency for the neck area to be advantageous, mainly in terms of rate rather than extent of absorption. Injection of the long-acting formulation led to a focal depot formation, thus yielding lower but remarkably prolonged serum AMX levels reflected in the respective terminal half-lives. The concentration–time profile of AMX after administration of the long-acting formulation was less affected by the injection site, but the low serum levels justify its use only in cases in which a high susceptibility of the involved bacterial population is confirmed.  相似文献   

17.
Ole-Mapenay, I.M., Mitema, E.S. and Maitho, T.E., 1997. Aspects of the pharmacokinetics of doxycycline given to healthy and pneumonic East African dwarf goats by intramuscular injection. Veterinary Research Communications, 21 (6), 453-462The effect of experimentally induced Pasteurella haemolytica pneumonia on the pharmacokinetics of doxycycline (Doxycen Retard) administered intramuscularly was studied in seven East African dwarf goats. The study was conducted in two consecutive phases, separated by a washout period of four weeks. The experimental infection, induced by intratracheal administration of 5 ml of 107 to 109 cfu/ml of Pasteurella haemolytica, produced a temperature rise, depression and laboured breathing within 6-12 days after inoculation.The concentrations of doxycycline in the serum were determined by a quantitative microbiological assay using an agar-gel diffusion method employing Bacillus cereus var mycoides (ATCC 11778) as the test organism, with a level of detectability of approximately 0.05 µg/ml. The concentration-time curve of doxycycline in the serum after intramuscular injection of 20 mg/kg bodyweight of the long-acting formulation before and after experimental infection was adequately described by a one-compartment open model.The maximum serum concentrations (Cmax) of doxycycline were lower in pneumonic goats than in healthy goats (3.87 ± 0.52 and 5.56 ± 0.213 µg/ml, respectively), suggesting an increased distribution volume in the peripheral compartment. The mean ± SEM absorption rate (ka) before infection (1.13 ± 0.02 h-1) was smaller than that after infection (8.23 ± 3.81 h-1), but the difference was not significant. The apparent elimination half-life (t1/2) (24.51 ± 0.02 h) after infection was significantly increased (p < 0.05), while the corresponding rate constant () was decreased (p < 0.01). The absorption half-life (t1/2) (0.137 ± 0.03 h) was significantly decreased (p < 0.01) after infection. The distribution volume (Vd()) was significantly increased after infection (p < 0.05). It is concluded that, although experimental infection had an effect on the disposition kinetics of doxycycline, this was not sufficiently pronounced to require alteration of the dosage during disease.  相似文献   

18.
OBJECTIVE: To evaluate the pharmacokinetics of a novel commercial formulation of ivermectin after administration to goats. ANIMALS: 6 healthy adult goats. PROCEDURE: Ivermectin (200 microg/kg) was initially administered IV to each goat, and plasma samples were obtained for 36 days. After a washout period of 3 weeks, each goat received a novel commercial formulation of ivermectin (200 microg/kg) by SC injection. Plasma samples were then obtained for 42 days. Drug concentrations were quantified by use of high-performance liquid chromatography with fluorescence detection. RESULTS: Pharmacokinetics of ivermectin after IV administration were best described by a 2-compartment open model; values for main compartmental variables included volume of distribution at a steady state (9.94 L/kg), clearance (1.54 L/kg/d), and area under the plasma concentration-time curve (AUC; 143 [ng x d]/mL). Values for the noncompartmental variables included mean residence time (7.37 days), AUC (153 [ng x d]/mL), and clearance (1.43 L/kg/d). After SC administration, noncompartmental pharmacokinetic analysis was conducted. Values of the variables calculated by use of this method included maximum plasma concentration (Cmax; 21.8 ng/mL), time to reach Cmax (3 days), and bioavailability (F; 91.8%). CONCLUSIONS AND CLINICAL RELEVANCE: The commercial formulation used in this study is a good option to consider when administering ivermectin to goats because of the high absorption, which is characterized by high values of F. In addition, the values of Cmax and time to reach Cmax are higher than those reported by other investigators who used other routes of administration.  相似文献   

