首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为研究新疆地区的潜水蒸发特性,开展了裸地(埋深1.0 m、1.5 m和2.0 m)、覆膜无作物(开孔率0.78%、2.4%和5.0%)以及种植棉花(埋深1.0 m、1.5 m和2.0 m)等三种下垫面条件的潜水蒸发试验,分别研究了昼夜、日间及夜间变化动态。研究表明,有作物比无作物潜水蒸发系数大,且随埋深的增加,两者潜水蒸发系数差异性减弱;三种下垫面条件共9种处理均表现为潜水夜间蒸发补给量大于白天蒸发补给量,且地下水埋深越大,裸地夜间潜水消耗与白天潜水消耗的比值有所降低,棉花地则是呈增加趋势,这与棉花蒸腾强度的昼夜变化不同有关。进一步分析表明,无作物种植时,潜水蒸发的日变化波动幅度较大,潜水蒸发主要消耗时段为2∶00~10∶00和18∶00~22∶00;有作物种植时,潜水蒸发的日变化较为稳定,其无明显主要消耗时段,只是在昼夜交替时(20∶00左右)发生较大幅度变化;白天尤其是午后,因强烈的太阳辐射使得土壤输水能力不能满足大气蒸发需求而导致毛管断裂,潜水蒸发量明显降低,平均降低0.66mm.h-1;夜间土壤的输水能力大于蒸发能力而使毛管恢复连通,从而促使潜水蒸发有所增强,平均增加0.26mm.h-1。  相似文献   

2.
根据对日光温室条件下番茄全生育期的冠层温度、气温、土壤水分以及一些相关气象因素测定,分析了冠层叶-气温差与土壤容积含水率、湿度之间的关系。结果表明:在日光温室条件下,番茄全生育期内冠层叶-气温差的日变化呈曲线分布,冠层叶-气温差的最高值出现在每天的13∶00~15∶00之间。通过对主要生育期13∶00~15∶00的数据分析发现,冠层叶-气温差(△T)与土壤容积含水率(SW)以及棚内湿度(RH)之间有较好的复相关关系,结合容积含水率与湿度对冠层叶-气温差的综合影响,可以得出△T与SW呈负相关关系,与RH呈正相关关系,相关系数R2为0.778。通过偏相关分析,冠层叶-气温差与容积含水率的相关性最大,呈负相关关系,相关系数R2为0.778,并通过数据验证,实测值(Y)与模拟值(X)相关性较好,相关系数R2为0.723。因此可通过监测13∶00~15∶00的冠层叶-气温差来了解作物的水分状况,为农田土壤水分诊断提供科学依据。  相似文献   

3.
Hargreaves计算参考作物蒸发蒸腾量公式经验系数的确定   总被引:10,自引:0,他引:10  
介绍了联合国粮农组织(FAO)推荐的Hargreaves公式计算参考作物蒸发蒸腾量与Penman-Monteith公式计算值的转换系数,依据位于陕西省杨凌区的西北农林科技大学灌溉试验站19a的气象观测资料,分别用FAO推荐的Penman-Monteith公式和Hargreaves公式计算对应时段的参考作物蒸发蒸腾量,然后通过分析确定出Hargreaves公式的经验系数。经验证表明,得出的结果可靠,可应用于生产实际。  相似文献   

4.
喷灌农田小气候变化及其对作物生长影响的研究进展   总被引:4,自引:2,他引:4  
喷灌对田间小气候和作物生长的研究综述与分析认为:喷灌水滴蒸发和冠层截留蒸发是喷灌能够调节农田小气候的主要原因,喷灌水滴蒸发量一般小于25%,冠层截留一般在1%-42%的范围内,喷灌农田冠层温度降低,湿度增大,在寒冷季节,通过喷灌可改善作物冠层的热量状况,喷灌后田间作物光合速度提高,蒸腾强度降低,最终表现为喷灌条件作物耗水量较小,产量和水分利用效率较高,作物冠层的截留水量是喷灌能够长时间调节田间小气候的主要原因之一,进一步研究冠层截留水量在冠层内的分配,存储,冠层内的水汽交换,温湿度变化,冠层内水分的消散过程,喷灌后温湿度的空间分布等,将会更加清楚的解释喷灌条件下的作物耗水量和水分利用效率。  相似文献   

