首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 997 毫秒
1.
Vegetation restoration is a key measure to improve the eco-environment in Loess Plateau, China. In order to find the effect of soil microbial biomass under different vegetation restoration models in this region, six trial sites located in Zhifanggou watershed were selected in this study. Results showed that soil microbial biomass, microbial respiration and physical and chemical properties increased apparently. After 30 years of vegetation restoration, soil microbial biomass C, N, P (SMBC, SMBN, SMBP) and microbial respiration, increased by 109.01%–144.22%, 34.17%–117.09%, 31.79%–79.94% and 26.78%–87.59% respectively, as compared with the farmland. However, metabolic quotient declined dramatically by 57.45%–77.49%. Effects of different models of vegetation restoration are different on improving the properties of soil. In general, mixed stands of Pinus tabulaeformis-Amorpha fruticosa and Robinia pseudoacacia-A. fruticosa had the most remarkable effect, followed by R. pseudoacacia and Caragana korshinkii, fallow land and P. tabulaeformis was the lowest. Restoration of mixed forest had greater effective than pure forest in eroded Hilly Loess Plateau. The significant relationships were observed among SMBC, SMBP, microbial respiration, and physical and chemical properties of soil. It was concluded that microbial biomass can be used as indicators of soil quality. __________ Translated from Journal of Natural Resources, 2007, 22(1): 20–27 [译自: 自然资源学报]  相似文献   

2.
The two main components of soil respiration, i.e., root/rhizosphere and microbial respiration, respond differently to elevated atmospheric CO2 concentrations both in mechanism and sensitivity because they have different substrates derived from plant and soil organic matter, respectively. To model the carbon cycle and predict the carbon source/sink of forest ecosystems, we must first understand the relative contributions of root/rhizosphere and microbial respiration to total soil respiration under elevated CO2 concentrations. Root/rhizosphere and soil microbial respiration have been shown to increase, decrease and remain unchanged under elevated CO2 concentrations. A significantly positive relationship between root biomass and root/rhizosphere respiration has been found. Fine roots respond more strongly to elevated CO2 concentrations than coarse roots. Evidence suggests that soil microbial respiration is highly variable and uncertain under elevated CO2 concentrations. Microbial biomass and activity are related or unrelated to rates of microbial respiration. Because substrate availability drives microbial metabolism in soils, it is likely that much of the variability in microbial respiration results from differences in the response of root growth to elevated CO2 concentrations and subsequent changes in substrate production. Biotic and abiotic factors affecting soil respiration were found to affect both root/rhizosphere and microbial respiration. __________ Translated from Journal of Plant Ecology, 2007, 31(3): 386–393 [译自: 植物生态学报]  相似文献   

3.
The Kyoto protocol [39] directs the signatory countries including France to establish an inventory of carbon stocks in forests. Precise estimates of carbon stocks are hampered by local spatial variability, in particular in wetland areas [25]. The aims of this work are: (i) to estimate the spatial variability of carbon stocks on two hillslopes presenting respectively, a transition between a well-drained zone and a wetland area over a short-distance, and a very progressive transition; (ii) to correlate this variability with soil waterlogging and topographic variations and (iii) to evaluate carbon stock prediction by modelling waterlogging intensity as soil organic carbon (SOC) stocks increase significantly with waterlogging. However, SOC stocks in redoximorphic soils are highly variable, particularly in zones where carbon is redistributed due to erosion and sedimentation. In the litter and the vegetation, the age and density of the stand are the main explanatory factors of C variability. Topographic modelling of the waterlogging intensity could improve the spatial estimation of SOC stocks but not of the C stocks in the humus and vegetation.  相似文献   

4.
Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many countries. Forest SOC and FFC stocks are influenced by tree species. Therefore, quantification of the effect of tree species on carbon stocks combined with spatial information on tree species distribution could improve insight into the spatial distribution of forest carbon stocks.We present a study on the effect of tree species on FFC and SOC stock for a forest in the Netherlands and evaluate how this information could be used for inventory improvement. We assessed FFC and SOC stocks in stands of beech (Fagus sylvatica), Douglas fir (Pseudotsuga menziesii), Scots pine (Pinus sylvestris), oak (Quercus robur) and larch (Larix kaempferi).FFC and SOC stocks differed between a number of species. FFC stocks varied between 11.1 Mg C ha−1 (beech) and 29.6 Mg C ha−1 (larch). SOC stocks varied between 53.3 Mg C ha−1 (beech) and 97.1 Mg C ha−1 (larch). At managed locations, carbon stocks were lower than at unmanaged locations. The Dutch carbon inventory currently overestimates FFC stocks. Differences in carbon stocks between conifer and broadleaf forests were significant enough to consider them relevant for the Dutch system for carbon inventory.  相似文献   

