首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
考虑实际结构易受荷载、环境温度和测试噪声等不确定性因素的影响,笔者基于区间分析原理提出框架结构不确定性损伤识别方法。利用测试的结构加速度响应数据,建立向量自回归模型,并采用其系数矩阵主对角线的马氏距离作为损伤特征指标。基于粒子群算法建立区间优化求解方法,并与传统的区间组合法和区间叠加法对比。通过提出的区间重叠率指标和区间名义值分别实现损伤定位和损伤程度的识别。数值模拟和实验室框架结构试验结果表明,区间分析能在测试数据较少时实现损伤识别,为损伤识别在实际结构中的应用提供了理论基础和技术手段。  相似文献   

2.
基于ABAQUS装配式建模构架,提出了一种砌体结构的简化细观模型。该建模方法将块体砂浆界面及砂浆层统一采用块体间的界面来代替。界面属性包括法向和切向的力学参数,用来模拟砌体的剪压及受拉行为。界面的法向受拉采用粘性力学参数赋值,并通过与轴心受拉本构模型的等效,推导得出控制界面损伤演化速率的无量纲指数α的计算方程。剪压复合受力模型基于剪摩理论建立,通过粘性属性和库伦摩擦赋值。当剪压复合受力构件处于高轴压比时,通过块体的非线性属性实现了主压应力为主控的损伤阀值。按照该方法进行剪压相关性和砖墙剪切失效的试验仿真模拟,模拟得出的失效形态及力-位移曲线与试验结果基本相符。  相似文献   

3.
CNGC是植物中普遍存在的环核苷酸门控通道,对植物的逆境响应有重要作用。系统分析甘蓝型油菜BnCNGC基因家族成员全基因组分布、结构、进化及其响应不同逆境胁迫的表达特性,对于阐明其生物学功能具有重要意义。本研究利用拟南芥和甘蓝CNGC蛋白保守结构域及特异基序氨基酸序列在全基因组水平鉴定了甘蓝型油菜BnCNGC家族成员,分析其基因结构、染色体定位、蛋白理化性质、蛋白保守结构域、系统进化及启动子顺式作用元件等。利用转录组数据,筛选甘蓝型油菜逆境响应候选BnCNGC成员,并采用实时荧光定量PCR分析其在核盘菌、PEG模拟干旱胁迫下的表达模式。结果显示,共鉴定到49个甘蓝型油菜BnCNGC成员,分布于除A08、C06的17对染色体上,含有5~10个内含子,其上游1500 bp包含大量逆境胁迫响应元件。BnCNGC家族成员编码的蛋白质含413~801个氨基酸,相对分子量(MW)范围47.62~110.58kD,等电点(pI)范围6.10~9.88。系统进化分析表明,BnCNGC分为Group Ⅰ、Ⅱ、Ⅲ和Ⅳ四类。转录组数据分析表明, BnCNGC9、BnCNGC27和BnCNGC48均参与逆境胁...  相似文献   

4.
果糖1,6-二磷酸醛缩酶(FBA)是植物体内的一种参与糖酵解、糖异生和卡尔文循环的关键酶。FBA基因已被证实在植物生长发育及多种生物和非生物胁迫响应过程中发挥重要的作用,但目前对西瓜中FBA基因的研究却几乎空白。本研究采用生物信息学手段在西瓜基因组中共鉴定到5个Cl FBA基因,并对它们的保守结构域、基因结构、染色体位置、进化关系、亚细胞定位、基因复制事件、启动子顺式作用元件等进行预测和分析。根据进化和亚细胞定位分析,西瓜FBA蛋白主要分为两类,分别主要定位在叶绿体和细胞质中。此外,我们还利用荧光定量PCR对Cl FBA基因的时空表达模式进行分析,发现大部分西瓜Cl FBA基因在茎和果实中优势表达。同时对西瓜Cl FBA基因在不同生物和非生物逆境处理后的响应模式进行分析,鉴定到一批不同胁迫响应的Cl FBA基因,为西瓜的抗病和抗逆育种提供了重要的分子基础。  相似文献   

