首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding long-term changes in forest ecosystem carbon stocks under forest management practices such as timber harvesting is important for assessing the contribution of forests to the global carbon cycle. Harvesting effects are complicated by the amount, type, and condition of residue left on-site, the decomposition rate of this residue, the incorporation of residue into soil organic matter and the rate of new detritus input to the forest floor from regrowing vegetation. In an attempt to address these complexities, the forest succession model LINKAGES was used to assess the production of aboveground biomass, detritus, and soil carbon stocks in native Eucalyptus forests as influenced by five harvest management practices in New South Wales, Australia. The original decomposition sub-routines of LINKAGES were modified by adding components of the Rothamsted (RothC) soil organic matter turnover model. Simulation results using the new model were compared to data from long-term forest inventory plots. Good agreement was observed between simulated and measured above-ground biomass, but mixed results were obtained for basal area. Harvesting operations examined included removing trees for quota sawlogs (QSL, DBH >80 cm), integrated sawlogs (ISL, DBH >20 cm) and whole-tree harvesting in integrated sawlogs (WTH). We also examined the impact of different cutting cycles (20, 50 or 80 years) and intensities (removing 20, 50 or 80 m3). Generally medium and high intensities of shorter cutting cycles in sawlog harvesting systems produced considerably higher soil carbon values compared to no harvesting. On average, soil carbon was 2–9% lower in whole-tree harvest simulations whereas in sawlog harvest simulations soil carbon was 5–17% higher than in no harvesting.  相似文献   

2.
Harvest impacts on soil carbon storage in temperate forests   总被引:1,自引:0,他引:1  
Forest soil carbon (C) storage is a significant component of the global C cycle, and is important for sustaining forest productivity. Although forest management may have substantial impacts on soil C storage, experimental data from forest harvesting studies have not been synthesized recently. To quantify the effects of harvesting on soil C, and to identify sources of variation in soil C responses to harvest, we used meta-analysis to test a database of 432 soil C response ratios drawn from temperate forest harvest studies around the world. Harvesting reduced soil C by an average of 8 ± 3% (95% CI), although numerous sources of variation mediated this significant, overall effect. In particular, we found that C concentrations and C pool sizes responded differently to harvesting, and forest floors were more likely to lose C than mineral soils. Harvesting caused forest floor C storage to decline by a remarkably consistent 30 ± 6%, but losses were significantly smaller in coniferous/mixed stands (−20%) than hardwoods (−36%). Mineral soils showed no significant, overall change in C storage due to harvest, and variation among mineral soils was best explained by soil taxonomy. Alfisols and Spodosols exhibited no significant changes, and Inceptisols and Ultisols lost mineral soil C (−13% and −7%, respectively). However, these C losses were neither permanent nor unavoidable. Controls on variation within orders were not consistent, but included species composition, time, and sampling depth. Temporal patterns and soil C budgets suggest that forest floor C losses probably have a lesser impact on total soil C storage on Alfisols, Inceptisols, and Ultisols than on Spodosols, which store proportionately large amounts of C in forest floors with long C recovery times (50–70 years). Mineral soil C losses on Inceptisols and Ultisols indicate that these orders are vulnerable to significant harvest-induced changes in total soil C storage, but alternative residue management and site preparation techniques, and the passage of time, may mitigate or negate these losses. Key findings of this analysis, including the dependence of forest floor and mineral soil C storage changes on species composition and soil taxonomic order, suggest that further primary research may make it possible to create predictive maps of forest harvesting effects on soil C storage.  相似文献   

