首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When highly pathogenic avian influenza H5N1 (HPAI H5N1) arrived at Lake Constance in February 2006, little was known about its ecology and epidemiology in wild birds. In order to prevent virus transmission from wild birds to poultry, the adjacent countries initiated the tri-national, interdisciplinary research program ?Constanze? to investigate avian influenza infections in water birds at Lake Constance. In collaboration with government agencies scientists examined the prevalence of AI virus in the region of Lake Constance for a period of 33 months, compared the effectiveness of different surveillance methods and analysed the migration behaviour of water birds. Although virus introduction from regions as far as the Ural Mountains seemed possible based on the migration behaviour of certain species, no influenza A viruses of the highly pathogenic subtype H5N1 (HPAIV) was found. However, influenza A viruses of different low pathogenic subtypes were isolated in 2.2 % of the sampled birds (swabs). Of the different surveillance methods utilised in the program the sampling of so called sentinel birds was particularly efficient.  相似文献   

2.
In order to determine the actual prevalence of avian influenza viruses (AIV) in wild birds in Germany, extensive surveillance studies were carried out between March 2003 and January 2005. More than 3.000 samples of 79 different species of wild birds (migratory and resident birds) were taken and 1.151 established pools investigated. Samples came from 80 different regions of Germany. Forty AIV isolates representing 14 combinations of eight different hemagglutinin and eight neuraminidase subtypes, among them H5 and H7, were identified. All H5 and H7 isolates were found to be of low pathogenicity. The overall incidence of the investigated pools based on virus isolation was 3,5 % for AIV, with considerable variability noted among species, season and location. All AIV were isolated from birds sampled in autumn. Most of the AIV isolates came from the resting or wintering areas of mallards breeding far north. This study adds to the understanding of the ecology of influenza viruses in wild birds and empahsizes the constant need for surveillance in times of an ongoing and expanding epidemic of highly pathogenic AI.  相似文献   

3.
4.
为了解野鸟在传播禽流感病毒中的作用,贵州省动物疫病预防控制中心定期从威宁草海采集候鸟和留鸟的新鲜粪便,用RT-PCR方法检测病原核酸。监测到1份流感病毒阳性样本,对其血凝素(HA)基因进行了克隆和测序。结果发现,该病毒属于H3亚型,所获得的HA基因1794 bp,包含有完整的阅读框架,编码566个氨基酸残基,包括6个潜在的糖基化位点,遗传进化分析结果显示其属于欧亚禽源分支。另外,HA受体结合位点上的氨基酸序列具有禽源特有的保守性,分别是154A、206E、210L、241G、242Q和244G。推导的HA裂解位点有典型的低致病特征(PEKQTR/GLF)。结果表明,贵州省野鸟中存在低致病性H3亚型禽流感病毒。  相似文献   

5.
Lei F  Tang S  Zhao D  Zhang X  Kou Z  Li Y  Zhang Z  Yin Z  Chen S  Li S  Zhang D  Yan B  Li T 《Avian diseases》2007,51(2):568-572
Avian influenza H5N1 viruses pose a significant threat to human health because of their ability to infect humans directly. In the paper, three highly pathogenic H5N1 influenza viruses were isolated from three species of migratory birds in Qinghai Province of China in 2006. The analysis of the genome sequences indicated that the three isolates shared high homology with each other (94% to 99%). Three isolates shared a common ancestor and were closest to strains isolated from Qinghai and Siberia in 2005, but distinct from poultry viruses found in Southeast Asia. In experimental infection, all three viruses were highly pathogenic to chickens and mice. The results suggest that highly pathogenic avian influenza H5N1 viruses still exist in the migratory birds and could spread to other regions with wild bird migration.  相似文献   

6.
Highly pathogenic H5N1 avian influenza A viruses have been spreading among domestic poultry, wild aquatic birds, and humans in many Asian countries since 2003. The largest number of patients, to date, infected with the H5N1 viruses are in Vietnam, where these viruses continue to cause outbreaks in domestic poultry. Here, we molecularly characterized the hemagglutinin and neuraminidase genes of nine H5N1 viruses isolated between January 2004 and August 2005 from domestic poultry in Vietnam. We found that several groups of highly pathogenic H5N1 avian influenza viruses are circulating among these birds, which suggests that H5N1 viruses of different lineages have been introduced into Vietnam multiple times.  相似文献   

