首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
乙烯受体基因LeETR1和LeETR4的克隆及在番茄果实中的表达   总被引:2,自引:0,他引:2  
摘要:为研究野生型番茄(Lycopersicon esculentum Mill. cv . Lichun)和转反义ACS 番茄果实中乙烯受体基因LeETR1和LeETR4的表达与乙烯的关系,实验用RT-PCR方法扩增了乙烯受体基因LeETR1和LeETR4片段,用两片段作探针进行Northern 杂交。结果表明:两受体基因的表达在番茄果实成熟进程中变化不明显,LeETR4在同一时期的果实外果皮中表达水平低于其在辐射壁和中柱的表达。转反义ACS番茄果实中LeETR1和LeETR4的表达水平显著低于野生型番茄果实,外源乙烯处理转反义ACS番茄果实,促进两个受体基因的表达。可见果实中LeETR1和LeETR4的表达受乙烯调控的影响。  相似文献   

4.
生长调节剂处理对高州矮香蕉贮藏品质的影响   总被引:2,自引:0,他引:2  
以高州矮香蕉为试材,研究了1-甲基环丙烯(1-MCP)和外源乙烯处理对香蕉贮藏品质的影响。结果表明,200nl/L 1-MCP处理可显著抑制香蕉可溶性糖和可溶性固形物含量上升,延缓果实硬度下降,从而延缓香蕉后熟进程;20μl/L外源乙烯对1-MCP处理果实的后熟进程影响不明显。  相似文献   

5.
为明确铜胺氧化酶(CuAO)在桃果实成熟过程中的作用,分别采用1.0、5.0和10.0 mmol·L-1的CuAO抑制剂氨基胍(AG)对黄水蜜桃果实进行喷施处理,并于桃果实成熟后测定果实硬度。结果表明,5 mmol·L-1 AG处理组桃果实的硬度保持效果最好。进一步采用5.0 mmol·L-1 AG处理黄水蜜桃果实,并测定果实成熟相关生理指标。结果表明,AG处理下桃果实在采后7 d内果实硬度均显著高于对照水平,乙烯释放量和呼吸强度均显著低于对照水平,表明抑制CuAO介导的多胺分解可显著延缓桃果实成熟。AG处理显著抑制乙烯合成、生长素转运和细胞壁降解相关基因PpACO1、PpACSPpPIN1、PpGH3.3、PpPGPpPME1的表达水平。为进一步明确CuAO在桃成熟中的功能,利用病毒诱导的基因沉默(VIGS)技术沉默腐胺(Put)分解关键基因PpCuAO4。结果显示,转基因桃果实PpCuAO4表达水平仅为对照的18%,Put含量和果实硬度显著高于对照水平,而乙烯释放量和呼吸强度均显著低于对照水平。上述结果表明,PpCuAO4介导的Put分解可以促进桃果实成熟。本研究为进一步深入解析多胺(polyamine)调控桃果实成熟的机制提供了重要的理论依据。  相似文献   

6.
Ripening affects the quality and nutritional contents of fleshy fruits, and papayas are climacteric fruits very susceptible to postharvest losses due to the fast softening caused by ethylene. This paper reports the changes in respiration, ethylene production, and pulp color and firmness, along with the contents of soluble sugars and major carotenoids, during ripening of 'Golden' papaya, an important Brazilian cultivar that has been exported to North American and European markets. The results obtained for nontreated and ethylene- or 1-MCP-treated papaya suggest that 1-MCP can decrease the quality of treated fruit and that even the use of ethylene for triggering or inducing homogeneous ripening can result in lower quality when compared to that of fruit allowed to ripe naturally.  相似文献   