19.
Objective To examine the effect of dose and route of administration on the sedative‐hypnotic effects of midazolam. Design Prospective randomized controlled study Animals Six indigenous, African bred goats. Methods Pilot studies indicated that the optimum dose of midazolam for producing sedation was 0.6 mg kg?1 for intramuscular (IM) injection, while the optimum intravenous (IV) doses causing hypnosis without, and with loss of palpebral reflexes were 0.6 mg kg?1 and 1.2 mg kg?1, respectively. These doses and routes of administration were compared with a saline placebo in a randomized block design in the main experiment, and the sedative‐hypnotic effects evaluated according to pre‐determined scales. Results Intramuscular midazolam produced sedation with or without sternal recumbency in all animals with the peak effect occurring 20 minutes after administration. The scores for IM sedation with midazolam were significantly different (p < 0.05) from placebo. Intravenous midazolam at 0.6 mg kg?1 resulted in hypnosis, and at 1.2 mg kg?1 increased reflex suppression was observed. The maximum scores for hypnosis at both doses were obtained 5 minutes after IV injection. The mean (± SD) duration of lateral recumbency was 10.8 (± 3.8) minutes after IV midazolam (0.6 mg kg?1) compared to 20 (± 5.2) minutes after midazolam at 1.2 mg kg?1. Compared to baseline, the heart rate increased significantly (p < 0.05) after high dose IV midazolam. Conclusion Intramuscular midazolam (0.6 mg kg?1) produced maximum sedation 20 minutes after injection. Intravenous injection produced maximum hypnosis within 5 minutes. Increasing the IV dose from 0.6 to 1.2 mg kg?1 resulted in increased reflex suppression and duration of hypnosis. Clinical relevance For a profound effect with rapid onset midazolam should be given IV in doses between 0.6 and 1.2 mg kg?1.  相似文献   

20.
AIMS: To determine the pharmacokinetics, and anaesthetic and sedative effects of alfaxalone after I/V and I/M administration to cats.

METHODS: Six European shorthair cats, three males and three females, with a mean weight of 4.21 (SD 0.53) kg and aged 3.8 (SD 0.9) years were enrolled in this crossover, two–treatment, two-period study. Alfaxalone at a dose of 5?mg/kg was administered either I/V or I/M. Blood samples were collected between 2–480 minutes after drug administration and analysed for concentrations of alfaxalone by HPLC. The plasma concentration-time curves were analysed by non-compartmental analysis. Sedation scores were evaluated between 5–120 minutes after drug administration using a numerical rating scale (from 0–18). Intervals from drug administration to sit, sternal and lateral recumbency during the induction phase, and to head-lift, sternal recumbency and standing position during recovery were recorded.

RESULTS: The mean half-life and mean residence time of alfaxalone were longer after I/M (1.28 (SD 0.21) and 2.09 (SD 0.36) hours, respectively) than after I/V (0.49 (SD 0.07) and 0.66 (SD 0.16) hours, respectively) administration (p<0.05). Bioavailability after I/M injection of alfaxalone was 94.7 (SD 19.8)%. The mean intervals to sternal and lateral recumbency were longer in the I/M (3.73 (SD 1.99) and 6.12 (SD 0.90) minutes, respectively) compared to I/V (0 minutes for all animals) treated cats (p<0.01). Sedation scores indicative of general anaesthesia (scores >15) were recorded from 5–15 minutes after I/V administration and deep sedation (scores 11–15) at 20 and 30 minutes. Deep sedation was observed from 10–45 minutes after I/M administration. One cat from each group showed hyperkinesia during recovery, and the remainder had an uneventful recovery.

CONCLUSIONS AND CLINICAL RELEVANCE: Alfaxalone administered I/V in cats provides rapid and smooth induction of anaesthesia. After I/M administration, a longer exposure to the drug and an extended half life were obtained compared to I/V administration. Therefore I/M administration of alfaxalone could be a reliable, suitable and easy route in cats, taking into account that alfaxalone has a slower onset of sedation than when given I/V and achieves deep sedation rather than general anaesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号