首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We examined the distribution of the orexin‐like peptides in the pituitary and median eminence of the flat‐tailed house gecko (Hemidactylus platyurus) using immunohistochemistry. Orexin‐B‐like, but not orexin‐A‐like, immunoreactivity was detected in the pituitary, specifically in the pars intermedia, and these cells corresponded to alpha‐melanocyte‐stimulating hormone (αMSH)‐producing cells. Orexin‐B and αMSH secreted from pars intermedia may modulate secretion of adenohypophyseal cells in the pars distalis. In the median eminence, orexin‐B‐immunoreactive puncta and fibres were observed, and these structures corresponded to gonadotropin‐releasing hormone (GnRH)‐immunoreactive puncta and fibres. Orexin‐B secreted from GnRH‐containing neurons in the hypothalamus may affect thyrotropin‐releasing hormone‐containing neurons resulting in modulation of αMSH secretion of melanotrophs in the pars intermedia.  相似文献   

2.
Background: Immune stress induced by lipopolysaccharide(LPS) influences the gonadotropin-releasing hormone(GnRH)/luteinizing hormone(LH) secretion. Presence of LPS interacting Toll-like receptor(TLR) 4 in the hypothalamus may enable the direct action of LPS on the GnRH/LH secretion. So, the aim of the study was to investigate the influence of intracerebroventricular(icv) injection of TLR4 antagonist on GnRH/LH secretion in anestrous ewes during LPS-induced central inflammation. Animals were divided into three groups icv-treated with: Ringer-Locke solution, LPS and TLR4 antagonist followed by LPS.Results: It was demonstrated that TLR4 antagonist reduced LPS-dependent suppression of GnRH gene expression in the preoptic area and in the medial basal hypothalamus, and suppression of receptor for GnRH gene expression in the anterior pituitary gland. It was also shown that TLR4 antagonist reduced suppression of LH release caused by icv injection of LPS. Central administration of LPS stimulated TLR4 gene expression in the medial basal hypothalamus.Conclusions: It was indicated that blockade of TLR4 prevents the inhibitory effect of centrally acting LPS on the GnRH/LH secretion. This suggests that some negative effects of bacterial infection on the hypothalamic-pituitary-gonadal axis activity at the hypothalamic level may be caused by central action of LPS acting through TLR4.  相似文献   

3.
Energy availability has been considered to regulate gonadal activity by modulating the release of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) at various reproductive phases, such as lactation and puberty in domestic as well as wild animals. Experimental models with rats and sheep have demonstrated that fasting or glucoprivation suppresses pulsatile LH release. From those experiments, the information on energy deficiency is considered to be detected by specific central sensors and conveyed to the hypothalamus to regulate LH release as well as food intake. Noradrenergic neurons, originating in the medulla oblongata and projecting to the hypothalamic paraventricular nucleus (PVN), is reported to be one of the pathways mediating the response of LH release to energy deficiency. The other component is considered to be an energy-sensing mechanism in the brain. Glucose or other oxidizable fuels may function as a metabolic signal to regulate LH release. Previous studies suggest the presence of a glucose-sensing mechanism in the rat hindbrain. From our previous results in the rat, the ependymocytes lining the wall of the cerebroventricle could possibly serve as a glucose sensor to regulate GnRH/LH release. Greater understanding of the nature of the energy-sensing mechanism in the brain will contribute to the nutritional manipulation of reproductive performance in domestic animals in various conditions.  相似文献   

4.
The Damaraland mole‐rat is a subterranean mammal exhibiting extreme reproductive skew with a single reproductive female in each colony responsible for procreation. Non‐reproductive female colony members are physiologically suppressed while in the colony, exhibiting reduced concentrations of plasma luteinizing hormone (LH) and a decreased response of the pituitary, as measured by the release of bioactive LH, to an exogenous dose of gonadotrophin releasing hormone (GnRH). Removal of the reproductive female from the colony results in an elevation of LH and an enhanced response of the pituitary to a GnRH challenge in non‐reproductive females comparable to reproductive females, implying control of reproduction in these individuals by the reproductive female. The Damaraland mole‐rat is an ideal model for investigating the physiological and behavioral mechanisms that regulate the hypothalamo–pituitary–gonadal axis. In contrast, we know less about the control of reproduction at the level of the hypothalamus. The immunohistochemistry of the GnRH system of both reproductive and non‐reproductive female Damaraland mole‐rats has revealed no significant differences with respect to morphology, distribution or numbers of immunoreactive GnRH perikarya. We examined whether the endogenous opioid peptide beta‐endorphin was responsible for the inhibition of the release of the GnRH from the neurons indirectly by measuring LH concentrations in these non‐reproductive females following single, hourly and 8 hourly injections of the opioid antagonist naloxone. The results imply that the endogenous opioid peptide, beta‐endorphin, is not responsible for the inhibition of GnRH release from the perikarya in non‐reproductive females. Preliminary data examining the circulating levels of cortisol also do not support a role for circulating glucocorticoids. The possible role of kisspeptin is discussed.  相似文献   