5.
Vegetation recovery is a key measure to improve ecosystems in the Loess Plateau in China. To understand the evolution of soil microorganisms in forest plantations in the hilly areas of the Loess Plateau, the soil microbial biomass, microbial respiration and physical and chemical properties of the soil of Robinia pseudoacacia plantations were studied. In this study, eight forest soils of different age classes were used to study the evolution of soil microbial biomass, while a farmland and a native forest community of Platycladus orientalis L. were chosen as controls. By measuring soil microbial biomass, metabolic quotient, and physical and chemical properties, it can be concluded that soil quality was improved steadily after planting. Soil microbial biomass of C, N and P (SMBC, SMBN and SMBP) increased significantly after 10 to 15 years of afforestation and vegetation recovery. A relatively stable state of soil microbial biomass was maintained in near-mature or mature plantations. There was an increase of soil microbial biomass appearing at the end of the mature stage. After 50 years of afforestation and vegetation recovery, compared with those in farmland, the soil microbial biomass of C, N and P increased by 213%, 201% and 83% respectively, but only accounting for 51%, 55% and 61% of the increase in P. orientalis forest. Microbial soil respiration was enhanced in the early stages, and then weakened in the later stage after restoration, which was different from the change of soil organic carbon. The metabolic quotient (qCO2) was significantly higher in the soils of the P. orientalis forest than that in farmland at the early restoration stage and then decreased rapidly. After 25 years of afforestation and vegetation recovery, qCO2 in soils of the R. pseudoacacia forest was lower than that in the farmland soil, and reached a minimum after 50 years, which was close to that of the P. orientalis forest. A significant relationship was found among soil microbial biomass, qCO2 and physical and chemical properties and restoration duration. Therefore, we conclude that it is possible to artificially improve the ecological environment and soil quality in the hilly area of the Loess Plateau; a long time, even more than 100 years, is needed to reach the climax of the present natural forest. __________ Translated from Acta Ecologica Sinica, 2007, 27(3): 909–917 [译自: 生态学报]  相似文献   

6.
The uncertainty in the predicted values of a process-based terrestrial ecosystem model is as important as the predicted values themselves. However, few studies integrate uncertainty analysis into their modeling of carbon dynamics. In this paper, we conducted a local sensitivity analysis of the model parameters of a process-based ecosystem model at the Chaibaishan broad-leaved Korean pine mixed forest site in 2003?C2005. Sixteen parameters were found to affect the annual net ecosystem exchange of CO2 (NEE) in each of the three?years. We combined a Monte Carlo uncertainty analysis with a standardized multiple regression method to distinguish the contributions of the parameters and the initial variables to the output variance. Our results showed that the uncertainties in the modeled annual gross primary production and ecosystem respiration were 5?C8% of their mean values, while the uncertainty in the annual NEE was up to 23?C37% of the mean value in 2003?C2005. Five parameters yielded about 92% of the uncertainty in the modeled annual net ecosystem exchange. Finally, we analyzed the sensitivity of the meteorological data and compared two types of meteorological data and their effects on the estimation of carbon fluxes. Overestimating the relative humidity at a spatial resolution of 10?km?×?10?km had a larger effect on the annual gross primary production, ecosystem respiration, and net ecosystem exchange than underestimating precipitation. More attention should be paid to the accurate estimation of sensitive model parameters, driving meteorological data, and the responses of ecosystem processes to environmental variables in the context of global change.  相似文献   

