首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
2种微藻对养殖水体中氨氮和亚硝态氮的净化作用   总被引:2,自引:0,他引:2  
在水温26℃下采用室内培养法,将蛋白核小球藻和斜生栅藻分别置于0.5、1.0、2.0、4.0、8.0mg/L 5种质量浓度的氨氮(NH_4~+-N)和亚硝态氮(NO_2~--N)的培养液中,培养14d,每隔2d分别测定培养液中NH_4~+-N和NO_2~--N的质量浓度和藻类密度。试验结果表明,在8.0mg/L时蛋白核小球藻对NH_4~+-N和NO_2~--N的去除率最高,分别为82.5%和75.75%;而斜生栅藻在4.0 mg/L时对NH_4~+-N的去除率最高,为86.75%;在0.5mg/L时对NO_2~--N的去除率最高,为83.75%。在高质量浓度NH_4~+-N和NO_2~--N时蛋白核小球藻的扩繁速度更快,而斜生栅藻则在中低质量浓度NH_4~+-N和NO_2~--N溶液中更易增殖。利用不同藻类特性增殖藻类净化养殖水体中的NH_4~+-N和NO_2~--N具有很好的应用前景。  相似文献   

2.
菱角对农村富营养化水体营养盐吸收的初步研究   总被引:2,自引:0,他引:2  
为探究浮叶植物对农村富营养化废水中营养盐的去除效果,选定华龙村4个典型水塘,以人工种植菱角(Trapa bispinosa)为试验对象,研究菱角对富营养化水体中总氮(TN)、硝态氮(NO_3~--N)、氨态氮(NH_4~+-N)、总磷(TP)及化学需氧量(CODCr)的净化能力。结果表明,经过75 d的试验研究,试验区水塘的TN、NH_4~+-N和NO_3~--N的浓度分别从55 mg/L、25 mg/L和3 mg/L降至13 mg/L、4.3 mg/L和2.1 mg/L,去除效率分别为62.3%、74.5%和23.5%;TP及CODCr的浓度从3.3 mg/L和120 mg/L分别降至1.45 mg/L和52.5 mg/L,去除效率为56.9%和56.3%;对照区水塘各营养元素去除率较低。菱角对农村废水中的N、P有一定的吸收作用,对重度富营养化水体,水生植物优先吸收NH_4~+-N,对TN的去除影响较大;NO_3~--N的去除主要依靠微生物的反硝化作用;TP的吸收需要更长的时间。菱角对重度富营养化农村废水营养盐的去除具有重要意义,且可以取得一定的经济效益。本研究为应用水生植物处理农村生活污水中的营养盐提供科学依据。  相似文献   

3.
为探讨聚丙烯塑料发泡材料(EPP)、悬浮球填料和海绵填料对集装箱循环水养殖废水中细菌吸附性能的差异,以及3种填料挂膜启动和挂膜成熟后对氨氮(NH_4~+-N)、亚硝酸盐氮(NO_2~--N)和硝酸盐氮(NO_3~--N)的净水效果,以集装箱循环水养殖废水为研究对象,采用自然挂膜的方式进行了为期3个月的试验,并对相关指标进行测定。结果显示:EPP填料对养殖废水中细菌的吸附能力最好,另外两种填料对细菌的吸附能力次之并且差异不显著(P0.05);3种填料自然挂膜成熟的时间分别为21 d、26 d和30 d;各填料挂膜成熟后处理高浓度NH_4~+-N养殖废水时,NH_4~+-N浓度与NO_2~--N浓度之间的关系可以用多项式y=ax~2+bx+c进行拟合,NH_4~+-N浓度与NO_3~--N浓度之间的关系可以用对数式y=aln(x)+b进行拟合。研究表明:EPP填料、悬浮球填料和海绵填料均可作为生物填料用于集装箱循环水养殖系统。  相似文献   