5.
文章利用浑善达克沙地南沙梁试验站两年的羊草群落气孔导度及相关的环境因子观测数据,用多元逐步回归法建立了羊草群落单一牧草与环境因子间响应关系模型,并用此模型计算出单一牧草的冠层导度。羊草群落冠层的导度用叶宽、株高加权单一牧草气孔导度获得。利用羊草群落冠层阻力及其他阻力按S-W能量守恒模型计算了两个不同水文年的羊草群落蒸腾量。2004年是丰水年(生育期雨量R=274.6mm;P=5%),计算的羊草群落的蒸腾量为430.1mm,实测土壤蒸发169.0mm;2005年(生育期雨量R=178.8mm;P=50%)计算的羊草群落的蒸腾量为378.4mm,实测土壤蒸发124.2mm。  相似文献   

6.
红麻和白麻光合特性研究   总被引:2,自引:0,他引:2  
用CIRAS-1便携式光合测定仪分别测定红麻和白麻的光合参数。结果表明:红麻和白麻的光合日变化均为典型双峰曲线,主峰值出现在上午10∶00左右,次峰出现在下午14∶00,具有明显的光合"午休"现象。红麻和白麻的净光合速率(Pn)随光合有效辐射(PAR)的增加而迅速升高,光补偿点(LCP)分别为84.9μmol/(m2.s)和85.8μmol/(m2.s),光饱和点(LSP)分别为1 860μmol/(m2.s)和1 618μmol/(m2.s)。红麻和白麻CO2补偿点分别为74.8μmol/mol和49.3μmol/mol;CO2饱和点分别为1 597μmol/mol和1 737μmol/mol,这表明白麻对高浓度的CO2适应能力和利用能力比红麻强。  相似文献   

7.
试验共设置裸地(CK)、秸秆覆盖(JF)、地膜覆盖(DF)3个处理,基于冬小麦2013—2014年实测数据及气象数据,利用Penman-Monteith公式计算杨凌地区冬小麦全生育期内参考作物蒸发蒸腾量,利用农田水量平衡方程计算冬小麦全生育期实际作物蒸发蒸腾量,由此计算冬小麦各生育阶段的作物系数。结果表明:秸秆覆盖和地膜覆盖可以减少冬小麦全生育期的作物需水量,减少量分别为13.07 mm和17.86 mm;秸秆覆盖处理对水分比较敏感;作物系数在全生育期呈双峰变化,峰值出现在分蘖~越冬期和抽穗~灌浆期,其中CK为0.82和1.16,JF为0.89和1.05,DF为0.87和1.13;冬小麦作物系数与种植后天数和大于0℃积温呈现良好的四次多项式和二次多项式关系,其中JF与DF的相关系数均在0.88以上。  相似文献   

8.
喷灌条件下冬小麦灌浆期叶水势日变化及其影响因子研究   总被引:2,自引:0,他引:2  
研究了冬小麦灌浆期叶水势在喷灌和地面灌溉(对照)条件下的日变化规律, 并探讨了其与农田生态因子(冠层空气温度、冠层空气相对湿度)和生理因子(气孔导度、蒸腾速率、细胞间隙 CO2浓度和光合速率)之间的关系.结果表明:与对照相比,喷灌条件下叶水势日变化曲线的变化趋势没有改变,但两种灌溉方式下叶水势的大小有显著差异,喷灌条件下冬小麦叶水势明显高于地面灌溉,在一天中8∶00~18∶00期间的不同时刻,两种灌溉方式下叶水势的差异大小表现为:在灌浆前期,喷灌和地面灌溉条件下叶水势的差异以在 8∶00时最大;在灌浆中期,差异以12∶00~16∶00期间最大;在灌浆后期,两种灌溉方式下一天中各时刻的差异微小,相对稳定.喷灌条件下冬小麦叶水势日变化的影响因子与地面灌溉条件下相比没有改变:灌浆前期,叶水势日变化均主要受生态因子冠层空气相对湿度、冠层空气温度的影响;灌浆中期,主要受生态因子冠层空气相对湿度、冠层空气温度和生理因子蒸腾速率的影响;灌浆后期,主要受生理因子光合速率的影响.但喷灌条件下各影响因子对叶水势的影响程度较地面灌溉条件下降低,表明喷灌条件下叶水势对影响因子变化的敏感性降低.  相似文献   