7.
Hormonal metabolism associated with fruit ripening in two cantaloupe muskmelon cultivars, Talma and Manta, has been studied. The ethylene crisis began on day 33 after fruit set, reaching the maximum values of internal ethylene concentration and ethylene production rate on day 35 after fruit set. This was the optimum moment for consumption as shown by the higher content in soluble solids, ripening index, sensory analysis, and color parameter values. The b parameter and the b/a quotient values in peel were good indicators of the maturity stage, the optimum moment for harvesting being about day 33 after fruit set (when autocatalytic ethylene synthesis has begun), with values of 20 and 5 for the b parameter and b/a quotient, respectively. In both cultivars, free 1-aminocyclopropane-1-carboxylic acid (ACC) content increased until day 35 after fruit set and conjugated ACC increased in postclimacterium. The increase in both ACC-synthase and ACC-oxidase activities together could be responsible for the climacteric ethylene production. Significant differences in the abscisic acid evolution in Talma and Manta cultivars were reached, and also a possible stimulation of ethylene by this hormone could be established.  相似文献   

8.
为探究低温对果实采后成熟软化与淀粉降解的影响,以红阳猕猴桃果实为试验材料,研究在低温贮藏期间,猕猴桃果实硬度,可溶性固形物、乙烯、淀粉含量以及淀粉酶相关基因的变化。结果表明,低温贮藏能显著抑制猕猴桃果实采后成熟软化,延缓果实淀粉的降解和可溶性固形物含量的增加,维持贮藏期间果实较高的硬度。低温贮藏抑制乙烯合成关键基因AcACO1和AcACS1的表达,抑制乙烯合成。同时,低温贮藏显著抑制淀粉降解相关基因AcAMY1、AcBAM1/3、AcISA3、AcLDA1和AcDPE1的表达。在低温贮藏后期,淀粉酶相关基因AcAMY1、AcBAM1/3、AcLDA1和AcDPE1的表达与乙烯释放速率有关。综上,低温贮藏延缓猕猴桃采后成熟软化进程与淀粉降解密切相关,可能主要通过抑制乙烯合成,从而影响贮藏后期淀粉降解速率,最终延缓果实软化进程。本研究结果为猕猴桃采后低温贮藏提供了理论依据。  相似文献   

9.
为了解Aux/IAA家族基因在李果实成熟过程中的生物学功能,通过生物信息学鉴定三月李及其红肉突变体果实转录组中的Aux/IAA家族基因,并分析其在果实成熟过程中的表达模式。结果表明,三月李及其红肉突变体果实转录组中共有26个Aux/IAA家族成员,大部分为位于细胞核的不稳定亲水蛋白质。系统进化树分析表明,Aux/IAA家族成员可分为A、B 两组,共9个亚组。大部分Aux/IAA蛋白质含有4个高度保守的结构域。16个Aux/IAA家族基因在三月李及其红肉突变体果实成熟过程中差异表达。PsIAA11、PsIAA13、PsIAA14、PsIAA18、PsIAA19和PsIAA25在三月李及其红肉突变体果实成熟过程中的表达模式存在显著差异。上述结果表明,Aux/IAA家族基因与李果实成熟密切相关,这为深入研究Aux/IAA家族基因在李果实成熟过程中的功能奠定了基础。  相似文献   

10.
香蕉与枯萎病互作机理研究一直是近年来研究的热点,目前对枯萎病菌的致病机理及香蕉的感、抗病机理还不清楚。本文利用前期表达谱分析结果克隆了乙烯合成及调控途径中的关键酶基因乙烯形成酶基因(MaACO)和乙烯响应因子基因(MaERF1),通过RT-PCR检测,对这两个基因在感、抗病香蕉种质中的表达水平进行研究。结果表明,MaACO和MaERF1基因对机械损伤非常敏感,尤其在损伤初期(3h)的表达水平远高于后期;对于枯萎病菌侵染处理的植株,尤其在感染初期(3h)MaACO和MaERF1的表达水平在抗性植株中的表达量均比感病植株中的低;抗性种质中乙烯途径可能受到抑制,香蕉的感病性可能与侵染初期对乙烯信号的敏感性相关。本研究为利用乙烯抑制剂进行香蕉抗枯萎病新方法的研究奠定了基础。  相似文献   