4.
将生物陶环和珊瑚石两种滤料分别采用半浸没式和全浸没式实验处理养殖废水。结果显示,在2种过滤模式下,生物陶环、珊瑚石生物滤料的生物膜成熟时间分别为8 d和10 d。经过20 d的处理,4个实验组NH4+-N, NO2--N, COD的浓度均显著低于对照组,相比于对照组NH4+-N浓度降低51%以上, COD降低40%以上;半浸没过滤模式的实验组对NH4-N、 NO2--N的去除率均显著高于全浸没实验组;全浸没实验组对COD的去除率显著高于半浸没实验组。半浸没式过滤生物陶环实验组表面AOB数量最高,达4.68×102 cfu/g,全浸没实验组HB数量均显著高于半浸没实验组。结果表明所用4种处理方式处理养殖废水均有较好效果。  相似文献   

5.
多数硝化细菌的适宜温度是28℃左右,低于15℃硝化活性会基本丧失。为解决这一问题,通过构建低温海水硝化细菌富集培养装置,在11~14℃、pH值7.0~7.8、溶解氧4.0~4.5mg/L条件下,经过150d富集培养得到AOB硝化强度为21mg(NH_3-N)/(L·d),NOB硝化强度为93mg(NO_2~--N)/(L·d)的富集培养物。对富集培养物研究表明,当温度为15℃时,pH值为8.0、初始氨氮浓度为30mg/L条件下氨氧化活性较强;当温度为15℃时,pH值为7.0、初始亚硝氮浓度为80mg/L的条件下亚硝酸盐氧化活性较强。  相似文献   

6.
为了探讨硝氮(NO_3~--N)、氨氮(NH_4~+-N)和尿素氮(Urea)3种氮(N)源对半叶马尾藻(Sargassum hemiphyllum)幼苗生理特性的影响,在实验室条件下,把幼苗分别置于不同N源浓度中培养24 d,而后测定藻体的生长和生化组成含量。结果显示,不同N源和N浓度对幼苗的生长和部分生化组成有显著影响。3种N源加富均能促进幼苗的生长和组织N的增加,相对生长速率随着N浓度的升高而增加,在浓度为25~150μmol/L组中,幼苗的组织N增加量接近或超过每天以最大速率生长的N需求(0.032%/d);在浓度为50μmol/L时,相对生长速率达到最大值,Urea组的最大相对生长速率显著低于NO_3~--N和NH_4~+-N组;在浓度为10、25μmol/L时,NH_4~+-N组幼苗的相对生长率显著高于相同浓度下的NO_3~--N组,而在浓度为50~150μmol/L时则相反。除了最高浓度组(150μmol/L),随着N浓度的升高,幼苗光合色素、可溶性蛋白和组织N含量逐渐增加,而可溶性糖含量逐渐降低;在相同N浓度下,NO_3~--N加富幼苗的可溶性糖、叶绿素a和叶绿素c含量最高,NH_4~+-N加富时,可溶性蛋白和组织N含量最高,而Urea加富下墨角藻黄素含量最高。当NH_4~+-N浓度增加至150μmol/L时,幼苗的生长和可溶性蛋白含量下降幅度最大。研究表明,将培养水体中NO_3~--N加富至50~150μmol/L或NH_4~+-N加富至25~100μmol/L时,可有效促进半叶马尾藻幼苗的生长、光合作用和物质积累,为室内幼苗顺利度夏培育提供保障。  相似文献   

7.
为减少生物絮团培养过程中的碳源添加和溶氧消耗,节约成本,逐步将C/N比值从15降至7.9,进行低C/N驯化培养。在此基础上,对低碳条件下培育的生物絮团在无外加碳源和碳源充足时的氮去除、NO_2~--N积累、碱度消耗等情况进行了研究,综合评价其自养硝化(autotrophic nitrification,AN)和异养硝化-好氧反硝化(heterotrophic nitrification-aerobic denitrification,HN-AD)效能。结果表明,低C/N驯化的生物絮团具有较高的AN活性和HN-AD活性,对NH_4~+-N去除率分别达97.10%和100.00%。氨氧化过程为AN的限速步骤,比氨氧化速率为13.17 mg·(g VSS·d)~(-1),小于比亚硝酸盐氧化速率[29.20 mg·(g VSS·d)~(-1)],HN-AD的比氨氧化速率达40.28 mg·(g VSS·d)~(-1),约为AN过程的3倍。由于同步硝化反硝化的存在,HN-AD的碱度消耗(3.34 g碱度·g~(-1)NH_4~+-N,以Ca CO_3计)小于AN(4.30 g碱度·g~(-1)NH_4~+-N),且HN-AD的TIN去除率达53.69%。HN-AD的NO_2~--N积累较多,最多达2.62 mg·L~(-1),积累率为46.37%,AN的NO_2~--N最高仅0.47 mg·L~(-1),积累率为3.31%。研究结果可为生物絮团定向驯化及其在水产养殖水处理中的应用提供理论参考。  相似文献   