7.
A study was conducted to assess carbon stocks in various forms and land-use types and reliably estimate the impact of land use on C stocks in the Nam Yao sub-watershed (19°05'10"N, 100°37'02"E), Thailand. The carbon stocks of aboveground, soil organic and fine root within primary forest, reforestation and agricultural land were estimated through field data collection. Results revealed that the amount of total carbon stock of forests (357.62 ± 28.51 Mg·ha-1, simplified expression of Mg (carbon)·ha-1) was significantly greater (P< 0.05) than the reforestation (195.25 ±14.38 Mg·ha-1) and the agricultural land (103.10±18.24 Mg·ha-1). Soil organic carbon in the forests (196.24 ±22.81 Mg·ha-1) was also significantly greater (P< 0.05) than the reforestation (146.83± 7.22 Mg·ha-1) and the agricultural land (95.09 ± 14.18 Mg·ha-1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 40-cm layer and decreased with soil depth. The aboveground carbon(soil organic carbon: fine root carbon ratios (ABGC: SOC: FRC), was 5:8:1, 2:8:1, and 3:50:1 for the forest, reforestation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land. However, the C can be effectively recaptured through reforestation where high levels of C are stored in biomass as carbon sinks, facilitating carbon dioxide mitigation.  相似文献   

8.
杉木纯林、混交林土壤微生物特性和土壤养分的比较研究   总被引:6,自引:0,他引:6  
王清奎  汪思龙 《林业研究》2008,19(2):131-135
本文于2005年5月份,在中国科学院会同森林生态实验站选择了一块15年生的杉木纯林和两块15年生杉阔混交林作为研究对象,调查了林地土壤有机碳、全氮、全磷、硝态氮、有效磷和土壤微生物碳、氮、磷、基础呼吸以及呼吸熵,比较了纯林和混交林土壤微生物特性和土壤养分.结果表明,杉阔混交林的土壤有机碳、全氮、全磷硝态氮和有效磷含量高于杉木纯林;在混交林中,土壤微生物学特性得到改善.在0(10 cm和10(20 cm两层土壤中,杉阔混交林土壤微生物氮含量分别比杉木纯林高69%和61%.在0(10 cm土层,杉阔混交林土壤微生物碳、磷和基础呼吸分别比杉木纯林高11%、14%和4%;在10(20 cm土层,分别高6%、3%和3%.但是,杉阔混交林土壤微生物碳:氮比和呼吸熵较杉木纯林低34%和4%.另外,土壤微生物与土壤养分的相关性高于土壤呼吸、微生物碳:氮比和呼吸熵与土壤养分的相关性.由此可知,在针叶纯林中引入阔叶树后,土壤肥力得以改善,并有利于退化森林土壤的恢复.  相似文献   

9.
采伐对森林土壤碳库影响的不确定性   总被引:4,自引:1,他引:4       下载免费PDF全文
森林土壤有机碳(SOC)是全球碳循环的重要组成部分,然而,多样的森林类型和不同森林经营措施的干扰,使得森林土壤碳库维持机制以及碳固存过程的研究和森林土壤碳库的估算存在较大的变异。作为主要的森林经营措施之一,采伐对森林土壤碳储量以及碳过程均产生直接或间接地影响。为深刻理解森林土壤碳库对于采伐干扰的响应,本文综述了近十几年来不同采伐方式下森林土壤碳储量及其主要碳排放过程——土壤呼吸的研究现状,综合分析了采伐方式、森林类型、采伐剩余物管理以及微生物因子等对土壤碳库的影响及其不确定性,并在此基础上阐述了研究中尚未解决的主要问题:1)生物因子作为CO2产生的主体,在应对干扰时结构、功能的变化直接影响着土壤碳排放以及碳固定,但它们具体作用机制以及过程并不清楚,需展开进一步的调查;2)不同森林采伐方式对不同地区和不同类型森林土壤的影响的复杂性,亟须在进一步加强实验研究的基础上,发展森林土壤碳循环的过程或机理模型,为森林生态系统完整的碳循环过程表达及碳计量提供技术支撑,以期为我国森林经营以及碳汇等方面研究提供参考。  相似文献   

10.
The objective of this study was to quantify and compare the amount and distribution of soil organic carbon (SOC) under a linear simultaneous agroforestry system with different tree species treatments. Field work was conducted at Kifu National Forestry Resources Research Institute in Mukono District, Central Uganda, in a linear agroforestry system established in 1995 with four different tree species and a crop only control treatment. Soil samples were collected in 2006 at three depths; 0–25, 25–50, and 50–100 cm, before planting and after harvesting a maize crop. The results indicate that an agroforestry system has significant potential to increase SOC as compared to the crop only control. There was no significant difference in the amount of SOC under exotic and indigenous tree species. Among the exotic species, Grevillea robusta had higher SOC than Casuarina equisetifolia across the entire depth sampled. There is significant difference in SOC among the indigenous species, where Maesopsis eminii has more SOC than Markhamia lutea. Distance from the tree row did not significantly influence SOC concentration under any of the tree species. In selecting a tree species to integrate with crops that will sequester reasonable quantities of carbon as well as boost the performance of the crops, a farmer can either plant an exotic species or an indigenous. In this study, the soil under Grevillea robusta and Maesopsis eminii have the highest potential to store organic carbon compared to soil under other tree species.  相似文献   