5.
To further characterize the endocrinological changes in the hypothalamo-hypophyseal axis thoughout the bovine estrous cycle, cycling beef heifers (n = 24) were randomly assigned to six groups. These heifers were slaughtered 6, 12, 18, 19, 20 or 21 days following their previous estrus (day 0). Anterior pituitaries and hypothalami were collected. Hypothalami were divided into the preoptic area and medial basal hypothalamus, and content of gonadotropin-releasing hormone (GnRH) was quantified by radioimmunoassay. Contents of luteinizing hormone (LH) and follicle stimulating hormone (FSH) in the anterior pituitary gland were quantified by radioimmunoassay. Membrane receptors for GnRH were quantified by a standard curve technique and receptors for estradiol in anterior pituitary cytosol were quantified by saturation analysis. There was no significant change in content of GnRH in the hypothalamus or content of FSH in the anterior pituitary on any of the days examined; however, content of GnRH in the preoptic area was lower (P less than .1) on day 19 postestrus. Cytosolic receptors for estradiol increased (P less than .05) on day 18 post-estrus and returned to baseline by day 19. Content of LH and the number of receptors for GnRH in the anterior pituitary gland decreased (P less than .01) on day 19 postestrus, and the number of receptors for GnRH remained low through day 21 postestrus. The reduction in anterior pituitary content of LH was transient indicating that synthesis of LH restores pituitary content to preovulatory levels before the number of receptors for GnRH returns to normal.  相似文献   

6.
Kisspeptin(Kp) is synthesized in the arcuate nucleus and preoptic area of the hypothalamus and is a regulator of gonadotropin releasing hormone in the hypothalamus.In addition,Kp may regulate additional functions such as increased neuropeptide Y gene expression and reduced proopiomelanocortin(POMC) gene expression in sheep.Other studies have found a role for Kp to release growth hormone(GH),prolactin and luteinizing hormone(LH)from cattle,rat and monkey pituitary cells.Intravenous injection of Kp stimulated release LH,GH,prolactin and follicle stimulating hormone in some experiments in cattle and sheep,but other studies have failed to find an effect of peripheral injection of Kp on GH release.Recent studies indicate that Kp can stimulate GH release after intracerebroventricular injection in sheep at doses that do not release GH after intravenous injection.These studies suggest that Kp may have a role in regulation of both reproduction and metabolism in sheep.Since GH plays a role in luteal development,it is tempting to speculate that the ability of Kp to release GH and LH is related to normal control of reproduction.  相似文献   

7.
Kisspeptin (Kp) is synthesized in the arcuate nucleus and preoptic area of the hypothalamus and is a regulator of gonadotropin releasing hormone in the hypothalamus. In addition, Kp may regulate additional functions such as increased neuropeptide Y gene expression and reduced proopiomelanocortin (POMC) gene expression in sheep. Other studies have found a role for Kp to release growth hormone (GH), prolactin and luteinizing hormone (LH) from cattle, rat and monkey pituitary cells. Intravenous injection of Kp stimulated release LH, GH, prolactin and follicle stimulating hormone in some experiments in cattle and sheep, but other studies have failed to find an effect of peripheral injection of Kp on GH release. Recent studies indicate that Kp can stimulate GH release after intracerebroventricular injection in sheep at doses that do not release GH after intravenous injection. These studies suggest that Kp may have a role in regulation of both reproduction and metabolism in sheep. Since GH plays a role in luteal development, it is tempting to speculate that the ability of Kp to release GH and LH is related to normal control of reproduction.  相似文献   