8.
为研究藤壶壳作为生物滤料应用于对虾养殖尾水处理的可行性,通过比较陶瓷环组、聚乙烯(PE)组、藤壶壳组和藤壶壳+PE组4个不同滤料组合的生物挂膜效果,初步评价藤壶壳作为生物滤料的应用价值;通过设定藤壶壳的不同填充率(滤料体积∶尾水体积),研究填充率对对虾塘养殖尾水处理效果的影响。结果显示:藤壶壳组挂膜成功时间较早,水处理效果好;藤壶壳不同填充率对水处理中悬浮物、氨氮(NH_4~+-N)、亚硝酸盐氮(NO_2~--N)的处理效果有显著影响,A、B、C、D各组悬浮物在6 h时的去除率分别达(68.7±4.3)%、(74.5±7.0)%、(80.9±4.2)%和(82.1±3.8)%,其中B、C、D组去除率显著高于A组(P0.05);4组的氨氮最终去除率都在92.1%以上,以0.1 mg/L为基准,A组氨氮降至此质量浓度以下需要时间5 d,B、C组4 d,D组3 d,降解速率为D组C组B组A组;4组的亚硝酸盐氮最终去除率都在98.0%以上,以0.1 mg/L为基准,A组的亚硝酸盐氮降至此质量浓度以下需要时间为6 d,B、C、D组需要5 d,降解速率为D组C组B组A组。研究表明:藤虎壳作为生物滤料应用于对虾养殖尾水处理,效果良好,且随着填充率的增大,处理效率增强;但考虑到经济成本和应用实际,建议藤壶壳填充率为2∶9。  相似文献   

9.
花津滩芽孢杆菌(Bacillus hwajinpoensis) SLWX2是1株从海水养殖环境分离的可高效去除水体中氨氮(NH_4~+-N)、亚硝酸氮(NO_2~–-N)和硝酸氮(NO_3~–-N)的菌株。本实验在添加葡萄糖条件下,研究NH_4~+-N、NO_2~–-N和NO_3~–-N作为唯一氮源和环境因子(温度、pH、C/N和盐度)对该菌株生长和脱氮性能的影响。结果显示,菌株对这3种形态氮的去除与其生长保持一致,主要发生在对数生长期;当NH_4~+-N作为唯一氮源时,生长和脱氮均没有延迟期,NH_4~+-N在去除过程中,没有NO_2~–-N和NO_3~–-N的积累;当NO_2~–-N作为唯一氮源时,生长和脱氮均有较长延迟期,在NO_2~–-N消除过程中,没有NH_4~+-N和NO_3~–-N的积累;当NO_3~–-N作为唯一氮源时,生长和脱氮也有较长延迟期,在NO_3~–-N消除过程中,基本检测不到NH_4~+-N,NO_2~–-N呈先上升后下降趋势。环境因子影响研究表明,环境因子对该菌株的生长和脱氮性能影响基本一致,在pH为6~8.5、温度为28~40℃、C/N为5~25、Na Cl为0~30g/L条件下,菌株展现了良好的生长特性和脱氮性能。其中,最佳条件中,温度为30℃,C/N为25,p H为8.0,盐度为25。该菌株可高效去除NH_4~+-N、NO_2~–-N和NO_3~–-N,对环境条件适应范围较广,在工业和养殖废水脱氮中具有较大的应用潜力。  相似文献   