9.
北京地区参考作物蒸散量变化趋势及其主要影响因素分析   总被引:6,自引:0,他引:6  
利用1951~2007年北京气象站的气象资料,采用FAO56 Penman-Monteith公式(PM公式),计算了北京地区每日的参考作物蒸散量(ET0),分析了北京地区各气象要素和ET0的变化趋势,利用敏感性分析找出影响ET0变化的主要因子。研究结果表明:在1951~2007年期间北京地区的平均相对湿度和日照时数呈下降趋势,平均温度呈升高趋势,平均风速呈现先增加(1951~1972年)后下降的趋势(1973~2007年);饱和水汽压差升高造成的ET0值正变化不仅抵消了净辐射降低对ET0造成的负影响,还使得参考作物蒸散量表现为逐渐增加趋势;敏感性分析显示相对湿度和温度是影响北京地区年ET0变化的主要因子;在年内,夏季(6~8月份)对ET0影响最大的因素为日照时数,在其它时间段内,温度对ET0的影响最大。  相似文献   

10.
参考作物蒸发蒸腾量(ET0)是计算作物需水量的基础,一般用FAO推荐的Penman-Monteith公式(PM公式)计算。但是在河套灌区部分地区缺少辐射数据的观测,因而无法利用PM公式计算ET0。本文选用河套灌区临河气象站1990—2012年的气象资料,分析了利用PM公式计算参考作物蒸发蒸腾量ET0与气象要素的关系,发现对ET0影响最大的气象因素为净辐射,其次为饱和水气压差和平均温度。建立了基于饱和水气压差、温度和风速的ET0估算公式,验证结算显示相关系数、纳什效率系数和总量平衡系数分别为0.96、0.92、1.00。在风速缺测的条件下,也建立了基于饱和水汽压差和温度的ET0估算公式。以上两个公式为河套灌区缺资料条件下ET0的估算提供了简单且准确的估算方法。  相似文献   

11.
为了寻找适合浑善达克沙地参照作物腾发量计算的简易方法,该文以实测的微气象数据为基础,分别采用FAO56 Penman-Monteith(1998)、Hargreaves-Samani(1985)、Irmark-Allen拟合以及Priestley-Tay-lor(1972)计算参照作物腾发量,并以普适性强、精度高的FAO56 Penman-Monteith为基准,对其他方法进行气象因子的非线性修正。结果表明:气象因子修正后的参照作物腾发量精度大大提高,为获得相对可靠的参照作物腾发量开辟了新的途径。FAO56 Penman-Monteith、Irmark-Allen拟合和Priestley-Taylor都需要用到净辐射,而专业测量净辐射的设备在农业气象站里很少安装,使三种方法推广使用受到一定限制。气象因子修正后Hargreaves-Samani需要的气象数据相对容易获得,且计算简单,具有较高的精度,建议在缺少气象资料的干旱地区推广采用。  相似文献   

12.
分别采用2种不同的冠层阻力模型和土壤阻力模型,组合成4种Shuttleworth-Wallace(S-W)模型,模拟夏玉米农田灌浆期的逐时蒸散量,以涡度相关法观测蒸散量为实测值检验模型改进的效果,找出最优冠层阻力模型和土壤阻力模型,并分析最优S-W模型对各阻力参数的敏感性。结果表明:李俊改进型有效叶面积指数冠层阻力模型和Sellers土壤阻力模型组合的S-W模型模拟效果最好,S-W模型估算玉米田蒸散的精度显著提高,蒸散发模拟值与实测值的相关系数、一致性指数更接近1,蒸散发模拟的相对误差和均方根误差变小。敏感性分析表明,在计算各个阻力参数模型中,S-W1模型估算蒸散发对冠层阻力最敏感,其次是土壤阻力和有效叶面积指数;采用改进型有效叶面积指数冠层阻力模型和Sellers土壤阻力参数模型组合后,在一定程度上提高了模型精度,提高了计算准确率。  相似文献   