11.
Mangrove ecosystems are well developed in the estuarine environment of Yingluo Bay, South China. However, little is known about the spatial patterns of vegetation biomass, soil organic carbon (SOC) stocks and soil attributes along the environmental gradient from upstream to downstream positions. To characterize the spatial pattern of these factors, four transects (transects I, II, III and IV) were established between upstream and downstream positions. The result showed clear spatial patterns occurred in this estuarine mangrove. In general, vegetation biomass, TN concentration and SOC concentration and stocks decreased from upstream to downstream positions unless transect I, with the increase of soil salinity. This may be attributed to a consequence of increasing environmental stress due to the change of soil elevation. Vegetation biomass and its carbon, SOC concentration and stocks, and TN concentration showed clear trends of decrease first and then gradually tended to be stable along each transect from landward to riverward positions. These results indicate that soil position/elevation in the estuarine mangrove greatly affects soil attributes and mangrove growth. In each transect, change of soil salinity showed some distinct characteristics, in comparison with SOC and TN. SOC concentrations were significantly correlated with vegetation biomass and silt contents. Compared to that in the mangrove-covered area, SOC concentrations and stocks were much lower in the bare flat. It was indicated that an increase of vegetation biomass will raise the mangrove-derived SOC, and reforestation with mangroves is a friendly strategy provided coastal protection.  相似文献   

12.
As vegetation coverage increases, soil water content can decrease due to water uptake and evapotranspiration. At a very high level of plant density, poor growth and even mortality can occur due to the decrease of soil water content. Hence, a better understanding of the relationship between soil water content and the density of plants is important to design effective restoration projects. To study these relationships, we developed a soil water dynamic simulation model of a Caragana intermedia woodland under different slope gradient and slope aspect conditions in the Huangfuchuan watershed on the basis of the previous studies and field experiments. The model took into account the major processes that address the relationships of plants and the environment, including soil characteristics, precipitation, infiltration, vegetation transpiration, and soil evaporation. Daily changes in soil water content, transpiration, and evaporation of the Caragana intermedia woodland with different vegetation coverage, slope gradient, and slope aspect were simulated from 1971 to 2000. Based on the model simulations, we determined the functional relationships among soil water content, plant coverage and slope as well as the optimal plant density on flat slopes. We also determined the effects of slope gradient and slope aspect on soil water content. When slope gradient was less than 10°, the optimal plant density was sensitive to slope gradient. In the slope range from 10° to 30°, plant density was not sensitive to slope gradient. Therefore, it is important to consider planting densities on the hillsides with slope gradients less than 10° for reconstructing vegetation. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(6): 910–917 [译自: 植物生态学报]  相似文献   

13.
14.
The effect of six plantation species in comparison to natural forest (NF) on soil organic carbon (SOC) and total nitrogen (TN) stocks, depth-wise distribution, biomass carbon (C), and N was investigated on plantations and cultivated lands on an Andic paleudalf soil in Southern Ethiopia. The SOC, N, and bulk density were determined from samples taken in 4 replicates from 10-, 20-, 40-, 60-, and 100-cm depth under each site. Similarly, the biomass C and N of the plantation species and understory vegetation were also determined. The SOC and N were concentrated in the 0- to 10-cm depth and decreased progressively to the 1-m depth. Next to the NF, Juniperous procera accrued higher SOC and N in all depths than the corresponding plantations. No evidence of significant difference on SOC and N distribution among plantations was observed below the 10-cm depth with minor exceptions. The plantations accrue from 133.62 to 213.73 Mg ha–1 or 59.1 to 94.5% SOC, 230.4 to 497.3 Mg ha–1 or 6.9 to 14.9% TBC and 420.37 to 672.80 Mg ha–1 or 12.5 to 20% total C-pool of that under the NF. The N stock under Juniperous procera was the highest, while the lowest was under Eucalyptus globulus and Cupressus lusitanica. We suggest that SOC and N sequestration can be enhanced through mixed cropping and because the performance of the native species Juniperous procera is encouraging, it should be planted to restock its habitat.  相似文献   