5.
本试验旨在探明无基质营养液育苗中可溶性盐浓度(EC值)对南瓜幼苗生长和荧光特性的影响,为育苗产业数字化升级提供理论基础。以‘香蜜’小南瓜为供试材料,采用不同EC营养液进行培养,分析南瓜幼苗生物量、表型指标、快速光曲线等参数的变化。结果表明,EC显著影响南瓜幼苗生物量、根冠比、叶面积、根系结构。生物量、叶片参数、根系结构指标数值随EC增加均有先上升后下降的趋势,在EC值为5 ms/cm时综合表现最优。根冠比随EC值增加而增加。Fv/FmY(II)、Y(NO)以及快速光曲线随EC值的变化与南瓜幼苗的生物量参数及表型参数变化趋势一致,但是响应速度更快。本研究探明了南瓜无基质营养液育苗的最适EC值为5 ms/cm,证明叶绿素荧光参数能直观、快速地反映EC值对植物的影响。  相似文献   

6.
A New-type Steel Tube Buckling-Restrained Brace with Reinforced Concrete outside (ST-BRB-RC) was introduced in this paper. Six specimens of the ST-BRB-RC were designed and cyclic loading test were carried out to study the hysteretic energy dissipation performance of the six specimens. And then, ABAQUS finite element analysis was used to study the performance of four specimens. The results indicated that the ST-BRB-RC had stable and full hysteretic curve. The bearing capacity of the ST-BRB-RC was stable and the hysteretic behavior was excellent. And the analysis model of ST-BRB-RC could be described by a bilinear model. The construction of the ST-BRB-RC was reasonable, and the energy dissipation mechanism of the ST-BRB-RC was clear. It is proved that the design philosophy of using reinforced concrete for exterior restrained element was available.  相似文献   

7.
A micro/macroscopic analysis of PD3 pearlitic steel with layered microstructure is carried on.Based on the compatibilit conditions of stress and strain at the interface between two layers as well as the mixed law of composites,constitutive equations of an effective homogeneous inclusion are obtained.combining these equations with the K B W self consistent model,the micro macroscopic transition has been estabilished.It turns out that the analysis is capable of determining the overall responses of materials as well as local stress evolution in microstructure under monotonic and cyclic loading.It is found that stress in the thin cementite layer is very high.This is caused by intersification of the local plastic flow of the soft ferrite layer in which more loading is transferred cycle by cycle to the hard phase.Furthermore,a strength dimension law that the strength is inversely proportional to the square root of the layer thickness is developed to explain the high strength of the cementite layer.  相似文献   

8.
Based on a thermomechanically consistent mechanical model, the constitutive law for a class of complex two-phase materials with locking-in inter-phase residual stress capability is proposed. The developed model contains the current plastic strain in its hereditary integral so that the main features of the above materials subjected to cyclic loading can be well described. The developed model can include both the endochronic constitutive equation and Bower' s empirical formula as special cases. The cyclic plasticity and ratcheting of OFHC copper (single-phase material) and rail steel BS1l(two-phase material)are analyzed and compared with experimental results  相似文献   

9.
通过对核心区应用X形配筋增强的高强钢筋异形柱边节点和同等条件下未被增强的高强钢筋异形柱边节点进行拟静力试验研究,对比分析异形柱边节点的破坏特征、滞回曲线、承载能力、位移及延性、刚度退化、耗能能力等抗震性能指标。研究结果表明,配置HRB500高强钢筋异形柱边节点比配置600 MPa级的边节点承载能低,但滞回性能好,变形能力强,刚度退化推迟,耗能能力强;在核心区加入X形配筋,均可以改善高强钢筋异形柱边节点的破坏特征,使边节点抗剪能力、变形能力、耗能能力增强,刚度退化推迟,提高异形柱边节点抗震性能,配置HRB500高强钢筋的试件核心区应用X形配筋加强后抗震性能提高效果更好。  相似文献   

10.
Seismic performance of SRC-RC transfer column was analyzed based on experiment of 12 specimens of transfer columns and 1 RC specimen under low cyclic reversed loading, which mainly focused on the extension length of shape steel. Analysis and comparison on skeleton curves of specimens was carried out. Analysis was completed for ductility, bearing capacity, energy dissipation capacity and degeneration ratio of strength. Displacement ductility changes with the increase of extension length of shape steel, enhancing at first, then reducing, and reaching peak value when extension length is close to three fifths of column height. Extension length of shape steel has little effect on bearing capacity. Energy dissipation capacity of transfer columns has relationship with many factors. Three fifths of column height is rational for extension length of shape steel, and specimens have not only advanced performance of energy dissipation but also good stability of stiffness and strength in this condition. The bond performance between concrete and shape steel decreases with the increment of extension length of shape steel, and hence stability of strength decreases.  相似文献   