11.
猕猴桃ACC合成酶基因家族四个成员的克隆   总被引:5,自引:0,他引:5  
通过PCR方法从中华猕猴桃中分离出ACC合成酶基因家族的四个成员(AC-ACS1A、AC-ACS1B、AC-ACS2和AC-ACS3)的基因组DNA片段,AC-ACS1A、AC-ACS1B和AC-ACS2与其它植物该基因的氨基酸序列同源性最高可达76%以上,而AC-ACS3与其它植物ACC合成酶基因的氨基酸序列同源性均低于60%,与已知的其它猕猴桃ACC合成酶基因的同源性在51%-56%之间,且不存在MSSFGL保守区,因而属于一个未见报道的新成员。  相似文献   

12.
Wounding is one of the most effective stress signals to induce ethylene synthesis in persimmon (Diospyros kaki Thunb.). We found that wound-induced ethylene biosynthesis is subjected to negative feedback regulation in mature 'Saijo' persimmon fruit since ethylene production was enhanced by 1-methylcyclopropene (1-MCP) (an inhibitor of ethylene perception) pretreatment, which was approximately 1.8 fold of that in control tissues (without 1-MCP pretreatment). Wound-induced 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and DK-ACS2 gene expression were substantially increased by 1-MCP pretreatment after 12 h, which resulted in much higher ACC content in 1-MCP pretreated tissues than that in a control after 24 h. These results indicated that wound-induced DK-ACS2 gene expression was negatively regulated by ethylene in mature persimmon fruit. However, 1-MCP pretreatment had no effect on DK-ACO1 gene expression, suggesting the independence of wound-induced DK-ACO1 on ethylene. Out of accord with DK-ACO1 gene expression, ACC oxidase activity was enhanced 48 h after wounding in 1-MCP pretreated tissues, reaching a peak 1.5-fold higher than that in control tissues at 60 h.  相似文献   

13.
Papaya is a climacteric fruit that has high amounts of benzylglucosinolates (BG) and benzylisothiocyanates (BITC), but information regarding levels of BG or BITC during fruit development and ripening is limited. Because BG and BITC are compounds of importance from both a nutritional and a crop yield standpoint, the aim of this work was to access data on the distribution and changes of BG and BITC levels during fruit development and ripening. BG and BITC levels were quantified in peel, pulp, and seeds of papaya fruit. Volatile BITC was also verified in the internal cavity of the fruit during ripening. The influence of the ethylene in BG and BITC levels and mirosinase activity was tested by exposing mature green fruits to ethylene and 1-methylcyclopropene (1-MCP). The highest BG levels were detected in seeds, followed by the peel and pulp being decreased in all tissues during fruit development. Similarly, the levels of BITC were much higher in the seeds than the peel and pulp. The levels of BG for control and ethylene-treated fruit were very similar, increasing in the pulp and peel during late ripening but not changing significantly in seeds. On the other hand, fruit exposed to 1-MCP showed a decrease in BG amount in the pulp and accumulation in seed. The treatments did not result in clear differences regarding the amount of BITC in the pulp and peel of the fruit. According to the results, ethylene does not have a clear effect on BITC accumulation in ripening papaya fruit. The fact that BG levels in the pulp did not decrease during ripening, regardless of the treatment employed, and that papaya is consumed mainly as fresh fruit, speaks in favor of this fruit as a good dietary source for glucosinolate and isothiocyanates.  相似文献   