10.
本研究使用自主设计的厌氧反硝化器,以斜发沸石为填料,自然挂膜,与循环水养殖系统一级生物滤池串接,探索不同水力停留时间(HRT)下反应器的脱氮效果。结果显示,在实验过程中,反应器对无机氮(IN)、总氮(TN)均有较好的去除效果。在低水力停留时间(HRT7.43h)下,反应器主要去除的是氨氮(NH_4~+-N);高水力停留时间下(HRT≥7.43h),反应器主要去除的是硝酸盐氮(NO_3~–-N)。当HRT为17.52h时,反应器的脱氮效果最好,NO_3~–-N去除率为77.48%。此后,HRT延长,脱氮效果下降。脱氮效果越好,亚硝酸盐氮(NO_2~–-N)、NH_4~+-N积累越严重,NO_2~–-N最先开始积累。本研究可为厌氧反硝化装备的开发提供参考。  相似文献   

11.
利用自制的硝化细菌菌剂促进移动床生物膜反应器(Moving bed biofilm reactor,MBBR)的挂膜启动,分析不同载体氨氮负荷、碳氮比条件下反应器运行状况,并进一步进行了实验室模拟循环水养殖草金鱼实验。结果显示,利用自制硝化菌剂能够完成整个移动床反应器的启动过程,在接种15 d后使循环出水氨氮稳定在1 mg/L以下。单位体积载体氨氮负荷实验表明,MBBR能够在100 mg TAN/(L填料·d)条件下,使出水满足一般水产养殖水质要求(氨氮0.5 mg/L,亚硝氮0.1 mg/L)。进水碳氮比在1以内时MBBR能够稳定高效运行。在实验室模拟循环水养殖过程中,经菌剂强化的MBBR能维持循环出水氨氮低于0.5 mg/L,亚硝氮低于0.05 mg/L。  相似文献   

12.
一种实用型工厂化养殖水处理技术报告   总被引:2,自引:0,他引:2  
采用人工湿地与功能性滤料相结合的方式对工厂化养殖污水进行处理,测试结果显示处理后水质各项指标都达到甚至高于国家规定的养殖用水的指标要求,养殖水NH4+-N由最高3.0 mg/L降到0.2 mg/L,NO2--N由最高4.0 mg/L降到0.2 mg/L。测试结果说明该项水处理技术是一个投资少、能耗低、水质改良效果理想的实用技术。  相似文献   

13.
采用上流式和下流式曝气生物滤池处理凡纳滨对虾(Litopenaeus vannamei)养殖污水,连续进行30 d,分析出水水质,并观察系统运行情况和装置污染状况。研究了养殖污水中化学需氧量、氨氮、硝酸盐氮、亚硝酸盐氮、无机氮及活性磷酸盐6项指标的去除效果。实验结果表明:从养殖污水主要污染物指标的去除效果和稳定性上看,上流式优于下流式曝气生物滤池。在系统进水化学需氧量质量浓度为7.62~8.20 mg/L、氨氮质量浓度为0.62~0.65 mg/L、硝酸盐氮质量浓度为0.54~0.59 mg/L、亚硝酸盐氮质量浓度为0.23~0.27 mg/L、无机氮质量浓度为1.40~1.47 mg/L、活性磷酸盐质量浓度为0.24~0.29 mg/L,水温为25℃~30℃时,上流式曝气生物滤池对养殖污水中6项指标的去除率分别为:45.2%、88.9%、58.5%、78.8%、75.3%和25.1%。可见,对氨氮的去除效果最佳,亚硝酸盐氮和无机氮次之,化学需氧量和硝酸盐氮的去除效果较差,活性磷酸盐去除率最低。  相似文献   

14.
为得到吸附能力强、水质处理效果良好的微生物固定化载体,本实验沸石、火山石、陶环、核桃壳、牡蛎壳五种不同载体对蜡样芽孢杆菌(Bacillus cereus,NY5株)的负载性能,以及在以养殖废水作为空白对照,游离NY5作为阳性对照的条件下,不同载体固定NY5对养殖的处理效果,并利用主成分分析法对水质处理效果进行综合评价。结果显示:沸石和牡蛎壳对NY5的负载性能较好,载菌量分别达1.25×10~9、9.0×10~8CFU/g;在养殖废水处理方面,火山石NY5组第7天、牡蛎壳NY5组第21天时NH_4~+-N浓度与空白对照相比分别降低53.4%、56.6%;火山石NY5组第7天时NO_3~--N浓度与空白对照相比降低87.9%;第28天时火山石NY5组、牡蛎壳NY5组NO_2~--N浓度与空白对照相比分别降低90.1%、80.2%;第14天时火山石NY5组TN浓度与空白对照相比降低51.6%。从主成分分析的结果也可以看出,火山石NY5组和牡蛎壳NY5组对养殖废水综合处理效果较好。  相似文献   