3.
Forest restoration treatments involving selection harvest and prescribed fire have been applied throughout the Rocky Mountain West with only a limited understanding of how these treatments influence plant community composition and soil processes. Forest restoration treatments, especially those involving fire, have the potential to reduce N capital on site. Unfortunately there has been only limited effort to investigate the effects of forest restoration treatments on forest ecosystem N inputs, especially free living N-fixation in soil and woody residues. Recent studies have highlighted the potential for decaying woody roots to serve as hot spots for N-fixation. The fire and fire surrogates (FFS) study site at Lubrecht Experimental Forest in Western Montana provided a unique opportunity to investigate the effect of restoration treatments on N-fixation. We set out to examine how prescribed fire, selection harvest, and a combination of both influence free living N-fixing bacteria that colonize decomposing woody roots, mineral soil, and soil crusts. Soil, root, and soil crust samples were collected from replicated treatment plots in August 2005 and soil samples were recollected in May 2006 just following snowmelt. Acetylene reduction assays were run on all samples, and extractable inorganic N and potentially mineralizable N (PMN) were measured in mineral soil. While restoration treatments caused an increase in dead roots associated with stumps and fire killed trees, N-fixation rates were nearly non-existent in these root systems. Nitrogen-fixation rates were not significantly influenced by treatments in decomposing woody roots or in mineral soil, but were slightly greater (P < 0.10) in soil crusts when the control stand was compared to treated plots. Nitrogen-fixation rates were also greater in mineral soil than in roots. Soil collected in August exhibited greater rates of N-fixation than soil collected in May which we attributed to higher moisture and an increase in available N following spring thaw. Average rates of free living N-fixation across the treatment plots at Lubrecht were low (0.26 kg N ha−1 year−1), but over time we estimate that these sources, along with the sparse population of symbiotic N-fixing plants and wet N deposition, would replenish soil N lost through fire or harvesting in approximately 40–100 years.  相似文献   

4.
Timber harvesting, with and without prescribed slash fire, and wild fire are common disturbances in pine forests of western North America. These disturbances can alter soil nitrogen (N) pools and N supply to colonizing vegetation, but their influence remains poorly understood for many forests. We investigated the effects of clear cut harvesting and fire on KCl extractable N pools, net N mineralization rates, phosphorus (P) fractions, seedling N uptake, and seedling growth in mineral soils sampled from a lodgepole pine forest in southern Wyoming. At a site where wild fire burned through a harvested stand of lodgepole pine and the adjacent intact forest, we analyzed mineral soils from the following four treatments: unburned clear cut, burnt clear cut, unburned forest, and burnt forest. Soils from unburned and burnt clear cut treatments had higher concentrations of KCl extractable N and higher net N mineralization rates, and produced larger pine seedlings in bioassays than soils from unburned and burnt intact forest treatments. Further, while seedlings grown in soils from the unburned and burnt forest treatments responded strongly to N fertilization, seedlings grown in clear-cut soils did not respond to fertilization. Taken together, these results suggest that harvesting had increased soil N supply. In comparing clear cut treatments, soils from the unburned clear cut had smaller extractable N and P pools, and lower net N mineralization rates, but produced larger pine seedlings than soils from the burnt clear cut.  相似文献   

5.
We assessed changes in mineral soil total carbon (C) and nutrient (exchangeable Ca, K, Mg, and total N) pools to 60 cm depth 5 years after manipulating biomass and competing vegetation at two contrasting Douglas-fir plantations (Matlock, WA, and Molalla, OR). Biomass treatments included whole-tree (WT) and bole-only (BO) harvest, and competing vegetation control (VC) treatments were applied as either initial or annual herbicide applications. There were main effects of biomass removal and VC on the absolute change in soil pools of some elements at both sites, but significant effects were more prevalent at the lower soil quality Matlock site than the Molalla site, and were generally confined to the top 15 cm of soil. In all cases, treatment effects were associated with increases in C and nutrients following BO and initial VC treatments combined with little change in soil pools following WT and annual VC treatments. At the Matlock site, total soil pools (0-60 cm) of C, N, and Ca significantly increased in the BO and initial VC treatments, and Mg increased and K decreased regardless of treatment. At the Molalla site, soil C and nutrient pools did not change in response to treatments, but total soil Mg increased in all treatments during the study period. Correlation analyses indicated little influence of soil nutrient pools on early growth at Matlock likely because soil water is more limiting than nutrient availability at that site, but vegetation growth was correlated to nutrient pools at Molalla indicating changes in pools associated with harvesting and treatment could influence crop development in the future. These early results indicate low potential for intensive management practices to reduce mineral soil pools of C and nutrients, but there is uncertainty on the long-term growth response because treatments may have influenced nutrient storage in pools other than mineral soil.  相似文献   