15.
[目的]以思茅松人工中龄林为研究对象,探讨不同坡向、坡度和坡位对思茅松人工林SOC储量的影响,为精确评估思茅松人工林碳储量提供科学依据。[方法]对不同坡向、坡度和坡位不同土壤层次的SOC含量、全氮、土壤密度、C:N和SOC储量进行T检验和单因素方差分析,对不同土层的SOC储量和全氮、土壤密度、C:N之间进行Pearson相关分析。[结果]思茅松人工中龄林,SOC含量、全氮和C:N随着土层加深而减少,土壤密度随着土层加深而增加。不同的坡向和坡度显著影响SOC储量大小,阳坡的SOC储量要显著高于阴坡,坡度为20 30°的SOC储量要显著低于10 20°和0 10°,坡位对SOC储量大小无显著影响。在0 100 cm土层中,随着土层深度的增加,不同立地条件的思茅松人工中龄林的SOC储量呈减小趋势,不同坡向、坡位和坡度0 20 cm土层SOC储量均显著高于其它土层。坡向和坡度显著影响0 20 cm土层的SOC储量(P0.05);坡位对各层SOC储量均无显著影响(P0.05)。0 20 cm土层中SOC储量和土壤密度呈极显著负相关,和坡向、坡度呈显著负相关关系;除2040 cm土层外,其它土层的SOC储量与全氮之间呈极显著正相关;SOC储量和坡位与C:N在任一土层均无显著相关关系。[结论]立地条件差异影响SOC储量的大小与分布,尤其是坡向和坡度的不同会造成思茅松人工中龄林SOC储量的差异。  相似文献   

16.
Greater organic matter inputs in agroforestry systems contribute to the long-term storage of carbon (C) in the soil, and the use of simulation models provides an opportunity to evaluate the dynamics of the long-term trends of soil organic carbon (SOC) stocks in these systems. The objective of this study was to apply the Century model to evaluate the long-term effect of agroforestry alley crop and sole crop land management practices on SOC stocks and soil C fractions. This study also evaluated the accuracy between measured field data obtained from a 19-year old tropical (TROP) and 13-year old temperate (TMPRT) alley crop and their respective sole cropping systems and simulated values of SOC. Results showed that upon initiation of the TROP and TMPRT alley cropping systems, levels of SOC increased steadily over a ~100 year period. However, the sole cropping systems in both tropical and temperate biomes showed a decline in SOC. The active and passive C fractions increased in the TROP agroforestry system, however, in the TMPRT agroforestry system the active and slow fractions increased. The input of organic matter in the TROP and TMPRT agroforestry systems were 83 and 34% greater, respectively, compared to the sole crops, which likely contributed to the increased SOC stock and the C fractions in the alley crops over the 100 year period. Century accurately evaluated levels of SOC in the TROP (r 2 = 0.94; RMSE = 226 g m−2) and TMPRT (r 2 = 0.94; RMSE = 261 g m−2) alley crops, and in the TROP (r 2 = 0.82; RMSE = 101 g m−2) and TMPRT (r 2 = 0.83; RMSE = 64 g m−2) sole crops. Century underestimated simulated values in the alley cropping systems compared to measured values due to the inability of the model to account for changes in soil bulk density with increasing organic matter inputs with tree age from prunings or litterfall.  相似文献   