13.
砾石覆盖量对夏玉米作物系数及水分利用效率的影响   总被引:1,自引:0,他引:1  
为评价半湿润易旱地区砾石覆盖对土壤贮水量、作物生长与产量及水分利用效率的影响,利用杨凌地区夏玉米2014年实测数据及气象数据,基于Penman-Monteith公式计算了砾石不同覆盖量下全生育期内参考作物蒸发蒸腾量,并根据FAO推荐的分段单值平均法,计算夏玉米各生育期作物系数,以及砾石不同覆盖量下作物水分利用效率。结果表明:砾石覆盖的保水效果主要体现在作物生长初期,拔节期最大砾石覆盖处理0~200 cm土壤贮水量较对照增大12.8%,后期由于冠层覆盖影响其效果减弱;夏玉米全生育期作物系数与覆盖量呈线性关系;覆盖量越大,不同生育阶段的作物系数也相应增加;叶面积和株高与作物系数有着较好的回归关系,可以对生育期内的玉米蒸散量进行预报;砾石覆盖可以缩短夏玉米生育期的天数,最大可缩短19 d;砾石覆盖能促进作物生长,提高作物产量,且在该试验覆盖量范围内,覆盖量越大,增产增效越明显,随覆盖量增加,各处理分别较对照提高4.65%~38.17%;作物水分利用效率随覆盖量的增大分别较对照提高2.94%~32.99%。  相似文献   

14.
王丽娜 《干旱区研究》2014,31(1):144-148
基于六盘山东西两侧甘肃平凉市7个气象站1965-2010年逐日气象要素,采用Penman Monteith模型计算了逐日参考作物蒸散量,应用Mann Kendall非参数检验法,分析了年际变化和季节变化特征。结果表明:① 1965-2010年,平凉市参考作物蒸散量多年平均在890~1 142 mm,全市西南部蒸散量最小,东部最大,年内夏季达到最大值,春、秋季次之,冬季最小;② 近46 a来,平凉市大多数站点参考作物蒸散量呈显著下降趋势;③ 影响平凉市参考作物蒸散量季节变化的主要气候因子是风速和日照,其中,风速是影响全市蒸散量呈下降趋势的主导因子。  相似文献   

15.
Greenhousing is a technique to bridge season gap in vegetable production and has been widely used worldwide. Calculation of water requirement of crops grown in greenhouse and determination of their irrigation schedules in arid and semi-arid regions are essential for greenhouse maintenance and have thus attracted increased attention over the past decades. The most common method used in the literature to estimate crop evapotranspiration(ET) is the Penman-Monteith(PM) formula. When applied to greenhouse, however, it often uses canopy resistance instead of surface resistance. It is understood that the surface resistance in greenhouse is the result of a combined effect of canopy restriction and soil-surface restriction to water vapor flow, and the relative dominance of one restriction over another depends on crop canopy. In this paper, we developed a surface resistance model in a way similar to two parallel resistances in an electrical circuit to account for both restrictions. Also, considering that wind speed in greenhouse is normally rather small, we compared three methods available in the literature to calculate the aerodynamic resistance, which are the r_a~1 method proposed by Perrier(1975a, b), the r_a~2 method proposed by Thom and Oliver(1977), and the r_a~3 method proposed by Zhang and Lemeu(1992). We validated the model against ET of tomatoes in a greenhouse measured from sap flow system combined with micro-lysimeter in 2015 and with weighing lysimeter in 2016. The results showed that the proposed surface resistance model improved the accuracy of the PM model, especially when the leaf area index was low and the greenhouse was being irrigated. We also found that the aerodynamic resistance calculated from the r_a~1 and r_a~3 methods is applicable to the greenhouse although the latter is slightly more accurate than the former. The proposed surface resistance model, together with the r_a~3 method for aerodynamic resistance, offers an improved approach to estimate ET in greenhouse using the PM formula.  相似文献   