6.
Boreal forest carbon (C) storage and sequestration is a critical element for global C management and is largely disturbance driven. The disturbance regime can be natural or anthropogenic with varying intensity and frequency that differ temporally and spatially the boreal forest. The objective of this review was to synthesize the literature on C dynamics of North American boreal forests after most common disturbances, stand replacing wildfire and clearcut logging. Forest ecosystem C is stored in four major pools: live biomass, dead biomass, organic soil horizons, and mineral soil. Carbon cycling among these pools is inter-related and largely determined by disturbance type and time since disturbance. Following a stand replacing disturbance, (1) live biomass increases rapidly leading to the maximal biomass stage, then stabilizes or slightly declines at old-growth or gap dynamics stage at which late-successional tree species dominate the stand; (2) dead woody material carbon generally follows a U-shaped pattern during succession; (3) forest floor carbon increases throughout stand development; and (4) mineral soil carbon appears to be more or less stable throughout stand development. Wildfire and harvesting differ in many ways, fire being more of a chemical and harvesting a mechanical disturbance. Fire consumes forest floor and small live vegetation and foliage, whereas logging removes large stems. Overall, the effects of the two disturbances on C dynamics in boreal forest are poorly understood. There is also a scarcity of literature dealing with C dynamics of plant coarse and fine roots, understory vegetation, small-sized and buried dead material, forest floor, and mineral soil.  相似文献   

7.
The results of EFIMOD simulations for black spruce (Picea mariana [Miller]) forests in Central Canada show that climate warming, fire, harvesting and insects significantly influence net primary productivity (NPP), soil respiration (Rs), net ecosystem production (NEP) and pools of tree biomass and soil organic matter (SOM). The effects of six climate change scenarios demonstrated similar increasing trends of NPP and stand productivity. The disturbances led to a strong decrease in NPP, stand productivity, soil organic matter (SOM) and nitrogen (N) pools with an increase in CO2 emission to the atmosphere. However the accumulated NEP for 150 years under harvest and fire fluctuated around zero. It becames negative only at a more frequent disturbance regime with four forest fires during the period of simulation. The results from this study show that changes in climate and disturbance regimes might substantially change the NPP as well as the C and N balance, resulting in major changes in the C pools of the vegetation and soil under black spruce forests.  相似文献   

8.
Growing interest in the use of planted forests for bioenergy production could lead to an increase in the quantities of harvest residues extracted. We analysed the change in C and N stocks in the forest floor (LFH horizon) and C and N concentrations in the mineral soil (to a depth of 0.3 m) between pre-harvest and mid-rotation (stand age 15 years) measurements at a trial site situated in a Pinus radiata plantation forest in the central North Island, New Zealand. The impacts of three harvest residue management treatments: residue plus forest floor removal (FF), residue removal (whole-tree harvesting; WT), and residue retention (stem-only harvesting; SO) were investigated with and without the mean annual application of 190 kg N ha−1 year−1 of urea-N fertiliser (plus minor additions of P, B and Mg). Stocks of C and N in the forest floor were significantly decreased under FF and WT treatments whereas C stocks and mass of the forest floor were significantly increased under the SO treatment over the 15-year period. Averaged across all harvesting treatments, fertilisation prevented the significant declines in mass and C and N stocks of the forest floor which occurred in unfertilised plots. The C:N ratio of the top 0.1 m of mineral soil was significantly increased under the FF treatment corresponding to a significant reduction in N concentration over the period. However, averaged across all harvesting treatments, fertilisation prevented the significant increase in C:N ratio of the top 0.1 m of mineral soil and significantly decreased the C:N ratio of the 0-0.3 m depth range. Results indicate that residue extraction for bioenergy production is likely to reduce C and N stocks in the forest floor through to mid-rotation and possibly beyond unless fertiliser is applied. Forest floors should be retained to avoid adverse impacts on topsoil fertility (i.e., increased C:N ratio). Based on the rate of recovery of the forest floor under the FF treatment, stocks of C and N in the forest floor were projected to reach pre-harvest levels at stand age 18-20. While adverse effects of residue extraction may be mitigated by the application of urea-N fertiliser, it should be noted that, in this experiment, fertiliser was applied at a high rate. Assessment of the sustainability of harvest residue extraction over multiple rotations will require long-term monitoring.  相似文献   

9.
北京西山地区火烧迹地植被恢复研究   总被引:3,自引:1,他引:2  
在土壤性质分析的基础上,应用丰富度、多样性、相似度指标,研究了火烧迹地植被恢复情况,并与未过火林地做出了比较,讨论了北京西山地区火烧迹地土壤性质的变化与植被恢复之间的关系。结果表明:1)火烧迹地土壤的土粒密度增加,pH值呈上升趋势,土壤有机质减少,全氮增加,有机质的C/N比值在15左右。2)火烧迹地上植被的物种丰富度、Simpson指数、Shannon-Wiener指数高于未过火林地,火烧迹地与未过火林地更新层的物种丰富度相差不大,灌木层和草本层的物种丰富度和多样性则是火烧迹地上较高。3)火烧迹地与未过火林地土壤性质的差异导致了植被的差异,植被恢复也对土壤性质的变化产生了影响。  相似文献   