8.
Sheep are seasonal breeders, experiencing an annual period of reproductive quiescence in response to increased photoperiod during the late-winter into spring and renaissance during the late summer. The nonbreeding (anestrous) season is characterized by a reduction in the pulsatile secretion of GnRH from the brain, in part because of an increase in negative feedback activity of estrogen. Neuronal populations in the hypothalamus that produce kisspeptin and gonadotropin-inhibitory hormone (GnIH) appear to be important for the seasonal shift in reproductive activity, and the former are also mandatory for puberty onset. Kisspeptin cells in the arcuate nucleus (ARC) and preoptic area appear to regulate GnRH neurons and transmit sex-steroid feedback signals to these neurons. Moreover, kisspeptin expression in the ARC is markedly up-regulated at the onset of the breeding season, as too are the number of kisspeptin fibers in close apposition to GnRH neurons. The lower levels of kisspeptin seen during the nonbreeding season can be "corrected" by infusion of kisspeptin, which causes ovulation in seasonally acyclic females. The role of GnIH is less clear, but mounting evidence supports a role for this neuropeptide in the inhibitory regulation of both GnRH secretion and gonadotropin release from the pituitary gland. Contrary to kisspeptin, GnIH expression is markedly reduced at the onset of the breeding season. In addition, the number of GnIH fibers in close apposition to GnRH neurons also decreases during this time. Importantly, exogenous GnIH treatment can block both the pulsatile release of LH and the preovulatory LH surge during the breeding season. In summary, it is most likely the integrated function of both these neuropeptide systems that modulate the annual shift in photoperiod to a physiological change in fertility.  相似文献   

9.
10.
Pregnant beef heifers (n = 24) were assigned randomly to four groups and slaughtered at day 1, 15, 30 or 45 postpartum. The day prior to slaughter blood samples were taken from each cow every 15 min for 8 hr. The anterior pituitary gland, preoptic area (POA) and medial basal hypothalamus (HYP) were collected from each cow. Contents of gonadotropin-releasing hormone (GnRH) in extracts of POA and HYP, and luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in extracts of anterior pituitary were quantified by radioimmunoassay. In the anterior pituitary gland, membrane receptors for GnRH were quantified by a standard curve technique and cytosolic receptors for estradiol were quantified by saturation analysis. Concentrations of LH, FSH and prolactin in serum were quantified by radioimmunoassay. Only one cow of eight had a pulse of LH during the 8 hr bleeding period on day 1 postpartum. This increased to 8 pulses in 6 cows on day 30 postpartum. Contents of GnRH in POA (15.0 +/- 3.2 ng) and HYP (14.0 +/- 2.0 ng) did not change significantly during the postpartum period. Pituitary content of LH was low following parturition (.2 +/- .1 mg/pituitary) and increased significantly through day 30 postpartum (1.2 +/- .1 mg/pituitary). Pituitary content of FSH did not change over the postpartum period. Receptors for both GnRH (.9 +/- .2 pmoles/pituitary) and estradiol (5.0 +/- .9/moles/pituitary) were elevated on day 15 postpartum, possibly increasing the sensitivity of the anterior pituitary gland to these hormones and leading to an increased rate of synthesis of LH that restored pituitary content to normal by day 30 postpartum.  相似文献   

11.
The aim of this study was to determine the distribution of Neuropeptide-Y (NPY) immunoreactive neurons and fibres in the brain and pituitary of Odontesthes bonariensis by immunohistochemical methods. A wide distribution of immunoreactive NPY (ir-NPY) cells and fibres in the forebrain and midbrain was observed. A prominent ir-NPY nucleus was found in the ventral telencephalon and other ir-NPY cells groups were recognized at the dorso-medial telencephalon. The diencephalon showed ir-NPY cells in the Nucleus entopeduncularis, the Nucleus preopticus periventricularis and in the Nucleus lateralis tuberis. Ir-NPY fibres were conspicuous in the preoptic region and the hypothalamus. There were also numerous ir-NPY fibres at the epithalamic level running ventrally to the hypothalamus and the pituitary stalk. At the rhomboencephalic level, the ir-NPY neurons were observed in the Locus coeruleus. Double-labelled immunostaining showed a close association between ir-NPY fibres that reach the adenohypophysis and growth hormone (GH)- and gonadotropin (GtH)-expressing cells. Although our results exhibit some relevant differences when compared to other fish groups, they support the existence of a conserved NPY system in teleosts.  相似文献   

