共查询到19条相似文献,搜索用时 112 毫秒
1.
三江源区不同退化程度高寒草地土壤特征分析 总被引:3,自引:0,他引:3
研究了不同退化程度高寒草地不同土层的土壤特征.结果表明,三江源区高寒生态条件下草地退化对土壤物理、化学特征具有较为明显的影响.在0~30 cm土层,不同退化程度高寒草地土壤容重、含水量、总孔隙度差异显著.土壤容重随高寒草地退化程度的加剧和土壤深度的增加而增大,变动范围为1.02~1.61 g/cm3;土壤含水量、土壤总孔隙度随高寒草地退化程度的加剧而减小,变动范围分别为13.98%~70.75%、40.82%~60.29%;土壤pH总体随高寒草地退化程度的加剧而增大;土壤有机碳含量随高寒草地退化程度的加剧而下降,以0~10 cm土层下降最明显,轻度、中度和重度退化高寒草地该土层有机碳含量与未退化草地相比,分别下降36.05%、61.82%、66.55%;不同退化程度高寒草地土壤全氮、全磷、全钾含量总体为未退化草地>轻度退化草地>中度退化草地>重度退化草地. 相似文献
2.
高寒草甸不同退化程度土壤的养分研究 总被引:2,自引:2,他引:2
[目的]探讨不同退化高寒草地土壤营养成分含量的变化规律及其草地退化、土壤退化之间的关系,为退化草地土壤系统的恢复治理提供可靠的依据。[方法]对青海省果洛州玛沁县高寒草甸不同退化程度土壤养分进行分析。[结果]随着退化程度的加剧,土壤养分含量在0~30 cm内随着土壤深度的增加而减小,而相同层次的土壤养分含量则随着退化程度的加剧而降低;土壤含水量在轻度退化、中度退化和重度退化高寒草甸的0~10 cm土层内差异极显著(P<0.01),而在10~30 cm土层内变化差异不显著(P>0.05)。[结论]随着高寒草地退化程度的加剧,土壤营养成分含量和土壤含水量呈显著性下降趋势。这主要与高寒草地退化、土壤退化有关。因而,在高寒草地恢复治理过程中,根据不同退化阶段应采取不同的恢复治理措施,特别是根据土壤养分的变化状况采取不同的施肥策略,改善土壤理化性状,加速退化草地的恢复进程。 相似文献
3.
[目的]探讨不同退化高寒草地土壤营养成分含量的变化规律及其草地退化、土壤退化之间的关系,为退化草地土壤系统的恢复治理提供可靠的依据。[方法]对青海省果洛州玛沁县高寒草甸不同退化程度土壤养分进行分析。[结果]随着退化程度的加剧,土壤养分含量在0.30cm内随着土壤深度的增加而减小,而相同层次的土壤养分含量则随着退化程度的加剧而降低;土壤含水量在轻度退化、中度退化和重度退化高寒草甸的0—10cm土层内差异极显著(P〈0.01),而在10—30cm土层内变化差异不显著(P〉0.05)。[结论]随着高寒草地退化程度的加剧,土壤营养成分含量和土壤含水量呈显著性下降趋势。这主要与高寒草地退化、土壤退化有关。因而,在高寒草地恢复治理过程中,根据不同退化阶段应采取不同的恢复治理措施,特别是根据土壤养分的变化状况采取不同的施肥策略,改善土壤理化性状。加速退化草地的恢复进程。 相似文献
4.
以高寒高山柳(Salix paraqplesia)灌丛草甸为研究对象,分析不同退化程度高寒灌丛草甸的植物量、土壤养分和土壤微生物。结果表明:随着高寒灌丛草甸退化程度的加剧,地下植物量、地上植物量、优良牧草植物量、土壤有机质、全氮及全磷都显著降低(P0.05),但土壤微生物数量则是轻度退化灌丛草甸最高(P0.05)。植物量、土壤有机质及全氮、土壤微生物数量与土壤含水量呈显著正相关(P0.05);植物量、土壤全氮、土壤有机质与土壤微生物数量呈显著正相关(P0.05)。说明,灌丛草甸的退化表现出植被、土壤的协同退化。 相似文献
5.
三江源区不同退化高寒草甸土壤碳分布特征研究 总被引:1,自引:0,他引:1
在青海省三江源区选择了甘德县青珍乡高寒草甸典型样区,划分了5种不同退化程度的样地(原生植被UD、轻度退化LD、中度退化MD、重度退化HD、极度退化ED),10 cm等深度采集表土(0~30 cm)土壤样品,分析土壤总碳、有机碳和无机碳含量变化。结果表明,研究区内高寒草甸土壤的表土总碳和有机碳含量出现极大的变异性,随退化程度的加剧而呈显著下降,有机碳含量的下降幅度更大。与原生植被相比,轻度退化、中度退化、重度退化和极度退化样地0-30 cm土壤总碳含量分别平均降低了7.4%、12.2%、16.1%和17.7%,土壤有机碳含量分别平均降低了21.7%、39.7%、67.4%和79.6%,随土层的加深和退化程度的加剧,无机碳的含量在迅速地增加。总的来看,表层土壤碳含量在生态系统退化情况下的变化最剧烈。随退化程度的加剧,高寒草甸土壤有机碳含量下降迅速,占总碳含量的比例由87.2%减少到11.6%,有机碳损失严重。 相似文献
6.