10.
An adequate supply of nitrogen (N) is essential for the successful establishment and sustainable productivity of forest stands. N deficits may necessitate the use of artificial fertilisers. Availability of N in the inorganic forms, and the relative abundance of the NO3-N and NH4-N components, influences the species composition of natural forest vegetation. Hence it is essential to use reliable measures of soil N supply that fully reflect its ecological significance. The new Ecological Site Classification (ESC) used in British forestry employs a multi-factorial definition of soil nutrient regime (SNR), including soil N. To develop this, a soil and vegetation study was made at 89 forest sites throughout Great Britain covering the major soil types used for forestry. “Total N” levels were compared with separate pre- and post-incubation measures of the two inorganic N components as potential indices of soil N supply. Multivariate statistical analysis showed that the major discriminant chemical variables for the sampled soils were pH, calcium and NO3-N and that these were also the main variables influencing the species composition of the ground vegetation. Total N and NH4-N were less effective discriminant variables for these sites. In some infertile soils the levels of NH4-N or total N may be of greater importance, as NO3-N is usually in very limited supply. A multivariate gradient of SNR, which incorporates the NO3-N measures, has been adopted for use within the ESC system. The position of a site on this gradient can be estimated quantitatively from soil type, ground vegetation species composition and humus type. This enables soil N supply and overall SNR to be assessed in a simple but effective way that guides the operational management of British forest soils for sustainable productivity. It will also be possible to use these techniques to monitor the nutritional status of forest sites over time.  相似文献   

11.
Forest soils and carbon sequestration   总被引:36,自引:0,他引:36  
R. Lal   《Forest Ecology and Management》2005,220(1-3):242-258
Soils in equilibrium with a natural forest ecosystem have high carbon (C) density. The ratio of soil:vegetation C density increases with latitude. Land use change, particularly conversion to agricultural ecosystems, depletes the soil C stock. Thus, degraded agricultural soils have lower soil organic carbon (SOC) stock than their potential capacity. Consequently, afforestation of agricultural soils and management of forest plantations can enhance SOC stock through C sequestration. The rate of SOC sequestration, and the magnitude and quality of soil C stock depend on the complex interaction between climate, soils, tree species and management, and chemical composition of the litter as determined by the dominant tree species. Increasing production of forest biomass per se may not necessarily increase the SOC stocks. Fire, natural or managed, is an important perturbation that can affect soil C stock for a long period after the event. The soil C stock can be greatly enhanced by a careful site preparation, adequate soil drainage, growing species with a high NPP, applying N and micronutrients (Fe) as fertilizers or biosolids, and conserving soil and water resources. Climate change may also stimulate forest growth by enhancing availability of mineral N and through the CO2 fertilization effect, which may partly compensate release of soil C in response to warming. There are significant advances in measurement of soil C stock and fluxes, and scaling of C stock from pedon/plot scale to regional and national scales. Soil C sequestration in boreal and temperate forests may be an important strategy to ameliorate changes in atmospheric chemistry.  相似文献   

12.
More than a century of fire exclusion and past timber management practices in many Sierra Nevada mixed-conifer forests have led to increased stand densities and fuel accumulation, with a corresponding risk of large, high severity wildfires. To reduce hazardous fuel accumulations and restore the health and natural processes of forest ecosystems, fuel management programs often employ thinning and prescribed fire treatments, both alone and in combination. We evaluated forest floor and mineral soil chemical and physical characteristics following these treatments in a managed Sierra Nevada mixed-conifer forest using a fully replicated study design with four separate treatments: THIN, BURN, THIN + BURN, and an untreated CONTROL. Compared to the CONTROL, the BURN and THIN + BURN treatments consumed a large amount of the forest floor, reducing the mass and depth by more than 80%. These treatments reduced the forest floor C and N pools by more than 85%, resulting in reductions of 25 Mg C ha−1 and more than 700 kg N ha−1 from the forest floor. Despite these large losses from the organic horizons, no significant differences in mineral soil total C and N pools were detected among treatments. Compared with the CONTROL and THIN treatments, the BURN and THIN + BURN significantly increased the mineral soil NO3-N concentration, pool of inorganic N, pH, and exposed bare soil. The THIN + BURN treatment significantly increased the concentrations of NH4-N and exchangeable Ca relative to the CONTROL. No significant differences in the net rates of nitrification, N mineralization, or bulk density were detected among the four treatments. The BURN treatment reduced mineral soil C concentration and CEC, while the THIN + BURN treatment had the greatest increase in inorganic N. Fire effects on soil pH and inorganic N were moderated in skid trails due to reduced fuel continuity and consumption. In light of the current management emphasis on hazardous fuels reduction, we recommend that researchers investigating fire effects in harvested stands include skid trail influences in their study design.  相似文献   