12.
哺乳动物性晚熟相关基因的研究进展   总被引:1,自引:0,他引:1  
人和哺乳动物性的发育和成熟源于下丘脑性腺激素释放激素(gonadotropin releasing hormone,GnRH)脉冲式释放。GnRH释放受到抑制或破坏,就会导致性腺机能减退,人在发育前和发育期就会出现发育迟缓和性发育不良,表现为无精症或闭经;动物则表现为初情期延迟、生殖能力下降等表型。编码促性腺激素及其受体基因的突变可能引起哺乳动物性晚熟。笔者简要介绍了GPR54、GnRH/GnRHR、FSH/FSHR、LH/LHR基因与哺乳动物性晚熟的关系。  相似文献   

13.
Hypothalamic control of luteinizing hormone (LH) secretion was investigated in crossbred beef heifer calves by comparing anterior (AHD), posterior (PHD), and complete (CHD) hypothalamic deafferentation with sham operated controls (SOC). Heifers (n = 16) were fitted with an indwelling jugular catheter for 6 days before cranial surgery, and assigned randomly to treatments. Blood for radioimmunoassay of LH was collected sequentially at 15-min intervals during an 8-h period on days ? 1 before and day 6 after hypothalamic deafferentation or sham operation. On the day of surgery, blood samples were collected sequentially at 15-min intervals 2 h before induction of anesthesia and throughout surgery and early recovery. Seven months after hypothalamic deafferentation, all experimental and sham operated heifers were ovariectomized and treated with vegetable oil (i.m.) plus saline (i.v.), vegetable oil plus gonadotropin releasing hormone (GnRH), estradiol benzoate (EB, 1 mg) in vegetable oil. After ovariectomy basal plasma concentrations of LH increased (P < 0.01) compared with the low circulating hormone levels before ovariectomy. The amplitude of LH response to GnRH was greater (P < 0.01) in CHD and PHD when compared with SOC and AHD heifers. Injection of EB failed to induce a LH surge in CHD and PHD 900–1100 min later when compared with the robust response seen in SOC and AHD heifers. Injection of EB plus GnRH elicited LH release in all deafferentated and sham operated heifers. These results indicate a transient change in LH secretion after AHD or CHD in prepuberal heifers with intact ovaries. After OVX, the integrity of the neural connection of the posterior hypothalamus is required for EB-induced LH release in beef heifers.  相似文献   

14.
Gonadotropin-releasing hormone (GnRH) neurons arise in the olfactory placode, migrate into the preoptic area (POA), and then extend axons to the median eminence during embryogenesis. Little information is available concerning the properties of GnRH neurons during the late gestational period when GnRH neurons reach the POA and form neuronal networks, although many studies have examined such properties during earlier developmental stages or the postnatal period. The present study was performed to elucidate the involvement of gamma-aminobutyric acid (GABA), one of the major neurotransmitters modifying GnRH neural activity, in regulation of GnRH gene expression on embryonic day 18.5 (E18.5) using transgenic rats expressing enhanced green fluorescence protein (EGFP) under the control of GnRH promoter. First, using RT-PCR, the mRNA of two isoforms of the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD), GAD65 and GAD67 was detected in E18.5 embryonic POA-containing tissues. GAD67-positive cells were also demonstrated in close vicinity to GnRH-positive cells by immunohistochemistry, and immunoreactivity for both the GABA-A and GABA-B receptor subunits was detected in GnRH neurons. Next, primary cultures derived from anterior hypothalamic tissue of E18.5 embryos were prepared, and the effects of GABA and its agonists on GnRH promoter activity were evaluated using EGFP expression as a marker. GABA and the GABA-A receptor agonist muscimol, but not the GABA-B receptor agonist baclofen, significantly increased the EGFP-positive/GnRH-positive cell ratio. These results suggest that GABA plays a role in stimulating GnRH gene expression through GABA-A receptors in embryonic GnRH neurons in late gestational stages.  相似文献   

