共查询到17条相似文献,搜索用时 63 毫秒
1.
针对目前人工识别羊个体疼痛过程中存在的经验要求高、识别准确率低、消耗成本高、延误疾病治疗等问题,引入当前主流图像分类网络VGGNet(Visual geometry group network)对有疼痛和无疼痛的羊脸表情进行识别,提出一种基于改进VGGNet的羊脸痛苦表情识别算法,改进后的网络为STVGGNet(Spatial transformer visual geometry group network)。该算法将空间变换网络引入VGGNet,通过空间变换网络增强对羊脸痛苦表情特征区域的关注程度,提高对羊脸痛苦表情的识别准确率。本文对原有的羊脸表情数据集进行了扩充,新增887幅羊脸表情图像。但是新的数据集图像数量仍然较少,所以本文利用ImageNet数据集进行迁移学习,微调后用来自动分类有痛苦和无痛苦的羊脸表情。对羊面部表情数据集的实验结果表明,使用STVGGNet实现的最佳训练准确率为99.95%,最佳验证准确率为96.06%,分别比VGGNet高0.15、0.99个百分点。因此,本文采用的模型在羊脸痛苦表情识别中有非常好的识别效果并且具有较强的鲁棒性,为畜牧业中羊的疾病检测智能化发展提供了技术支撑。 相似文献
2.
针对羊只个体差异较小,相似度高难以辨别,远距离识别准确率不高等问题,本文基于MobileFaceNet网络提出了一种融合空间信息的高效通道注意力机制的羊脸识别模型,对羊只进行非接触式识别。该研究基于YOLO v4目标检测方法生成羊脸检测器,以构建羊脸识别数据库;在MobileFaceNet的深度卷积层和残差层中引入融合空间信息的高效通道注意力(ECCSA),以增加主干特征的提取范围,提高识别率,并采用余弦退火进行动态学习率调优,最终构建ECCSA-MFC模型,实现羊只个体识别。试验结果表明,在羊脸检测上,基于YOLO v4的羊脸检测模型准确率可达97.91%,可以作为脸部检测器;在羊脸识别上,ECCSA-MFC模型在开集验证中识别率可达88.06%,在闭集验证中识别率可达96.73%。该研究提出的ECCSA-MFC模型在拥有较高识别率的同时更加轻量化,模型所占内存仅为4.8 MB,可为羊场智慧化养殖提供解决方案。 相似文献
3.
为实现非接触、高精度个体识别,本文提出了一种基于牛只脸部RGB-D信息融合的个体身份识别方法。以108头28~30月龄荷斯坦奶牛作为研究对象,利用Intel RealSense D455深度相机采集2334幅牛脸彩色/深度图像作为原始数据集。首先,采用冗余图像剔除方法和自适应阈值背景分离算法进行图像预处理,经增强共得到8344幅牛脸图像作为数据集;然后,分别选取Inception ResNet v1、Inception ResNet v2和SqueezeNet共3种特征提取网络进行奶牛脸部特征提取研究,通过对比分析,确定FaceNet模型的最优主干特征提取网络;最后,将提取的牛脸图像特征L2正则化,并映射至同一特征空间,训练分类器实现奶牛个体分类。测试结果表明,采用Inception ResNet v2作为FaceNet模型的主干网络特征提取效果最优,在经过背景分离数据预处理的数据集上测试牛脸识别准确率为98.6%,验证率为81.9%,误识率为0.10%。与Inception ResNet v1、SqueezeNet网络相比,准确率分别提高1、2.9个百分点;与未进行背景分离的数据集相比,准确率提高2.3个百分点。 相似文献
4.
针对雾霾天气下无人车行驶容易出现视野受限,导致防碰撞能力下降的问题,提出了一种基于VGGNet网络的深度卷积神经网络模型,通过反向传播算法不断调整模型的权重和偏置,对收集雾霾天气下的图像和相关数据进行处理,实现模型的训练和优化。实验结果表明,所提出的方法可以有效地提高无人车在雾霾天气下的防碰撞能力,达到了良好的效果。研究结果可以为无人车行业在特殊气候条件下的防碰撞提供了一种新思路和实现方法,具有一定的参考价值和应用前景。 相似文献
5.
6.