15.
水浮莲对水产养殖排放水体净化的初步研究   总被引:1,自引:3,他引:1  
研究了水浮莲(Pistia stratiotes)在可控条件下对水产养殖排放污水中的氨氮、亚硝酸氮、硝酸氮、总氮、总磷、化学耗氧量等水质指标的去除效果。试验结果表明,水浮莲对水体中的氨氮、亚硝酸氮、硝酸氮、总氮、总磷和COD均有一定的净化效果,各水质指标的含量均有不同程度的降低,其最大去除率分别为42.4%、47.5%、23.2%、5.80%、51.5%和25.9%。  相似文献   

16.
蔡葆青 《福建水产》2012,34(1):16-20
本实验通过水体与育苗池消毒、合理投喂、科学防病以及育苗池水质理化因子(DO、pH、NH 4+-N、NO 2--N、COD)和病原生物(弧菌、WSSV等)的实时监测,对凡纳滨对虾高健康育苗模式做了一定的探索。实验结果显示,整个育苗期间育苗池水溶解氧保持在4.2~5.8mg/L(平均5.01±0.63mg/L),pH保持在8.04~8.38(平均8.13±0.11);NH 4+-N控制在0.15~1.21mg/L(平均0.51±0.40mg/L),NO 2--N控制在0.15~1.21mg/L(平均0.05±0.02mg/L),COD控制在1.56~7.02mg/L(平均4.75±2.18mg/L)。异养细菌数200~91000cfu/mL,弧菌0~6980cfu/mL。投放无节幼体4600×104尾,收获虾苗1280×104尾,成活率达27.8%,且虾苗体质健康,活力旺盛,无携带病毒。  相似文献   

17.
2016年和2017年分别调查了位于浙江省绍兴市滨海新区的12口凡纳滨对虾围垦滩涂养殖池塘内的理化环境和浮游植物。结果显示:池塘内盐度变化范围为0~2,溶氧为6.2~13.9 mg/L,pH为7.5~9.8,总氨氮(TAN)为0.00~0.72 mg/L,亚硝酸盐氮(NO_2~--N)为0.00~1.70 mg/L,硝酸盐氮(NO_3~--N)为0.18~4.77 mg/L,总氮为1.74~6.08 mg/L,总磷为0.20~2.72 mg/L,总有机碳为1.88~42.57 mg/L,C/N为10~39。池塘内浮游植物种类隶属6门、24科、42属,其中蓝藻和绿藻为优势种。浮游植物生物量为(0.15~2.30)×107cell/L,叶绿素a(Chl.a)为2.62~37.24μg/L。Chl.a与蓝藻生物量显著正相关。NO_2~--N和NO3--N均与pH显著负相关。初步分析认为高pH可能是导致2016年池塘养殖凡纳滨对虾死亡率较高的重要原因,因此采取措施控制蓝藻生物量和水体的p H应有助于提高对虾养殖的存活率。  相似文献   

18.
在20L水箱中加入15L人工污水模拟工厂化循环水养殖系统的生物滤池,采用优势菌种挂膜法,对滤材种类、混合菌液添加比例及接种次数等条件进行了优化,确定了快速挂膜的最佳实验室工作条件。在21d内对试验水体中的NH+4、NO-3和NO-2进行了监测。试验结果显示,最优试验条件为使用塑料弹性滤材作为生物膜载体,每7d接种1次优势菌液,硝化细菌∶反硝化细菌∶芽孢菌∶动胶菌添加比例为2∶1∶1∶1,在此条件下,第7d开始形成生物膜,第14d生物膜基本形成,第21d形成均匀完整的生物膜。成熟的生物膜在15d内对水体NH+4的最大降解量可超过5.00mg/L,即成熟生物膜降解NH+4的速率为每日降解超过0.50mg/L。当初始NH+4为5.00~10.00mg/L,成熟生物膜对NH+4和NO-2的降解能力在15d内可达到上限。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号