15.
Oestradiol (E(2)) sensitizes the stress and reproductive axes in vivo. Our current aim is to investigate whether E(2) directly influences hypothalamic AVP and GnRH release in vitro. Within 10 min of ewe killing, saggital midline hypothalamic slices (from the anterior preoptic area to mediobasal hypothalamus, 2 mm thick, two per sheep) were dissected, placed in oxygenated MEM-alpha at 4 degrees C and within next 2 h were singly perifused at 37 degrees C with oxygenated MEM-alpha (pH 7.4; flow rate 150 microl/min) alone (vehicle; n = 15), with low (6 pg/ml; n = 14) or high E(2) (24 pg/ml; n = 13). After 5 h equilibration, 10 min fractions were collected for 3 h with exposure to 100 mm KCl for 10 min within the last hour. Concentrations of AVP and GnRH were measured by RIA. Baselines for AVP and GnRH were 7.0 +/- 1.1 and 17.4 +/- 0.8 pg/ml respectively. Basal values with low E(2) were similar to vehicle for AVP (7.5 +/- 1.2 pg/ml) and GnRH (17.5 +/- 1.1 pg/ml). However, high E(2) increased basal AVP (11.7 +/- 1.4 pg/ml; p < 0.05) and GnRH (23.7 +/- 1.4 pg/ml; p < 0.05). After KCl, AVP and GnRH respectively, increased (p < 0.05) to 25.6 +/- 7.5 and 38.2 +/- 5.6 (vehicle), 26.3 +/- 7.5 and 23.6 +/- 2.1 (low E(2)) and 24.1 +/- 5.4 and 41.3 +/- 6.6 pg/ml (high E(2)). After KCl, maximum values of AVP occurred at 20 and GnRH at 30 min. In conclusion, high E(2) concentration augments AVP and GnRH release by direct action on the ewe hypothalamus.  相似文献   

16.
Energy level is a critical factor controlling gonadal activity at various phases of reproduction. A female rat model has revealed that fasting‐induced luteinizing hormone (LH) suppression is mediated by a specific neural pathway, such as noradrenergic neurons originating in the A2 region and projecting to the hypothalamic paraventricular nucleus and corticotropin‐releasing hormone neurons. The pathway is shared with that mediating glucoprivic suppression of LH pulses. Among the peripheral signals altered by energy deficiency, glucose could be a signal molecule conveying the peripheral information to the brain to regulate feeding and gonadotropin‐releasing hormone/LH release through the noradrenergic pathway during undernutrition. The brain detects the energy availability to control feeding and reproductive function at various phases of an animal’s life. It is most likely that the central glucose‐sensing mechanism could be similar to the pancreatic one, involving a glucokinase‐mediated process to detect glucose availability. Further studies are needed to elucidate the mechanism integrating the energy signals.  相似文献   

17.
The inhibitory effect of inflammation and endotoxins on the secretion of reproductive hormones from the hypothalamo-pituitary axis is well documented. A comparison of the luteinizing hormone (LH) suppressing effects of several pro-inflammatory cytokines revealed that centrally administered IL-1β was the most potent inhibitor of pituitary LH secretion; interleukin (IL)-1α and tumor necrosis factor (TNF)α were relatively less effective, whereas IL-6 was ineffective. This order of potency suggested that the anti-gonadotropic effects of an immune challenge are most likely attributable to the action of centrally released IL-1β, and this was supported by the demonstration that IL-1β suppressed hypothalamic luteinizing hormone releasing hormone (LHRH) release. We used a multifaceted approach to identify the afferent signals in the brain that convey immune messages to hypothalamic LHRH neurons. Pharmacological studies with specific antagonists of opioid receptor subtypes demonstrated that activation of the μ1 receptor subtype was required to transmit the cytokine signal. Furthermore, icv IL-1β upregulated hypothalamic POMC mRNA and increased the concentration and release of β-endorphin, the primary ligand of μ1 receptors. We have obtained evidence that IL-1β also enhanced the gene expression and concentration of tachykinins, a family of nociceptive neuropeptides in the hypothalamus. Blockade of tachykinergic NK2 receptors attenuated IL-1β induced inhibition of LH secretion. Collectively, these results demonstrate that IL-1β, generated centrally in response to inflammation, upregulates the opioid and tachykinin peptides in the hypothalamus. These two groups of neuropeptides are critically involved in relaying the cytokine signal to neuroendocrine neurons and causing the suppression of hypothalamic LHRH and pituitary LH release.  相似文献   