13.
Studies of post-fire soil status in Mediterranean ecosystems are common;however,few have examined the effects of long-term forest management after a wildfire on physicochemical soil properties.Here,we analyzed differences in soil properties attributable to long-term postfire management and assessed the sustainability of these management practices in relation to the soil properties.The study area is located in Odena in the northeast region of the Iberian Peninsula consisted of the control forest(burned more than 30 years ago),low density forest(LD;burned in a wildfire in 1986 and managed in 2005)and high density forest(HD;burned in a wildfire in 1986 and no managed).For soils from each plot,we measured soil water repellency,aggregate stability,total nitrogen(TN),soil organic matter(SOM),inorganic carbon(IC),pH,electrical conductivity,extractable calcium,magnesium,sodium,potassium(K),phosphorus,aluminum(Al),manganese(Mn),iron(Fe),zinc,copper,boron,chrome,silicon and sulfur and calculated the ratios of C/N,Ca+Mg/(Na+K)^1/2,Ca/Al and Ca/Mg.Significant differences were found in TN,IC,SOM,pH,K,Al,Mn,Fe and C/N ratio(p<0.05).All soil properties were found to have largely recovered their pre-fire values.Soils were affected by the post-fire management practices implemented 20 years after the fire,as reflected in their respective physicochemical properties,so that soil properties at the control and LD sites are more similar today than those at the control and HD sites.Thus,sustainable forest management can overcome soil degradation in areas affected by wildfire in the medium-and long-term by improving soil properties.  相似文献   

14.
林火干扰作为森林生态系统中能量传递和养分循环的重要因子,对于研究火烧迹地植被更新与快速恢复可提供一定的数据理论支撑,而林火干扰对土壤微生境及微生物氮循环的影响机制一直是广大学者研究的热点。文中从火烧强度、恢复时间、火烧木管理方式等3个方面总结国内外林火干扰对土壤氮组分及氮循环的影响研究进展,揭示了林火干扰和全球气候变化对土壤氮循环的短期及长期影响机制,探讨不同生物技术在林火干扰下土壤微生物氮循环基因丰度变化中的应用;提出未来林火干扰对森林生态系统土壤氮循环影响的研究展望:1)全面比较研究不同林火干扰模式对土壤氮组分、微生物氮循环的影响;2)研究评价不同林火干扰模式下土壤氮库的稳定性;3)加强高通量测序、定量PCR技术、宏基因组学、稳定同位素探测等技术在林火干扰与气候变化对森林生态系统影响研究中的应用。研究结果对火烧迹地植被更新、土壤氮库的重建与功能发挥具有重要意义。  相似文献   

15.
The dominant soil patterns in forested or previously forested landscapes in southern New Zealand and Tasmania are described. Soil properties on adjacent sunny and shady aspects in hill country of the South Island of New Zealand are compared to soil properties under adjacent ‘dry’ and ‘wet’ eucalypt forest in Tasmania.

A soil contrast index or SCI is defined for comparing soil contrasts on parent materials of different absolute nutrient contents. Three soil groups are defined using the SCI. Group 1 soil pairs are stable New Zealand soils in which exchangeable Ca + Mg + K values are higher on drier sunny aspects than on moister shady aspects. Group 2 soil pairs are New Zealand soils in which soils on sunny aspects display evidence of topsoil erosion by wind; consequently some soil pairs on dry (sunny) aspects have lower levels of exchangeable Ca + Mg + K than soils on moister (shady) aspects. Group 3 soil pairs are Tasmanian. Soils on drier sites (under dry eucalypt forest) invariably have lower exchangeable Ca + Mg + K values than soils on moister sites (under wet eucalypt forest), which is the reverse of the pattern in SCI Group 1 soils in New Zealand.