奶牛的躺卧率可以反映奶牛的舒适度和健康情况,躺卧奶牛的个体识别是自动监测奶牛躺卧率的基础。本文提出了一种基于改进YOLO v4模型识别非限制环境下躺卧奶牛个体的方法。为实现对躺卧奶牛全天的准确个体识别,首先对18:00—07:00的图像采用MSRCP(Multi-scale retinex with chromaticity preservation)算法进行图像增强,改善低光照环境下的图像质量。其次,在YOLO v4模型的主干网络中融入RFB-s结构,改善模型对奶牛身体花纹变化的鲁棒性。最后,为提高模型对身体花纹相似奶牛的识别准确率,改进了原模型的非极大抑制(Non-maximum suppression, NMS)算法。利用72头奶牛的图像数据集进行了奶牛个体识别实验。结果表明,相对于YOLO v4模型,在未降低处理速度的前提下,本文改进YOLO v4模型的精准率、召回率、mAP、F1值分别提高4.66、3.07、4.20、3.83个百分点。本文研究结果为奶牛精细化养殖中奶牛健康监测提供了一种有效的技术支持。 相似文献
7.
基于改进YOLO v3模型的挤奶奶牛个体识别方法 总被引:3,自引:0,他引:3
为实现无接触、高精度养殖场环境下奶牛个体的有效识别,提出了基于改进YOLO v3深度卷积神经网络的挤奶奶牛个体识别方法。首先,在奶牛进、出挤奶间的通道上方安装摄像机,定时、自动获取奶牛背部视频,并用视频帧分解技术得到牛背部图像;用双边滤波法去除图像噪声,并用像素线性变换法增强图像亮度和对比度,通过人工标注标记奶牛个体编号;为适应复杂环境下的奶牛识别,借鉴Gaussian YOLO v3算法构建了优化锚点框和改进网络结构的YOLO v3识别模型。从89头奶牛的36790幅背部图像中,随机选取22074幅为训练集,其余图像为验证集和测试集。识别结果表明,改进YOLO v3模型的识别准确率为95.91%,召回率为95.32%,mAP为95.16%, IoU为85.28%,平均帧率为32f/s,识别准确率比YOLO v3高0.94个百分点,比Faster R-CNN高1.90个百分点,检测速度是Faster R-CNN的8倍,背部为纯黑色奶牛的F1值比YOLO v3提高了2.75个百分点。本文方法具有成本低、性能优良的特点,可用于养殖场复杂环境下挤奶奶牛个体的实时识别。 相似文献
8.
针对基础卷积神经网络识别苹果园害虫易受背景干扰及重要特征表达能力不强问题,提出一种基于改进Mask R-CNN的苹果园害虫识别方法。首先,基于Haar特征方法对多点采集得到的苹果园害虫图像进行迭代初分割,提取害虫单体图像样本,并对该样本进行多途径扩增,得到用于深度学习的扩增样本数据集。其次,对Mask R-CNN中的特征提取网络进行优化,采用嵌入注意力机制模块CBAM的ResNeXt网络作为改进模型的Backbone,增加模型对害虫空间及语义信息的提取,有效避免背景对模型性能的影响;同时引入Boundary损失函数,避免害虫掩膜边缘缺失及定位不准确问题。最后,以原始Mask R-CNN模型作为对照模型,平均精度均值作为评价指标进行试验。结果表明,改进Mask R-CNN模型平均精度均值达到96.52%,相比于原始Mask R-CNN模型,提高4.21个百分点,改进Mask R-CNN可精准有效识别苹果园害虫,为苹果园病虫害绿色防控提供技术支持。 相似文献
9.
为解决自然状态下成熟草莓存在的背景干扰、信息丢失等问题,提出一种基于深度残差学习的草莓识别方法。首先,引入深度可分离卷积降低残差网络参数,从不同角度提取成熟草莓特征,通过交叉熵损失函数来识别分类层中的草莓。其次,嵌入压缩和激励模块学习特征权重,使用特征重新校准改善网络的学习和表征属性。最后,采用添加空间金字塔池化、加权衰减优化方法提高模型的泛化能力,优化识别结果。试验结果表明,和现有其他深度模型相比,该方法能够有效地定位复杂背景下的成熟草莓,不易受到干扰环境的影响,具有更高的识别准确率和灵敏度,在数据集C中的识别准确率和灵敏度最高,分别达到92.46%和94.28%。 相似文献
10.
针对实际稻田环境中水稻与杂草相互遮挡、难以准确区分的问题,提出一种基于改进DeepLabv3+的水稻杂草识别方法。以无人机航拍的复杂背景下稻田杂草图像为研究对象,在DeepLabv3+模型的基础上,选择轻量级网络MobileNetv2作为主干特征提取网络,以减少模型参数量和降低计算复杂度;融合通道和空间双域注意力机制模块,加强模型对重要特征的关注;提出一种基于密集采样的多分支感受野级联融合结构对空洞空间金字塔池化模块(ASPP)进行改进,扩大对全局和局部元素特征的采样范围;对模型解码器部分进行改进。设置消融试验验证改进方法的有效性,并与改进前DeepLabv3+、UNet、PSPNet、HrNet模型进行对比试验。试验结果表明,改进后模型对水稻田间杂草的识别效果最佳,其平均交并比(MIoU)、平均像素准确率(mPA)、F1值分别为90.72%、95.67%、94.29%,较改进前模型分别提高3.22、1.25、2.65个百分点;改进后模型内存占用量为11.15 MB,约为原模型的1/19,网络推算速度为103.91 f/s。结果表明改进后模型能够实现复杂背景下水稻与杂草分割,研究结果可... 相似文献
11.