7.
Objective   To identify and gain an understanding of the influenza viruses circulating in wild birds in Australia.
Design   A total of 16,303 swabs and 3782 blood samples were collected and analysed for avian influenza (AI) viruses from 16,420 wild birds in Australia between July 2005 and June 2007. Anseriformes and Charadriiformes were primarily targeted.
Procedures   Cloacal, oropharyngeal and faecal (environmental) swabs were tested using polymerase chain reaction (PCR) for the AI type A matrix gene. Positive samples underwent virus culture and subtyping. Serum samples were analysed using a blocking enzyme-linked immunosorbent assay for influenza A virus nucleoprotein.
Results   No highly pathogenic AI viruses were identified. However, 164 PCR tests were positive for the AI type A matrix gene, 46 of which were identified to subtype. A total of five viruses were isolated, three of which had a corresponding positive PCR and subtype identification (H3N8, H4N6, H7N6). Low pathogenic AI H5 and/or H7 was present in wild birds in New South Wales, Tasmania, Victoria and Western Australia. Antibodies to influenza A were also detected in 15.0% of the birds sampled.
Conclusions   Although low pathogenic AI virus subtypes are currently circulating in Australia, their prevalence is low (1.0% positive PCR). Surveillance activities for AI in wild birds should be continued to provide further epidemiological information about circulating viruses and to identify any changes in subtype prevalence.  相似文献   

8.
The H3 subtype avian influenza virus (AIV) is one of the most frequently isolated subtypes in domestic ducks, live poultry markets, and wild birds in Korea. In 2002-2009, a total of 45 H3 subtype AIVs were isolated from the feces of clinically normal domestic ducks (n=28) and wild birds (n=17). The most prevalent subtypes in domestic ducks were H3N2 (35.7%), H3N6 (35.7%), H3N8 (25.0%), and H3N1 (3.6%, novel subtype in domestic duck in Korea). In contrast, H3N8 (70.6%) is the most prevalent subtype in wild birds in Korea. In the phylogenetic analysis, HA genes of the Korean H3 AIVs were divided into 3 groups (Korean duck, wild bird 1, and wild bird 2) and all viruses of duck origin except one were clustered in a single group. However, other genes showed extensive diversity and at least 17 genotypes were circulating in domestic ducks in Korea. When the analysis expanded to viruses of wild bird origin, the genetic diversity of Korean H3 AIVs became more complicated. Extensive reassortments may have occurred in H3 subtype influenza viruses in Korea. When we inoculated chickens and ducks with six selected viruses, some of the viruses replicated efficiently without pre-adaptation and shed a significant amount of viruses through oropharyngeal and cloacal routes. This raised concerns that H3 subtype AIV could be a new subtype in chickens in Korea. Continuous surveillance is needed to prepare the advent of a novel subtype AIV in Korea.  相似文献   

9.
10.
Tropical Animal Health and Production - In 2010, H5N8 highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage dramatically affected poultry and wild birds in Asia,...  相似文献   

11.
国家禽流感参考实验室在2006年,从来自青、藏两省(区)3种野鸟及辽宁省的2种死亡的野鸟体内共分离到14株H5N1亚型高致病力禽流感病毒(High pathogenic avian influenza virus,HPAIV),比较发现其HA、NA基因核苷酸的同源率在97.9%~99.9%之间。所有病毒的HA基因的裂解位点均具有HPAIV特有的连续碱性氨基酸-RRRKKR-,并具有近年来H5N1亚型流行株所特有的NA基因颈部49~68位20个氨基酸缺失及NS基因80~84位5个氨基酸的缺失;遗传进化分析表明2006年野鸟病毒由2005年野鸟病毒进化而来,并形成独立的进化分支;辽宁省近2年的4株野鸟病毒亲缘关系较近,说明引起2005年该省锦州地区H5N1 HPAI疫情的病毒在该地区的野鸟体内继续存在。  相似文献   

12.
中国于2013年底首次发现H10N8亚型禽流感病毒(AIV)能感染人并致死的病例,而在此之前从未有过关于H10N8亚型病毒能感染人的报道,目前也未在其他国家监测到H10N8亚型AIV感染人的病例。与H7N9亚型AIV相似,H10N8亚型AIV在家禽中致病性很弱,可一旦感染人能表现出很强的致病性。感染了H10N8亚型AIV的患者病情恶化快、死亡率高、对人的健康危害很大,但至今尚无有效的防制手段。目前还不太清楚H10N8亚型AIV是通过何种途径传播给人的,今后H10N8亚型AIV是否会在人群中引发新的疫情暴发是人们普遍关心的问题。文章简要介绍了H10N8亚型AIV的特点及研究现状。  相似文献   

13.
Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential.  相似文献   

14.
禽流感病毒N4亚型神经氨酸酶基因的克隆和序列分析   总被引:1,自引:0,他引:1  
应用无特定病原体 (SPF)鸡胚增殖禽流感病毒 A/ Turkey/ Ontario/ 6 118/ 6 8(H8N4 )毒株 ,Tri Zol L S Reagent提取病毒 RNA,RT- PCR扩增神经氨酸酶 (NA)基因全片段 ,克隆到 p MD18- T载体上 ,并进行了鉴定和序列测定。所获得的 NA基因片段长 14 4 1bp,编码 4 90个氨基酸残基。根据推导的氨基酸序列进行预测 ,有 9个潜在的糖基化位点和2 0个半胱氨酸残基  相似文献   