14.
Cherimoya ripening with and without prior storage at 8 degrees C was studied in fruit harvested on early- (EH), mid- (MH), and late-season (LH) dates. Most of the differences in the ripening behavior were observed between EH cherimoyas and fruit from the other two harvest dates. During ripening of nonstored fruit, the increases in ethylene production and respiration rates and in soluble sugars and organic acids contents were faster in EH than in the other fruits (which ripened 1 day later). These differences could be due to variations in the physiological stage at harvest as a result of the different heat units (degree/month) accumulated in the last month of fruit development. During ripening of cold-stored fruit the differences in the time to the onset of the increase in ethylene production and in the accumulation of malic and citric acid were minimized, especially after longer storage times, and the relationship of harvest date with the increases in respiration rate was lost. Glucose and fructose accumulation was reduced by prior cold storage, especially after longer storage duration and in MH and LH fruit, but sucrose hydrolysis was almost complete, as in nonstored fruit. It is suggested that glucose and fructose accumulation is more sensitive to low temperature than sucrose metabolism and that this differential sensitivity is more marked in MH and LH cherimoyas. The time to ripen was inversely related to prior cold storage duration and was dependent on harvest date: the later the harvest date, the longer storage time it took to shorten subsequent ripening.  相似文献   

15.
Starch phosphorylases are enzymes that can use starch as substrate, and they are supposed to act in both in starch synthesis and degradation. This paper reports the effects of ethylene and 1-methylcyclopropene (1-MCP) on the degradation of starch and phosphorylase activity and gene expression. The results indicate that phosphorylase activity is induced during ripening and that it is associated with the onset of starch degradation. The regulation of banana phosphorylase activity is mainly dependent on gene expression, and the absence of ethylene perception by 1-MCP had a positive effect. However, this effect can be precluded by increased levels of ethylene, both autocatalytic and exogenous.  相似文献   

16.
To elucidate the regulatory mechanisms of carotenogenesis in Japanese apricot (Prunus mume Siebold & Zucc.), the relationships between carotenoid accumulation and the expression of the carotenogenic genes, phytoene synthase (PmPSY-1), phytoene desaturase (PmPDS), zeta-carotene desaturase (PmZDS), lycopene beta-cyclase (PmLCYb), lycopene epsilon-cyclase (PmLCYe), beta-carotene hydroxylase (PmHYb), and zeaxanthin epoxidase (PmZEP), were analyzed in two cultivars with different ripening traits, 'Orihime' and 'Nanko.' In 'Orihime' fruits, large amounts of carotenoids accumulated on the tree, concomitant with the induction of PmPSY-1 and the downstream carotenogenic genes PmLCYb, PmHYb, and PmZEP. In 'Nanko' fruits, carotenoids accumulated mainly after harvest, correlating with an appreciable induction of PmPSY-1 expression, but the downstream genes were not notably induced, which may explain the lower total carotenoid content in 'Nanko' than in 'Orihime.' In both cultivars, a decrease in PmLCYe expression and increased or constant PmLCYb expression could cause the metabolic shift from beta,epsilon-carotenoid synthesis to beta,beta-carotenoid synthesis that occurs as ripening approaches. Next, the effects of ethylene on the expression of PmPSY-1 and carotenoid accumulation were investigated in 'Nanko' fruits treated with propylene or 1-methylcyclopropene (1-MCP). Propylene treatment induced both ethylene production and carotenoid accumulation. PmPSY-1 was constitutively expressed, but propylene treatment accelerated its induction. 1-MCP treatment caused a slight inhibition of carotenoid accumulation along with the repression, although not complete, of PmPSY-1. Collectively, although PmPSY-1 expression was not exclusively regulated by ethylene, both the notable induction of PmPSY-1 accelerated by ethylene and the subsequent induction of the downstream carotenogenic genes, especially PmLCYb, could be necessary for the massive carotenoid accumulation that occurs during ripening. Furthermore, the switch from PmLCYe expression to PmLCYb expression could cause beta,beta-carotenoid accumulation in both Japanese apricot cultivars.  相似文献   