羊只站立、行走、采食等日常行为与其健康状况密切相关,高效、准确的羊只行为识别有助于疾病检测,对实现羊只健康预警具有重要意义。针对目前羊只多行为识别检测大多基于传感器等接触式设备,羊只活动受限,行为具有局限性,且群体养殖环境下,羊只行为多样、场景复杂、存在遮挡等造成的行为识别精度低等问题,提出了一种基于改进YOLO v8s的羊只行为识别方法。首先,引入SPPCSPC空间金字塔结构增强了模型的特征提取能力,提升了模型的检测精度。其次,新增P2小目标检测层,增强了模型对小目标的识别和定位能力。最后,引入多尺度轻量化模块PConv和EMSConv,在保证模型识别效果的同时,降低了模型参数量和计算量,实现了模型轻量化。实验结果表明,改进YOLO v8s模型对羊只站立、行走、采食、饮水、趴卧行为平均识别精度分别为84.62%、92.58%、87.54%、98.13%和87.18%,整体平均识别精度为90.01%。与Faster R-CNN、YOLO v5s、YOLO v7、YOLO v8s模型相比,平均识别精度分别提高12.03、3.95、1.46、2.19个百分点。研究成果可为羊只健康管理和疾病预警提供技术支撑。 相似文献
12.
基于改进型YOLO的复杂环境下番茄果实快速识别方法 总被引:11,自引:0,他引:11
为实现温室环境下农业采摘机器人对番茄果实的快速、精确识别,提出了一种改进型多尺度YOLO算法(IMS-YOLO)。对YOLO网络模型进行筛选和改进,设计了一种含有残差模块的darknet-20主干网络,同时融合多尺度检测模块,构建了一种复杂环境下番茄果实快速识别网络模型。该网络模型层数较少,能够提取更多特征信息,且采用多尺度检测结构,同时返回番茄果实的类别和预测框,以此提升番茄果实检测速度和精度。采用自制的番茄数据集对IMS-YOLO模型进行测试,并分别对改进前后网络的检测性能以及主干网络层数对特征提取能力的影响进行了对比试验。试验结果表明,IMS-YOLO模型对番茄图像的检测精度为97.13%,准确率为96.36%,召回率为96.03%,交并比为83.32%,检测时间为7.719 ms;对比YOLO v2和YOLO v3等网络模型,IMS-YOLO模型可以同时满足番茄果实检测的精度和速度要求。最后,通过番茄温室大棚采摘试验验证了本文模型的可行性和准确性。 相似文献
13.
日常行为是家畜健康状况的重要体现,在传统的行为识别方法中,通常需要人工或者依赖工具对家畜进行观察。为解决以上问题,基于YOLO v5n模型,提出了一种高效的绵羊行为识别方法,利用目标识别算法从羊圈斜上方的视频序列中识别舍养绵羊的进食、躺卧以及站立行为。首先用摄像头采集养殖场中羊群的日常行为图像,构建绵羊行为数据集;其次在YOLO v5n的主干特征提取网络中引入SE注意力机制,增强全局信息交互能力和表达能力,提高检测性能;采用GIoU损失函数,减少训练模型时的计算开销并提升模型收敛速度;最后,在Backbone主干网络中引入GhostConv卷积,有效地减少了模型计算量和参数量。实验结果表明,本研究提出的GS-YOLO v5n目标检测方法参数量仅为1.52×106,相较于原始模型YOLO v5n减少15%;浮点运算量为3.3×109,相较于原始模型减少30%;且平均精度均值达到95.8%,相比于原始模型提高4.6个百分点。改进后模型与当前主流的YOLO系列目标检测模型相比,在大幅减少模型计算量和参数量的同时,检测精度均有较高提升。在边缘设备上进行部署,达到了实时检测要求,可准确快速地对绵羊进行定位并检测。 相似文献
14.