16.
极端干旱区滴灌条件下葡萄茎流变化规律研究   总被引:3,自引:0,他引:3  
为探究极端干旱区滴灌葡萄植株茎流变化规律及其影响因素,本文采用Flow4-DL包裹式茎流计监测滴灌和沟灌条件下葡萄植株的茎流变化规律,研究了茎流速率的变化规律与气象因子的相互关系,以及日茎流量与参考作物蒸发蒸腾量之间的关系.研究结果表明:在晴天,葡萄植株茎流速率的日变化呈现双峰曲线;在阴天,葡萄植株茎流变化曲线呈现多峰型;通过对各环境因子与葡萄植株茎流进行偏相关分析,得到茎流与光合有效辐射、风速极显著相关,与饱和水汽压显著相关,与温度、湿度不显著相关,相关程度依次为:光合有效辐射>风速>饱和水汽压>空气湿度>空气温度;采用逐步删除法进行多元回归分析,得到茎流与光合有效辐射、风速、饱和水汽压具有较强的线性相关关系,回归方程达到极显著水平;滴灌和沟灌情况下日茎流量与参考作物蒸发蒸腾量呈显著线性相关关系,且沟灌的相关性高于滴灌.  相似文献   

17.
采用4种常用的腾发量模型(Makkink模型,Turc模型,Priestley-Taylor模型以及Hargreaves模型)计算日腾发量,并以Penman-Monteith FAO 56公式计算结果为标准值进行对比,旨在寻找出建模数据少、模拟精度高以及适合研究区的腾发量计算模型。结果表明:Turc模型的日参考作物蒸发蒸腾量与Penman-Monteith FAO 56差异较小,其次是Makkink模型与Priestley-Taylor模型,Hargreaves模型的差异最大。  相似文献   

18.
1971-2014年青藏高原参考蒸散变化及其归因   总被引:1,自引:0,他引:1  
研究参考蒸散时空变化格局并辨识其驱动因子,是认识区域水文过程及其对气候变化响应的重要途径。基于修正的FAO 56 Penman-Monteith公式和青藏高原75个台站逐日气象观测资料,分析了1971—2014年高原参考蒸散变化的转折特征,并探讨转折前后的年际与季节变化趋势及其主导因素。结果表明:1971—1996年青藏高原参考蒸散呈急剧下降态势〔-27.07 mm·(10a)-1〕,而1997—2014年高原参考蒸散增加趋势显著〔40.16 mm·(10a)-1〕,尤以33°N以南区域最为突出。这与影响参考蒸散变化的气候因子变化趋势的年际转折密切相关。其中,风速变小是1971—1996年高原年参考蒸散减少的主要因素,特别是在高原北部;相对湿度降低则极大地促进了1997—2014年高原主体(除高原北缘外)参考蒸散的显著增加。此外,从季节上看,春、秋、冬季参考蒸散变化的最大贡献因子由之前的风速减小转变为1997—2014年的相对湿度下降;影响高原夏季参考蒸散的主导因子是1971—1996年相对湿度的增加,之后则转变为1997—2014年日照时数的增加。  相似文献   

19.
近50年黄土地区气候与潜在蒸散量变化及其影响因素分析   总被引:1,自引:0,他引:1  
根据黄土地区1951—2000年14个站点的日气象资料以及FAO56 Penman-Monteith公式,计算各站逐月潜在蒸散量,分析近50 a各站年平均气温、降水量、日照时数、风速和相对湿度等气候要素以及年潜在蒸散量的变化趋势和变化特征,并据此分析ET0变化的气候成因。结果表明:(1)近50 a来黄土地区基本都表现为显著的增温趋势,增温速率为0.039~0.396℃/10a,与全国平均水平0.22℃/10a相当;降雨量、风速、日照时数和相对湿度总体上均呈下降趋势;(2)潜在蒸散量年际间除驻马店和介休显著下降外,其他大部分站点呈显著上升趋势;(3)敏感性分析表明黄土地区潜在蒸散量的主要影响因素是相对湿度,其次是太阳辐射(日照时数)和气温,风速变化的影响最弱。  相似文献   

20.
南疆棉田实际蒸散量的计算模式   总被引:1,自引:0,他引:1  
在田间试验基础上,采用常规气象与土壤湿度资料,运用数理统计方法建立了南疆棉田实际蒸散量的计算模式。结果表明:土壤湿度系数Kw与相对有效土壤含水率Aw具有直线相关性;计算值与实测值相比较,计算效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号