11.
In order to better understand the seismic performance of the hybrid structure, numerical analysis and shaking table model testing were conducted on a real tall building constructed in Beijing. The nonlinear analytic model of the structure was established with the aid of PERFORM-3D program, and the elastoplastic time-history analysis was performed. From displacement responses and energy dissipation of the entire structure, and deformations and plastic hinge forming condition of components, the response features under different earthquake levels were obtained. Based on the predetermined allowable limits of performance indices, the seismic performance of the structure was evaluated. In the mean time, the numerical analysis results were compared with test results. Both of test results and numerical analysis results indicate that the hybrid structure has good seismic performance.  相似文献   

12.
Mechanical Response Characteristics of the Earth Pressure Cell in Sand   总被引:1,自引:0,他引:1  
Sand is a typical particle structure. The effective stress and corresponding deformation are both determined by the particle characteristics of the medium skeleton, and the changeable condition of the particles will further affect the mechanical response of the earth pressure cell in the test process. To correctly measure the earth pressure value, micromechanical method was applied to analyse the force chain formed by the particles contact under loading unloading condition, and the transferring process, the force strain curve and relationship between the cell mechanical response and the ideal response curve were analyzed in detail, which verified the above mechanical response model based on Particle Flow Code (PFC) method. According to the structural characteristics of the sand and above numerical model, the loading condition, porosity, friction coefficient between the particles and stiffness of the earth pressure cell affecting mechanical response of the earth pressure cell were deeply investigated, the numerical results indicated that there were obvious hysteresis and strain irreversibility for the response curve, and the measured value was sensitive to the above factors. Therefore, research on the force chain structure and corresponding evolution law brings forward a scientific base and new research means for understanding its micromechanical characteristics, and different factors influencing the earth pressure cell are also important for cell calibration and practical monitoring to get more correct earth pressure value.  相似文献   

13.
Using the software, ABAQUS, accurate simulations of seismic behavior of 2 coupled wall specimens and 2 cantilever structure wall specimens using high performance fiber reinforced concrete (FRC) in plastic hinge under quasi static cyclic loading were carried out. The analysis model proves to be effective with the accordance between results of computation and experiment, then it can be used to analyze the seismic behavior of coupled wall system with FRC coupling beams. By using the verified numerical model, the ability of FRC coupling beams instead of RC coupling beams to provide acceptable performance was discussed. In addition, the impact of coupling ratio on seismic behavior of coupled walls was studied. The results show that coupled walls in which FRC coupling beams are used instead of traditional RC beams have good energy dissipation and ductility, and its initial stiffness is increased and stiffness degradation is slow. And as the coupling ratio of coupled wall structures increases, the stiffness and strength increase. But if the coupling ratio is too large, the ductility and energy dissipation capacity will be significantly reduced.  相似文献   

14.
Based on a simple mechanical model and an appropriate definition of generalized time,a constitutive equation is obtained for coupled plasticity and creep behavior of materials.A damage evolution based on a spherical void model for mixed hardening materials is obtained by means of Gurson's model.The damage evolution law is embedded in the adopted constitutive equation,and a damage constitutive equation is obtained for coupled plasticity and creep behavior of die-casting magnesium alloy.The response of magnesium alloy subjected to cyclic loads is analyzed.The validity of the proposed model is demonstrated by the satisfactory agreement between the experimental and calculated results.  相似文献   

15.
配置600 MPa级高强钢筋T形柱抗震性能试验研究   总被引:2,自引:0,他引:2  
600 MPa级钢筋是一种新型高强度钢筋,为研究该钢筋应用于异形柱结构体系的可行性,对7根不同轴压比、体积配箍率和钢筋强度的混凝土T形柱试件进行低周往复荷载试验,分别对其承载力、位移、滞回曲线、骨架曲线、刚度退化和耗能性能进行研究,综合评估其抗震性能。研究结果表明:配置600 MPa级钢筋的混凝土T形柱具有良好的变形能力和承载能力,提高配箍率能有效提高试件的抗震性能,提高轴压比可以提高试件的承载力,但降低其变形能力。随着钢筋强度的提高,试件的承载力显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号