对藏北退化高寒草原土壤微生物群落数量的研究结果表明:①相对于正常草地,轻度退化草地土壤细菌、放线菌、真菌数量均呈不同程度的提高;中度退化和严重退化草地土壤细菌和真菌数量则呈显著下降趋势,而土壤放线菌数量显著升高。②土壤真菌与土壤细菌表现为极显著正相关(P≤o.01);而与放线菌则为负相关;土壤放线菌和土壤细菌间则为显著负相关(P≤0.05)。③土壤细菌、放线菌和真菌与土壤有机质均呈显著相关,r值分别为0.7256、-0.7533、0.7215。④不同退化程度高寒草地土壤微生物数量以细菌占绝对优势,放线菌和真菌较少,并有不同的变动规律。⑤西藏高原高寒、干旱条件下,轻度退化草地一定程度的沙化所导致的土壤通透性能的改善对土壤微生物的繁殖与活动具有重要的促进作用。 相似文献
7.
以呼伦贝尔草甸草原羊草+杂类草群落和贝加尔针茅+羊草群落为研究对象,对不同退化程度下的植物群落组成定量分析研究。结果表明,随着草地退化程度的增加,群落物种组成逐渐单一,数量逐渐减少,其中代表草甸草原成分的物种重要值变化较明显,群落伴生种的重要值随着退化程度的增加而降低,有些耐践踏、适口性差的物种如寸草苔、披针叶黄华、糙隐子草等对草甸草原具有一定指示作用的物种重要值具有上升的趋势;群落物种组成发生明显变化,轻度和中度退化草地仍以禾本科为优势种,退化指示类的菊科植物的重要地位得到提升,中度退化区蔷薇科和毛茛科植物不断增加,袁重度退化阶段,多以耐践踏的菊科植物、莎草科和小型禾草占优势。 相似文献
8.
东祁连山高寒草地土壤微生物碳氮研究 总被引:1,自引:1,他引:1
在青藏高原东祁连山段,嵩草草地、金露梅灌丛草地、珠芽蓼-嵩草草地、高山柳-金露梅灌丛草地、禾草草地、沼泽草地上,分层(0~10 cm,10~20 cm)采集了土壤样品,分析了土壤有机C、全N和微生物量C、N含量的关系。结果表明:在一定范围内,青藏高原东祁连山段高寒草地土壤微生物量C、N含量与土壤有机C、全N表现出了很好的相关性。不同草原类型的表层土壤有机C含量顺序为:高山柳-金露梅灌丛草地>珠芽蓼-嵩草草地>嵩草草地>金露梅灌丛草地>沼泽草地>禾草草地;土壤全N含量顺序为:嵩草草地>金露梅灌丛草地>高山柳-金露梅灌丛草地>珠芽蓼-嵩草草地>沼泽草地>禾草草地。土壤微生物量C随着土层深度的增加而减少,微生物量C变化在251.6~1 562.5 mg/kg之间,微生物量N变化在18.5~50.9 mg/kg之间,微生物量C/N在12~32之间。土壤微生物量碳(Cmic)占土壤有机碳的(Corg)的比例在0.3%~1.7%之间。不同草原类型的土壤微生物量C、N含量差异较大。 相似文献
9.
高寒草甸不同退化程度土壤微生物数量变化及影响因子 总被引:2,自引:0,他引:2
应用稀释平板法对青藏高原不同退化程度高寒草甸土壤0~30 cm土层的细菌、真菌和放线菌数量特征进行对比分析。结果表明,随着高寒嵩草草甸退化程度的加剧,地下生物量、生物量、优良牧草生物量、土壤有机质、全氮及全磷都显著降低(P<0.05),土壤微生物数量随之大幅度减少,尤其是真菌数量显著降低(P<0.05)。植被地下生物量、土壤有机质及全氮与土壤微生物数量显著正相关(P<0.05)。植被地下生物量、优良牧草生物量、有机质、全氮与真菌数量呈显著正相关(P<0.05);海拔和裸地面积与真菌数量呈显著负相关(P<0.05)。 相似文献
10.