Except on clay-rich parent materials, Tasmanian soils under dry forest generally have texture-contrast profiles and a mean C/N ratio in topsoils (A1 horizons) of 29. Soils under wet forest generally have uniform or gradational texture profiles and a mean topsoil C/N ratio of 15. The texture-contrast soils show strong clay eluviation with sand or sandy loam textures in upper horizons and clayey textures in lower horizons. However, in New Zealand texture-contrast soils are all but absent, and do not occur in the previously forested areas described in this paper. Topsoils (Ah horizons and soils sampled to 7.5 cm depth) in New Zealand areas sampled in this study have a mean C/N ratio of 15, regardless of whether they occur on sunny or shady aspects.

We propose that the frequency and spatial occurrence of fire are the dominant processes causing: (1) the marked difference in levels of nutrients and different topsoil C/N ratios in soils of Tasmania; (2) the development of texture-contrast soils under dry forests in Tasmania; and (3) the difference between soil patterns in New Zealand and Tasmania. Fire depletes nutrients in forests by causing losses to the atmosphere, losses by runoff, and losses by leaching. Nutrient loss by fire encourages fire-tolerant vegetation adapted to lower soil nutrient status, so frequent fire is a feedback mechanism that causes progressive soil nutrient depletion. By destroying organic matter and diminishing organic matter supply to the soil surface fire inhibits clay–organic matter linkages and soil faunal mixing and promotes clay eluviation. Fire frequency is likely to have increased markedly with the arrival of humans at ca. 34 000 years B.P. in Tasmania and ca. 800 years B.P. in New Zealand. We argue that texture-contrast soils have not formed in New Zealand because of the short history of frequent fires in that country. A corollary of this conclusion is that texture-contrast soils in Tasmania are, at least in part, anthropogenic in origin.  相似文献   


16.
采用径流小区实验的方法,在李子口小流域设立了6个不同植被类型的径流小区,研究径流小区不同植被条件下降雨对土壤侵蚀的影响,结果如下:(1)不同植被条件下,降雨对土壤侵蚀的影响可表现为撂荒地小区>农耕地小区>林地小区,降雨对林地的土壤侵蚀弱,林地对当地水土的保持能力强,最适合作为当地水土保持的植物措施。(2)总体上,6个径流小区的降雨量、降雨侵蚀力与地表径流量、径流深、土壤流失量之间的相关性均表现为显著正相关的关系,表明降雨对当地土壤侵蚀作用强,需重点防护。研究揭示了研究区降雨与土壤侵蚀的相关性,比较了不同植被条件下降雨对土壤侵蚀的影响,为水土保持的相关研究提供参考与借鉴。  相似文献   

17.
Fire is an important component of the historic disturbance regime of oak and pine forests that occupy sandy soils of the coastal outwash plain of the northeastern US. Today prescribed fire is used for fuel reduction and for restoration and maintenance of habitat for rare plant and animal, animal species. We evaluated the effects of the frequency and seasonality of prescribed burning on the soils of a Cape Cod, Massachusetts's coastal oak-pine forest. We compared soil bulk density, pH and acidity, total extractable cations and total soil carbon (C) and nitrogen (N) in unburned plots and in plots burned over a 12-year period, along a gradient of frequency (every 1–4 years), in either spring (March/April) or summer (July/August). Summer burning decreased soil organic horizon thickness more than spring burning, but only summer burning every 1–2 years reduced organic horizons compared with controls. Burning increased soil bulk density of the organic horizon only in the annual summer burns and did not affect bulk density of mineral soil. Burn frequency had no effect on pH in organic soil, but burning every year in summer increased pH of organic soil from 4.01 to 4.95 and of mineral soil from 4.20 to 4.79. Burning had no significant effect on organic or mineral soil percent C, percent N, C:N, soil exchangeable Ca2+, Mg2+, K+ or total soil C or N. Overall effects of burning on soil chemistry were minor. Our results suggest that annual summer burns may be required to reduce soil organic matter thickness to produce conditions that would regularly allow seed germination for oak and for grassland species that are conservation targets. Managers may have to look to other measures, such as combinations of fire with mechanical treatments (e.g., soil scarification) to further promote grasses and forbs in forests where establishment of these plants is a high priority.  相似文献   

