共查询到18条相似文献,搜索用时 62 毫秒
1.
针对目前装配机器人基于手工的特征检测易受光照条件、背景和遮挡等干扰因素的影响,而基于点云特征检测又依赖模型构建精度,本文采用深度学习的方式,对基于关键点预测的工件视觉定位技术展开研究。首先,采集工件各个角度的深度图像,计算得到工件的位姿信息,选取工件表面的关键点作为数据集。然后,构造工件表面关键点的向量场,与数据集一同进行深度训练,以实现前景点指向关键点的向量场预测。之后,将向量场中各像素指向同一关键点的方向向量每两个划分为一组,取其向量交点生成关键点的假设,并基于RANSAC的投票对所有假设进行评价。使用EPnP求解器计算工件位姿,并生成工件的有向包围盒显示位姿估计结果。最后,通过实验验证了系统估计结果的准确性和鲁棒性。 相似文献
2.
3.
果园机器人视觉导航行间位姿估计与果树目标定位方法 总被引:3,自引:0,他引:3
针对单目视觉导航中位姿信息不完整和果树定位精度低的问题,提出基于实例分割神经网络的偏航角、横向偏移、果树位置计算方法。首先,基于Mask R-CNN模型识别并分割道路与树干;其次,寻找道路掩码凸包并进行霍夫变换,由凸包中的边界方程计算消失点坐标;最后,根据建立的位姿-道路成像几何模型,计算偏航角、横向偏移与果树相对位置。实验结果表明:改进Mask R-CNN模型的边框回归平均精确度为0.564,分割平均精确度为0.559,平均推理时间为110 ms。基于本文方法的偏航角估计误差为2.91%、横向偏移误差为4.82%,果树横向定位误差为3.80%,纵向误差为2.65%。该方法能在不同位姿稳定地提取道路与果树掩码、计算消失点坐标与边界方程,较准确地估计偏航角、横向位移和果树相对位置,为果园环境下的视觉自主导航提供有效参考。 相似文献
4.
水果识别是自动化采摘过程中的关键步骤,为了提高水果识别的准确性和实时性,利用深度学习方法,设计了一种水果采摘机器人视觉识别系统。首先,采用多种预处理方法对样本数据进行扩充,并对图像进行缩放和灰度化处理;然后,构建了一个多层卷积神经网络,通过多次训练得到网络最优超参数;最后,利用所构建的卷积神经网络对水果图像进行训练,同时采用多种训练策略得到最终的识别模型。实验结果表明:系统具有识别速度快、准确率高的特点,可以快速、准确地对水果图像进行识别,单张水果图像的识别速度只需0.2s,识别精度高达97%以上。该方法具有重要的理论和应用价值,可为水果的自动化识别提供有力手段。 相似文献
5.
为了解决采摘机器人识别目标果实难的问题,提出了一种基于机器视觉及深度学习的采摘机器人目标识别技术,可结合图像采集、图像处理、SSD深度学习算法,实现对橘柑的精准识别。试验结果表明:采摘机器人目标识别技术对橘柑具有较高的识别率,证实了该方法的可行性,对采摘机器人研究具有一定的参考价值。 相似文献
6.
为了提高农业机器人在复杂野外环境下采摘油茶果的速度和准确性,针对机器人视觉感知的关键技术,设计了一种农业机器人果实检测、定位和采摘系统。首先,使用双目相机采集油茶果的左右图像;然后,应用先进的目标检测网络YOLOv4-tiny检测出左右图像中的油茶果;再次,不同于传统的双目相机图像的立体匹配技术,根据YOLOv4-tiny网络生成的预测框提取出油茶果图像的感兴趣区域,并根据预测框的生成机制自适应地进行立体匹配以求解出视差,为后续使用三角测量原理求出油茶果采摘点提供参考;最后,使用基于Eye-in-Hand手眼标定的农业机器人进行采摘试验,验证了本研究的可行性和准确性。试验结果表明:YOLOv4-tiny网络能够精确和实时地检测油茶果,提出的定位方法满足采摘机器人的应用需求,验证了本研究的可行性和准确性。研究可为果园环境中作业的农业采摘机器人视觉感知关键技术提供参考。 相似文献
7.
传统机器人V-SLAM前端定位算法是基于人工设定的特征点提取和描述子局部匹配进行定位的,由于人工设定的主观性会导致提取方法鲁棒性差、复杂场景适应能力弱(场景明亮变化、噪声的引入、运动模糊)以及局部描述子匹配精度低等问题,为此,提出一种前端定位算法(SuperPoint Brief and K-means visual location, SBK-VL),该算法首先采用一种改进的概率p-SuperPoint深度学习算法提取特征点,以解决特征点鲁棒性低、复杂场景适应力弱的问题。其次提出一种全局信息(特征点聚类)和局部信息(Brief描述子)相结合的复合描述子,降低传统描述子误匹配及匹配精度低的问题,实验结果显示该复合描述子的平均匹配正确率为92.71%。最后将该SBK-VL替换ORB-SLAM2的前端,引入一种Ransac随机抽样方法对位姿进行检验,并使用绝对轨迹误差、相对轨迹误差、平均跟踪时间与ORB-SLAM2算法和GCNv2-SLAM算法进行比较。实验结果表明,本文算法具有更好的均衡性能,一方面可提升经典V-SLAM算法的复杂场景适应性和估计精度,另一方面相比传统深度学习SLAM算法具有更好的实时性和更低计算成本。 相似文献
8.