15.
16.
On 19th July 2007 re-occurrence of the H5N1 highly pathogenic avian influenza (HPAI) virus was noticed in Europe. The index strain of this novel H5N1 lineage was identified in the Czech Republic where it caused historically the first HPAI outbreak in commercial poultry. In the present study we performed molecular and phylogenetic analysis of the index strain of the re-emerging H5N1 virus lineage along with the Czech and the Slovak H5N1 strains collected in 2006 and established the evolutionary relationships to additional viruses circulated in Europe in 2005-2006. Our analysis revealed that the Czech and the Slovak H5N1 viruses collected during 2006 were separated into two sub-clades 2.2.1 and 2.2.2, which predominated in Europe during 2005-2006. On the contrary the newly emerged H5N1 viruses belonged to a clearly distinguishable sub-clade 2.2.3. Within the sub-clade 2.2.3 the Czech H5N1 strains showed the closest relationships to the simultaneously circulated viruses from Germany, Romania and Russia (Krasnodar) in 2007 and were further clustered with the viruses from Afghanistan and Mongolia circulated in 2006. The origin of the Czech 2007 H5N1 HPAI strains was also discussed.  相似文献   

17.
Repeated epizootics of highly pathogenic avian influenza (HPAI) virus subtype H5N1 were reported from 2003 to 2005 among poultry in Vietnam. More than 200 million birds were killed to control the spread of the disease. Human cases of H5N1 infection have been sporadically reported in an area where repeated H5N1 outbreaks among birds had occurred. Subtype H5N1 strains are established as endemic among poultry in Vietnam, however, insights into how avian influenza viruses including the H5N1 subtype are maintained in endemic areas is not clear. In order to determine the prevalence of different avian influenza viruses (AIVs), including H5N1 circulating among poultry in northern Vietnam, surveillance was conducted during the years 2006-2009. A subtype H5N1 strain was isolated from an apparently healthy duck reared on a farm in northern Vietnam in 2008 and was identified as an HPAI. Although only one H5N1 virus was isolated, it supports the view that healthy domestic ducks play a pivotal role in maintaining and transmitting H5N1 viruses which cause disease outbreaks in northern Vietnam. In addition, a total of 26 AIVs with low pathogenicity were isolated from poultry and phylogenetic analysis of all the eight gene segments revealed their diverse genetical backgrounds, implying that reassortments have occurred frequently among strains in northern Vietnam. It is, therefore, important to monitor the prevalence of influenza viruses among healthy poultry between epidemics in an area where AIVs are endemic.  相似文献   

18.
19.
As part of the USA's National Strategy for Pandemic Influenza, an Interagency Strategic Plan for the Early Detection of Highly Pathogenic H5N1 Avian Influenza in Wild Migratory Birds was developed and implemented. From 1 April 2006 through 31 March 2009, 261 946 samples from wild birds and 101 457 wild bird fecal samples were collected in the USA; no highly pathogenic avian influenza was detected. The United States Department of Agriculture, and state and tribal cooperators accounted for 213 115 (81%) of the wild bird samples collected; 31, 27, 21 and 21% of the samples were collected from the Atlantic, Pacific, Central and Mississippi flyways, respectively. More than 250 species of wild birds in all 50 states were sampled. The majority of wild birds (86%) were dabbling ducks, geese, swans and shorebirds. The apparent prevalence of low pathogenic avian influenza viruses during biological years 2007 and 2008 was 9.7 and 11.0%, respectively. The apparent prevalence of H5 and H7 subtypes across all species sampled were 0.5 and 0.06%, respectively. The pooled fecal samples (n= 101 539) positive for low pathogenic avian influenza were 4.0, 6.7 and 4.7% for biological years 2006, 2007 and 2008, respectively. The highly pathogenic early detection system for wild birds developed and implemented in the USA represents the largest coordinated wildlife disease surveillance system ever conducted. This effort provided evidence that wild birds in the USA were free of highly pathogenic avian influenza virus (given the expected minimum prevalence of 0.001%) at the 99.9% confidence level during the surveillance period.  相似文献   

20.
Recent introduction of H5N1 highly pathogenic avian influenza virus (HPAIV) in wild birds from poultry in Eurasia signaled the possibility that this virus may perpetuate in nature. Surveillance of avian influenza especially in migratory birds, therefore, has been conducted to provide information on the viruses brought by them to Hokkaido, Japan, from their nesting lakes in Siberia in autumn. During 2008-2009, 62 influenza viruses of 21 different combinations of hemagglutinin (HA) and neuraminidase (NA) subtypes were isolated. Up to September 2010, no HPAIV has been found, indicating that H5N1 HPAIV has not perpetuated at least dominantly in the lakes where ducks nest in summer in Siberia. The PB2 genes of 54 influenza viruses out of 283 influenza viruses isolated in Hokkaido in 2000-2009 were phylogenetically analysed. None of the genes showed close relation to those of H5N1 HPAIVs that were detected in wild birds found dead in Eurasia on the way back to their northern territory in spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号