退化高寒草地土壤活性有机碳组分分布 总被引:1,自引:0,他引:1
在青海省三江源区选择了果洛州甘德县青珍乡(高寒草甸)和玛多县花石峡镇(高寒草原)2个样地,每个样地各划分5种不同退化程度(原生植被UD、轻度退化LD、中度退化MD、重度退化HD、极度退化ED),10 cm等深度采集表土土壤样品,分析土壤活性有机碳(Active soil organic carbon,ASOC)主要组分含量变化。结果表明,研究样地内土壤表土(0~30 cm)微生物量碳(Microbial biomass carbon,MBC)、轻组有机碳(Light fraction organic carbon,LFOC)、易氧化有机碳(Readily oxidizabe organic carbon,ROC)和水溶性有机碳(Water soluble organic carbon,WSOC)的含量均随退化程度的加剧和土层的加深呈下降趋势。0~30 cm土层MBC含量为244.46~360.69 mg/kg,LFOC为1.36~8.64 g/kg,ROC为1.12~9.41 g/kg;WSOC为83.41~141.59 mg/kg;0~30 cm土层,ED与UD相比,MBC降低了25.47%~30.57%,LFOC降低了78.76%~81.27%,ROC降低了80.97%~82.97%,WSOC降低了16.48%~24.43%。MBC、LFOC、ROC和WSOC分别占SOC的比例为1.11%~4.32%、24.07%~26.56%、19.82%~28.92%和0.40%~1.62%。ASOC各组分含量均表现为高寒草甸的青珍乡样地高于高寒草原的花石峡镇样地。 相似文献
11.
青藏高原不同类型草地土壤有机碳特征研究 总被引:1,自引:0,他引:1
青藏高原草地土壤蕴含着巨大的有机碳库,在全球碳循环中起着重要的作用。该文对青藏高原3种不同类型草地(高寒草甸、高寒草甸草原和温性荒漠)土壤总有机碳、活性有机碳(水溶性有机碳、易氧化有机碳)、腐殖质组分碳(胡敏酸碳、富里酸碳和腐殖质碳)、团聚体碳及团聚体稳定性进行了研究。结果表明,土壤总有机碳、活性有机碳、腐殖质组分碳、团聚体碳及团聚体稳定性指标(包括平均重量直径、几何平均直径、>0.25mm的团聚体所占含量及水稳定团聚体比例)的顺序均为温性荒漠<高寒草甸草原<高寒草甸,高寒草甸土壤的团聚体稳定性最高。 相似文献
12.
以松辽平原玉米带高产土壤和平产土壤为研究对象,研究了不同玉米产量土壤微生物量碳的变化特征及其与土壤理化性质、玉米产量的相关性.结果表明:高产培育模式下,土壤微生物量碳、微生物商显著增加;土壤微生物量碳与土壤有机碳、全氮显著正相关(P<0.05),与有效磷、>0.25 mm团聚体数量及平均重量直径极显著正相关(P<0.01),与土壤容重显著负相关(P<0.05),与pH、结构破坏率极显著负相关(P<0.01),与玉米产量极显著正相关(P<0.01).由此可见,土壤微生物量碳是反映玉米高产培育模式下土壤肥力变化的重要指标. 相似文献
13.
半干旱地区不同土壤团聚体中微生物量碳的分布特征 总被引:15,自引:7,他引:15
在半干旱地区采集7个不同利用方式的土样,利用干筛法获得不同粒径的团聚体,并分析其有机碳、微生物量碳和K_2SO_4浸提碳含量。结果显示,有机碳含量最高的土壤其大团聚体占的比例也最高;未筛分土壤的微生物量碳以灌溉耕地最高、油菜-土豆轮作旱地最低,分别为336和189mg·kg-1。团聚体微生物量碳含量为153~324mg·kg-1。灌溉耕地土壤>5mm团聚体最高,草地土壤<0.25mm团聚体最低。土壤有机碳和微生物量碳在大团聚体(>2mm)中的含量相对都高于小团聚体。微生物量碳与土壤有机碳极显著相关,与K2S 相似文献
14.
[目的]研究特定的O2培养条件下土壤微生物生物量碳(SMBC)的动态变化规律。[方法]通过室内模拟试验,研究了玉米秸秆分解期间SMBC对不同O2浓度的响应。[结果]土壤添加玉米秸秆后,激发了土壤微生物生长,在培养第1天各处理SMBC达到了整个培养期最高峰后迅速下降,90d后SMBC下降趋势趋于平缓。在不同浓度的O2培养条件下,0~15d短期培养期间,各处理SMBC间差异不显著,O2浓度为0的SMBC一直保持较高数量。长期培养期间(30~270d),SMBC随着O2浓度的升高而增加,各处理间差异显著。[结论]各处理SMBC分别与土壤有机碳、腐殖物质、富里酸和胡敏素间均呈显著正相关。O2浓度为21%的SMBC与土壤可溶性有机碳呈正相关(r=0.649,P〈0.05),表明正常大气条件更有利于土壤微生物的活性。 相似文献
15.