18.
李海防 《林业研究》2010,21(3):301-310
CH4是重要的温室气体之一,其主要排放源是森林土壤。本研究采用静态箱法对华南地区尾叶桉林(Eucalyptusurophylla)(B1),厚荚相思林(Acacia crassicarpa)(B2),10个树种的混交林(B3)和30个树种的混交林(B4)4种林型土壤CH4通量进行了原位测定,研究剔除林下灌草和添加翅荚决明(Cassia alata)对土壤CH4通量的影响。4个处理包括:(1)剔除林下灌草并添加翅荚决明(UR+CA);(2)仅剔除林下灌草(UR);(3)仅添加翅荚决明(CA);(4)对照(CK)。研究结果表明:林型变化对土壤CH4通量有重要影响,B1和B2表现为CH4的汇,而B3和B4为CH4的源,剔除林下灌草能改善土壤微生物活性,加快土壤矿化速度,促进CH4的吸收;而林下添加翅荚决明,由于翅荚决明根系的固氮作用,能加快土壤CH4的排放,表层土壤温度和湿度与土壤CH4通量具有强相关性;土壤有机碳(SOC)和可溶性N也是影响CH4通量的重要因子。本研究对探寻人工林管理措施对土壤CH4捧放影响机制具有重要的意义。  相似文献   

19.
We measured the change in above- and below-ground carbon and nutrient pools 11 years after the harvesting and site preparation of a histic-mineral soil wetland forest in the Upper Peninsula of Michigan. The original stand of black spruce (Picea mariana), jack pine (Pinus banksiana) and tamarack (Larix laricina) was whole-tree harvested, and three post-harvest treatments (disk trenching, bedding, and none) were randomly assigned to three Latin square blocks (n = 9). Nine control plots were also established in an adjoining uncut stand. Carbon and nutrients were measured in three strata of above-ground vegetation, woody debris, roots, forest floor, and mineral soil to a depth of 1.5 m. Eleven years following harvesting, soil C, N, Ca, Mg, and K pools were similar among the three site preparation treatments and the uncut stand. However, there were differences in ecosystem-level nutrient pools because of differences in live biomass. Coarse roots comprised approximately 30% of the tree biomass C in the regenerated stands and 18% in the uncut stand. Nutrient sequestration, in the vegetation since harvesting yielded an average net ecosystem gain of 332 kg N ha−1, 110 kg Ca ha−1, 18 kg Mg ha−1, and 65 kg K ha−1. The likely source for the cations and N is uptake from shallow groundwater, but N additions could also come from non-symbiotic N-fixation and N deposition. These are the only reported findings on long-term effects of harvesting and site preparation on a histic-mineral soil wetland and the results illustrate the importance of understanding the ecohydrology and nutrient dynamics of the wetland forest. This wetland type appears less sensitive to disturbance than upland sites, and is capable of sustained productivity under these silvicultural treatments.  相似文献   

20.
The establishment of shoreline reserves (buffer strips) has guided riparian forest management in Ontario for many years. A riparian area is defined as the transitional zone between the aquatic and terrestrial environments and therefore is also known as the aquatic/terrestrial ecotone. While many functions of riparian forests have been recognized and well studied, less is known about their potential to sequester C and whether this potential differs from other areas in the boreal forest landscape. Increased harvesting pressure due to decreased wood supply in Ontario and debate about the effectiveness of the current reserve guidelines has resulted in a renewed interest in harvesting riparian forests. In this study riparian and upslope forest C and soil C and N storage were quantified for 21 lakes shorelines at the Esker Lakes Research Area, a boreal forest ecosystem in northeastern Ontario, Canada. Objectives were to compare the C and N storage potential of riparian forests with those of adjacent upland forests, and to examine the potential impacts of harvesting on C stocks in riparian zones of the boreal forest.Riparian forests did not differ from upslope stands in terms of total aboveground overstory C storage although there were significant differences in stocking density and species composition. However, a greater proportion of total site C in riparian areas was stored in the overstory tree layer (>5 cm dbh) compared to upslope areas. Forest floor layers were deeper and stored more C and N in riparian forest stands in comparison to upslope stands. In contrast, mineral soil in upslope stands had greater C and N storage than mineral soil horizons within the riparian forest. As a result, the riparian organic horizons comprise a larger percentage of the overall soil storage of C and N than upslope layers. Currently practiced full-tree harvesting would result in a removal of approximately 76% of total aboveground C (17% of the ecosystem C) in upslope stands compared to 98% of total aboveground C (35% of the ecosystem C) in riparian forests. Selective or modified harvesting in riparian zones could decrease C removal to levels equal to that obtained by full-tree harvesting in upslope areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号