17.
锰超氧化物歧化酶(MnSOD)在植物生长发育与衰老及应对逆境胁迫中发挥重要作用。为探究MnSOD基因在猕猴桃果实后熟软化及采后贮藏过程的作用,本研究以米良1号猕猴桃为试材,克隆了2个MnSOD基因,分别命名为AdMSD1和AdMSD2。AdMSD1包含675 bp的开放阅读框(ORF),编码224个氨基酸,登录号为KY471358;AdMSD2包含690 bp的ORF,编码229个氨基酸,登录号为KY471359。生物信息学分析结果表明,AdMSD1和AdMSD2均编码稳定的碱性亲水蛋白,包含保守金属结合域DVWEHAYY、Mn2+金属结合位点和特征氨基酸。AdMSD1和AdMSD2均由6个外显子和5个内含子组成。进化树结果显示,2个蛋白聚在双子叶植物组的不同分支,属于MnSOD家族的不同成员。定量分析结果表明,AdMSD1在叶片的转录水平最高,在花中的转录水平最低;AdMSD2在花中的转录水平最高,在成熟果中的转录水平最低。2个基因在果实后熟软化过程的转录呈动态变化,但均在软化初期上调,软化Ⅰ期和Ⅱ期下调,进入软化Ⅲ期后再次回升。果实中AdMSD1和AdMSD2的转录水平均在低温贮藏过程中下降。AdMSD1在脱落酸处理的第1和第5天表达上调,而AdMSD2在脱落酸处理后表达下调;AdMSD1在赤霉素处理后表达下调,而AdMSD2在赤霉素处理的第1天表达上调,之后下调。研究结果表明,AdMSDs基因参与猕猴桃果实的后熟软化和采后贮藏过程,为进一步研究SOD在猕猴桃果实采后品质调控中的作用机制奠定了基础。  相似文献   

18.
The effects of the application of the jasmonic acid derivative n-propyl dihydrojasmonate (PDJ) on ethylene biosynthesis, volatile compounds, and endogenous jasmonic acid (JA) and methyl jasmonate (MeJA) were examined in Japanese apricot (Prunus mume Sieb.) infected by a pathogen (Colletotrichum gloeosporioides). The fruit were dipped into 0.4 mM PDJ solution before inoculation with the pathogen and stored at 25 °C for 6 days. The inoculation induced an increase in 1-aminocyclopropane-1-carboxylic acid (ACC), ethylene, JA, and MeJA. In contrast, PDJ application reduced the endogenous JA, MeJA, and ethylene production and expression of the ACC oxidase gene (PmACO1) caused by the pathogen infection. The lesion diameter with C. gloeosporioides decreased upon PDJ application. The alcohol, ester, ketone, and lactone concentrations and alcohol acyltransferase (AAT) activity increased in the pathogen-infected fruit, but were decreased by PDJ application. These results suggest that PDJ application might influence ethylene production through PmACO1 and that aroma volatile emissions affected by pathogen infection can be correlated with the ethylene production, which is mediated by the levels of jasmonates.  相似文献   

19.
Unripe bananas have a high content of starch (almost 20%) that is metabolized during fruit ripening with a concomitant synthesis of soluble sugars. Since starch granules are composed of amylose and amylopectin, several enzymes have to be involved in its mobilization during banana ripening, with a necessary participation of one starch-debranching enzyme (DBE) to hydrolyze the alpha-1,6-branches of amylopectin. Banana DBE seems to be an isoamylase-type enzyme, as indicated by substrate specificity and the cloning of a 1575 bp cDNA, similar to the isoamylase sequences from potato, Arabdopsis, and maize. The assays for DBE indicated only minor changes in activity during ripening, and the results of the northern and western blots with antiserum against the recombinant banana isoamylase were in agreement with the steady-state level of activity, since no significant changes in gene expression were observed. The high activity on beta-limit dextrin and the similarity to the potato isoform 3 suggest that during banana ripening the hydrolysis of alpha-1,6-linkage of amylopectin results from the activity of a pre-existing isoamylase-type debranching enzyme in coordination with other amylolitic enzymes. To the best of our knowledge, this is the first evaluation of activity and expression of a DBE from a fruit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号