为了探讨常绿阔叶林关键区域土壤碳循环规律,在2010-2011年间,以武夷山常绿阔叶林不同土层土壤为对象,研究土壤微生物量碳(MBC)和土壤有机碳(SOC)的季节变化特征及剖面分布;分析森林土壤微生物量碳与土壤有机碳、土壤微生物熵(qMB)的关系及其影响因素。结果表明,常绿阔叶林土壤微生物量碳含量的变化表现为:夏季、秋季较高,春季、冬季较低;而土壤有机碳含量的季节变化不明显。土壤微生物量碳和土壤有机碳在G1(0~10 cm)表层土壤含量明显高于G2(10~20 cm)和G3(20~30 cm),差异显著;而G2、G3土层之间差异不显著,但表现为自上向下显著递减的趋势;土壤微生物量碳与土壤有机碳、土壤微生物熵含量均表现出显著相关性(P<0.01)。研究表明,表层土壤有机碳的累积量较高,土壤有机碳的积累对土壤微生物量碳具有重要的影响。 相似文献
16.
茶园土壤团聚体中微生物量碳、氮的分布特征 总被引:5,自引:1,他引:5
【目的】弄清茶园土壤团聚体中微生物量碳、氮的分布特征,以期反映退耕还茶模式对土壤团聚体及其养分循环的影响,为协调区域土地利用及退耕还林(茶)工程的实施提供依据。【方法】采用野外调查和室内分析相结合的方法,以撂荒地和桉树人工林为对照,就茶园土壤团聚体中微生物量碳、氮的分布特征进行了研究。【结果】(1)茶园和对照撂荒地、桉树人工林土壤团聚体中有机碳含量基本随团聚体直径的减小而增加,最大值均集中于<0.25 mm团聚体中;(2)茶园及对照地土壤微生物量碳、氮含量则基本随团聚体直径的减小而降低,其中茶园土壤团聚体中微生物量碳、氮含量最大值分布于5—2 mm团聚体中,茶园土壤除了<0.25 mm团聚体外,其微生物量碳、氮的含量均高于撂荒地和桉树人工林同直径团聚体;(3)茶园及对照地土壤团聚体微生物熵基本随团聚体直径的减小而降低,其中茶园土壤团聚体微生物熵最大值分布于5—2 mm团聚体中,其分布规律与微生物量碳、氮基本一致。【结论】与撂荒地、桉树人工林相比,茶园土壤团聚体中微生物量碳、氮较为丰富,大团聚体中的含量尤为突出,表明退耕还茶是研究区一种较为理想的退耕模式。 相似文献
17.
[目的]探索季节性雪被对高寒草甸土壤微生物量碳、氮动态的影响。[方法]根据自然雪被分布的差异,在青藏高原东南缘的高寒草甸生态系统中设置3条雪梯度样带(深雪、中雪和浅雪),于2008年秋冬过渡期监测各样带中土壤温度和含水量,并研究不同雪梯度下土壤微生物量碳、氮的动态变化。[结果]月均土温、每月日最高土温均值、每月日最低土温均值都分别与雪厚度呈显著二次函数关系。雪厚度和土壤温差对土壤含水量具有显著影响。在秋冬过渡期末,深雪梯度中土壤微生物量碳先显著升高又显著降低;浅雪梯度中,土壤微生物量氮在稳定的浅雪被(约10cm)形成后显著增加。雪被下土壤微生物量碳、氮含量都分别与土壤温度呈显著的三次函数关系。[结论]季节性雪被对土壤温度和土壤含水量有显著影响,也引起高寒草甸土壤微生物量碳、氮动态的明显差异。 相似文献
18.
为了探讨常绿阔叶林关键区域土壤碳循环规律,在2010—2011年间,以武夷山常绿阔叶林不同土层土壤为对象,研究土壤微生物量碳(MBC)和土壤有机碳(SOC)的季节变化特征及剖面分布;分析森林土壤微生物量碳与土壤有机碳、土壤微生物熵(qMB)的关系及其影响因素。结果表明,常绿阔叶林土壤微生物量碳含量的变化表现为:夏季、秋季较高,春季、冬季较低;而土壤有机碳含量的季节变化不明显。土壤微生物量碳和土壤有机碳在G1(0~10cm)表层土壤含量明显高于G2(10~20cm)和G3(20~30cm),差异显著;而G2、G3土层之间差异不显著,但表现为自上向下显著递减的趋势;土壤微生物量碳与土壤有机碳、土壤微生物熵含量均表现出显著相关性(P<0.01)。研究表明,表层土壤有机碳的累积量较高,土壤有机碳的积累对土壤微生物量碳具有重要的影响。 相似文献