18.
A combined anterior pituitary (CAP) function test was assessed in eight healthy male beagle dogs. The CAP test consisted of sequential 30-second intravenous administrations of four hypothalamic releasing hormones in the following order and doses: 1 μg of corticotropin-releasing hormone (CRH)/kg, 1 μg of growth hormone-releasing hormone (GHRH)/kg, 10 μg of gonadotropinreleasing hormone (GnRH)/kg, and 10 μg of thyrotropin-releasing hormone (TRH)/kg. Plasma samples were assayed for adrenocorticotropin, cortisol, GH, luteinizing hormone (LH), and prolactin (PRL) at multiple times for 120 min after injection. Each releasing hormone was also administered separately in the same dose to the same eight dogs in order to investigate any interactions between the releasing hormones in the combined function test.Compared with separate administration, the combined administration of these four hypothalamic releasing hormones caused no apparent inhibition or synergism with respect to the responses to CRH, GHRH, and TRH. The combined administration of these four hypothalamic releasing hormones caused a 50% attenuation in LH response compared with the LH response to single GnRH administration. The side effects of the combined test were confined to restlessness and nausea in three dogs, which disappeared within minutes after the administration of the releasing hormones. It is concluded that with the rapid sequential administration of four hypothalamic releasing hormones (CRH, GHRH, GnRH, and TRH), the adenohypophyseal responses are similar to those occurring with the single administration of these secretagogues, with the exception of the LH response, which is lower in the CAP test than after single GnRH administration.  相似文献   

19.
Beef cows (n = 64) were slaughtered to evaluate effects of dietary energy and calf removal (CR) on hypothalamic and adenohypophysial endocrine characteristics. From d 190 of gestation until parturition, cows received maintenance (ME; n = 32) or low (LE; n = 32) energy diets (ME = 100%, LE = 70% NRC recommendations). After parturition, half (n = 16) of each prepartum diet group received low (LE; n = 32) or high (HE = 130% NRC; n = 32) energy diets. At 30 d postpartum, cows were slaughtered 0 or 48 hr after CR. Hypothalami [preoptic area (POA), hypothalamus (HYP), stalk-median eminence (SME)] and pituitaries were collected. Basal and K(+)-induced release of GnRH from SME, and pituitary luteinizing hormone (LH) and follicle stimulating hormone (FSH) did not differ among groups (P greater than .05). Hypophyseal LH was correlated (P less than .01) with body condition score (BCS) at parturition and slaughter (r = .36 and .47, respectively). Prepartum LE diet increased (P less than .05) met-enkephalin in POA compared to prepartum ME (.59 +/- .05 vs. .44 +/- .04 pmol/mg) regardless of postpartum diet or suckling status. Concentrations of beta-endorphin in combined HYP + POA were decreased (P less than .05) by 48 hr CR (15.1 +/- 1.1 vs. 18.1 +/- 0.7 fmol/mg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
This study was performed to determine the effect of intracerebroventricular (icv) injection of interleukin (IL)-1β on the gene expression, translation and release of gonadotropin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) gene expression in the hypothalamus of anestrous ewes. In the anterior pituitary gland (AP), the expression of genes encoding: GnRHR, β subunits of luteinizing hormone (LH) and folliculotropic hormone (FSH) was determined as well as the effect of IL-1β on pituitary gonadotropins release. The relative mRNA level was determined by real-time PCR, GnRH concentration in the cerebrospinal fluid (CSF) was assayed by ELISA and the plasma concentration of LH and FSH were determined by radioimmunoassay. Our results showed that icv injection of IL-1β (10 or 50 μg/animal) decreased the GnRH mRNA level in the pre-optic area (POA) (35% and 40% respectively; p ≤ 0.01) and median eminence (ME) (75% and 70% respectively; p ≤ 0.01) and GnRHR gene expression in ME (55% and 50% respectively; p ≤ 0.01). A significant decrease in GnRHR mRNA level in the AP in the group treated with the 50 μg (60%; p ≤ 0.01) but not with the 10 μg dose was observed. The centrally administrated IL-1β lowered also GnRH concentration in the CSF (60%; p ≤ 0.01) and reduced the intensity of GnRH translation in the POA (p ≤ 0.01). It was not found any effect of icv IL-1β injection upon the release of LH and FSH. However, the central injection of IL-1β strongly decreased the LHβ mRNA level (41% and 50%; p ≤ 0.01; respectively) and FSHβ mRNA in the case of the 50 μg dose (49%; p ≤ 0.01) in the pituitary of anestrous ewes. These results demonstrate that the central IL-1β is an important modulator of the GnRH biosynthesis and release during immune/inflammatory challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号