17.
Abstract

The impact of tree species on soil carbon stocks and acidity in southern Sweden was studied in a non-replicated plantation with monocultures of 67-year-old ash (Fraxinus excelsior L.), beech (Fagus silvatica L.), elm (Ulmus glabra Huds.), hornbeam (Carpinus betulus L.), Norway spruce (Picea abies L.) and oak (Quercus robur L.). The site was characterized by a cambisol on glacial till. Volume-determined soil samples were taken from the O-horizon and mineral soil layers to 20?cm. Soil organic carbon (SOC), total nitrogen (TN), pH (H2O), cation-exchange capacity and base saturation at pH 7 and exchangeable calcium, magnesium, potassium and sodium ions were analysed in the soil fraction?<?2 mm. Root biomass (<5 mm in diameter) and its proportion in the forest floor and mineral soil varied between tree species. There was a vertical gradient under all species, with the highest concentrations of SOC, TN and base cations in the O-horizon and the lowest in the 10–20?cm layer. The tree species differed with respect to SOC, TN and soil acidity in the O-horizon and mineral soil. For SOC and TN, the range in the O-horizon was spruce?>?hornbeam?>?oak?>?beech?>?ash?>?elm. The pH in the O-horizon ranged in the order elm?>?ash?>?hornbeam?>?beech?>?oak?>?spruce. In the mineral soil, SOC and TN ranged in the order elm?>?oak?>?ash?=?hornbeam?>?spruce?>?beech, i.e. partly reversed, and pH ranged in the same order as for the O-horizon. It is suggested that spruce is the best option for fertile sites in southern Sweden if the aim is a high carbon sequestration rate, whereas elm, ash and hornbeam are the best solutions if the aim is a low soil acidification rate.  相似文献   

18.
不同发育阶段杉木林土壤有机碳变化特征及影响因素   总被引:10,自引:0,他引:10       下载免费PDF全文
王丹  王兵  戴伟  李萍  胡文  郭浩 《林业科学研究》2009,22(5):667-671
对江西大岗山地区不同发育阶段杉木林林地土壤有机碳变化特征进行了研究,并利用相关分析和逐步回归分析方法探讨了土壤因子对其的影响.结果表明,不同发育阶段土壤有机碳含量随土壤深度的增加而降低,各层次有机碳含量表现出明显的变异特征,变异程度为:40~60 cm土层>20~40 cm土层>0~20 cm土层,其中中龄林土壤变异最为显著;随杉木的生长发育,土壤有机碳含量从幼龄林到中龄林呈下降趋势,中龄林到过熟林则呈上升趋势;土壤有机碳含量与全N量、碱解N量、有效P含量等土壤因子密切相关;建立的从幼龄林到过熟林各阶段的土壤有机碳回归方程具有较高的回归精度,比较标准化回归系数法处理显示,土壤N状况是影响土壤有机碳变异的主导因子.  相似文献   

19.
Reforestation is one of the most important and efficient measures of water and soil conservation. Based on field investigations in the Shangyang Soil Conservation and Reforestation Station in Huizhou, Guangdong Province, China, we studied the variation in vegetation development, vegetation succession processes and soil erosion. The regional vegetation consists mainly of monsoon evergreen broad-leaved forests (MEBF). The area was deforested and became a denuded hill area with extremely high soil erosion in the 1960s and 1970s. Then, the area was closed in order to allow recovery of the vegetation. Under natural conditions the vegetation development and succession processes were slow during which soil erosion and strong sunshine and evaporation slowed down the development of the vegetation. About 25 years later, the vegetation cover was still merely 35% or so. The dominant vegetation types were heliophilous herbage and shrubs which formed a poorly developed shrub-herbage community and erosion remained high. In contrast, reforestation with selected tree species dramatically speeded up the vegetation succession process. About 12 years after reforestation, vegetation cover of the Acacia auriculiformis plantations in the Shangyang Station was 90% and erosion was under control. After 23 years, understory vegetation, consisting of indigenous species, had developed in the plantations. The planted trees and naturally developing herbage, shrubs, bamboo, local trees and liana formed a complex vegetation community in three layers. It will take 60 years for the vegetation to succeed from bare land to a secondary growth forest under natural conditions. Reforestation may speed up the vegetation succession process. The time may be reduced to 20 years. Reforestation is the most effective measure of vegetation restoration and erosion control in this area. __________ Translated from Acta Ecologica Sinica, 2006, 26(8): 2558–2565 [译自: 生态学报]  相似文献   

20.
We studied the soil carbon dioxide respiration (Rs) at three clear-cut mesic forest sites in south, central and north central Finland, which had been treated with different intensities of stump lifting and slash removal and then patch mounded and planted with spruce. The follow-up period after the initial calibration lasted for five consecutive years. Throughout the study the Rs remained at fairly steady levels according to the study site and soil disturbance level. Based on a split-plot test using the general linear model there were no significant differences in the Rs between the different stump and slash removal treatments at the three study sites, but unaffected and moderately affected soil surfaces had significantly higher Rs than mounds and wheel ruts. We conclude that the removal of stumps and slash have minor direct effects on Rs, but large indirect effects through soil disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号