9.
10.
11.
根据康平县在实施深松整地作业中遇到的实际问题,介绍深松机具的选择原则、作业质量标准、作业时间确定方法,以及作业技术要点和注意事项,为提高全县深松整地作业质量提供参考。 相似文献
12.
为了实现拖拉机驱动轮轴的自动化装配,提出了自锁螺栓拧紧装配模糊预估的控制方法.根据螺栓拧紧特性对预紧力、扭矩和角度进行预估,用嵌入式装配控制器对拖拉机驱动轮轴总成装配中的自锁螺栓进行拧紧控制,结合光纤传感检测和机械设计技术进行锁片定位装置及其辅助装置的设计.智能化模糊控制算法的运用,完成了对驱动轮轴总成的轴向预紧力、自锁螺栓的扭矩及角度定位多变量目标的模糊智能控制.经实际生产验证,该系统解决了带有锁片定位功能的自锁螺栓装配问题,并且系统具有很高的预测准确率,提高了生产效率和产品质量. 相似文献
13.
为实现稳定可靠的植保机器人视觉伺服控制,提出了一种基于语义分割网络的作物行特征检测方法。基于语义分割网络ESNet实现农田场景图像像素级带状区域检测,并利用最小二乘算法拟合得到每条行作物线特征;在此基础上通过设计一种主导航线提取算法获取导航路径,并利用卡尔曼滤波对主导航线几何参数进行平滑处理,有效抑制了不平整地面导致的机器人运动颠簸与视觉图像测量噪声引起的导航参数波动。继而构建机器人前轮转向、后轮差速的阿克曼运动学模型;在图像空间坐标下设计纯追踪控制器实现植保机器人的伺服运动控制。大田环境下的现场实验结果为:总体横向偏差为0.092m,验证了本文方法的有效性。 相似文献
14.
准确识别定位采摘点,根据果梗方向,确定合适的采摘姿态,是机器人实现高效、无损采摘的关键。由于番茄串的采摘背景复杂,果实颜色、形状各异,果梗姿态多样,叶子藤枝干扰等因素,降低了采摘点识别准确率和采摘成功率。针对这个问题,考虑番茄串生长特性,提出基于实例分割的番茄串视觉定位与采摘姿态估算方法。首先基于YOLACT实例分割算法的实例特征标准化和掩膜评分机制,保证番茄串和果梗感兴趣区域(Region of interest, ROI)、掩膜质量和可靠性,实现果梗粗分割;通过果梗掩膜信息和ROI位置关系匹配可采摘果梗,基于细化算法、膨胀操作和果梗形态特征实现果梗精细分割;再通过果梗深度信息填补法与深度信息融合,精确定位采摘点坐标。然后利用果梗几何特征、八邻域端点检测算法识别果梗关键点预测果梗姿态,并根据果梗姿态确定适合采摘的末端执行器姿态,引导机械臂完成采摘。研究和大量现场试验结果表明,提出的方法在复杂采摘环境中具有较高的定位精度和稳定性,对4个品种的番茄串采摘点平均识别成功率为98.07%,图像分辨率为1 280像素×720像素时算法处理速率达到21 f/s,采摘点图像坐标最大定位误差为3像素... 相似文献
15.
16.
针对目前的Voronoi路径规划算法生成的Voronoi图弯曲冗余,依据Voronoi地图规划路径实时性差,规划出的路径弯曲,机器人导航时转折次数多、时间成本高、效率低等问题,提出一种基于骨架关键点重规划的Voronoi图法路径规划算法。首先对机器人构建的二维栅格地图进行预处理,去掉地图中的噪点和毛边,填充边界上细微的裂缝,然后提取地图的骨架,搜索出骨架中的关键点,将关键点按原来的相邻点连接关系重新连接,生成新的笔直的骨架,并采用降梯度采样方法平滑依据骨架规划出的路径。在经过多次仿真实验和实际实验验证后,证明本文算法生成的骨架比目前的Voronoi图和骨架更加简洁,数据量更小,机器人基于优化后的Voronoi地图能够更加快速规划出笔直的路径,具有良好的实时性,规划出的路径更短,转折次数更少,机器人导航过程中能够迅速到达目标点,导航效率高。 相似文献
17.
文章从具体的实际操作出发,首先对近年来我国数控机床维修中出现的问题进行细致分析,之后针对这些问题提出数控机床维修中应该注意的要点分析,期望对我国现代企业的数控机床维修技术的改进有一定的帮助。 相似文献
18.
首先,介绍了水果收获机器人抓取系统的总体架构;然后,利用深度学习对水果目标识别进行了研究,实现了一套基于卷积神经网络的目标检测算法;接着,利用图像处理技术实现了对目标物体定位的功能,可以引导水果收获机器人完成对目标水果的采摘.实验结果表明:水果收获机器人抓取系统对水果坐标的计算误差较小,且具备较强的水果识别和定位能力. 相似文献