基于卷积网络的沙漠腹地绿洲植物群落自动分类方法 总被引:1,自引:0,他引:1
为解决沙漠腹地绿洲遥感图像植物群落背景较易混淆,仅用传统的基于像元光谱信息的图像处理方法未能充分利用其图像特征信息,使得提取效果不佳的问题,针对地物类内特征复杂、类间边界模糊的特点,以连续分布的区域为研究对象,提出了一种基于深度卷积神经网络(Convolutional neural network,CNN)的高分辨率遥感影像植物群落自动分类方法。切分无人机影像获得规则块图像,利用基于CNN的VGGNet和Res Net模型分别对块图像的特征进行抽象与学习,以自动获取更加深层抽象、更具代表性的图像块深层特征,从而实现对植物群落分布区域的提取,以原图像与结果图像叠加的形式输出植物群落自动分类结果。采用了不同梯度的样本数量作为训练样本,利用文中提出的方法分析了不同梯度的训练样本数量对自动分类结果的影响。实验结果表明,训练样本数量对分类精度具有明显的影响;提高其泛化能力后,Res Net50模型与VGG19模型的建模精度从86. 00%、83. 33%分别提升到92. 56%、90. 29%; Res Net50模型分类精度为83. 53%~91. 83%,而VGG19模型分类精度为80. 97%~89. 56%,与传统的监督分类方法比较,深度卷积网络明显提高了分类精度。分类结果表明,训练样本数量不低于200时,基于CNN的Res Net50模型表现出最佳的分类结果。 相似文献
15.
肉牛活动过程中所表现出的行为是肉牛健康状况的综合体现,实现肉牛行为的快速准确识别,对肉牛疾病防控、自身发育评估和发情监测等具有重要作用。基于机器视觉的行为识别技术因其无损、快速的特点,已应用在畜禽养殖行为识别中,但现有的基于机器视觉的肉牛行为识别方法通常针对单只牛或单独某个行为开展研究,且存在计算量大等问题。针对上述问题,本文提出了一种基于SNSS-YOLO v7(Slim-Neck&Separated and enhancement attention module&Simplified spatial pyramid pooling-fast-YOLO v7)的肉牛行为识别方法。首先在复杂环境下采集肉牛的爬跨、躺卧、探究、站立、运动、舔砥和互斗7种常见行为图像,构建肉牛行为数据集;其次在YOLO v7颈部采用Slim-Neck结构,以减小模型计算量与参数量;然后在头部引入分离和增强注意力模块(Separated and enhancement attention module, SEAM)增强Neck层输出后的检测效果;最后使用SimSPPF(Simplified ... 相似文献
16.
针对目前自然环境下枣品种识别准确率较低的问题,提出了一种基于注意力机制和多语义特征增强的枣品种识别模型(ICBAM_MSFE_Res50)。该模型在ResNet-50基础上,引入改进注意力机制(Improved convolutional block attention module, ICBAM),ICBAM采用一维卷积和多尺度空洞卷积对卷积块注意力模块(CBAM)进行改进,消除了特征图降维时的信息损失,降低了模型计算量和参数量,提高了模型对枣果区域细粒度特征的提取能力。同时,提出了多语义特征增强(Multi semantic feature enhancement,MSFE)模块,该模块通过枣果区域定位算法提取更多枣果局部显著特征,并采用显著性特征抑制算法迫使模型学习枣果次要特征,从而达到枣果多种语义特征学习。实验结果表明,在20类枣品种数据集上,本文模型准确率为92.20%,与ResNet-50相比,提高4.26个百分点。对比AlexNet、VGG-16、ResNet-18、InceptionV3模型,准确率分别提高15.84、9.22、6.86、3.55个百分点。对比其他枣品种识别方法,本文方法在20种枣品种识别中表现最优,可为自然环境下枣品种识别研究提供参考。 相似文献
17.
高标准农田是国家粮食安全的重要保障,作为其中的重要工程,田间道路的快速准确获取可为高标准农田建设质量评估和效果评价提供基础数据支撑。针对传统方法对细窄田间道路识别精度低、泛化能力不强的问题,本文提出了基于U-Net网络的高标准农田道路识别方法。首先,在分析田间道路基本特征的基础上,选取GF-2影像作为试验数据,采用面向对象方法对影像进行分割并根据对象特征进行分类,剔除光谱特征与田间道路相似的建筑物等非道路要素,减少道路识别干扰;然后,对影像进行裁剪、标签制作和数据增强等操作,并使用U-Net网络挖掘影像的深浅层特征,通过不断调整参数对网络进行训练,实现田间道路的快速识别;最后,依据道路断点特征,采用局部连接法对道路断点进行修复,并以河北省定州市东亭镇为试验区进行方法测算与精度验证。结果表明:通过挖掘622幅田间道路样本的影像特征,U-Net网络可以有效识别各类场景下的高标准农田道路,通过对道路断点进行修复后,研究区田间道路识别精确率达96%,召回率和F1值分别为62%、75%,该识别精度能够满足高标准农田建设质量快速评估要求。相比传统识别方法,结合面向对象和深度学习的方法可以在减少建筑物干扰的基础上快速地识别出田间道路,能更好解决田间道路材质差异大、植被遮挡等造成识别结果噪声多、误识别问题,该方法可为细窄地物的识别提供方法参考。 相似文献