首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrauterine infusion of 1 per cent oyster glycogen solution was used to induce acute endometritis in four genitally normal mares. Numbers of viable neutrophils recovered in uterine washings had increased by 1 h after infusion and remained elevated for at least 72 h. There was a significant correlation between numbers of viable neutrophils and total protein concentrations and between prostaglandin (PG)F and PGE2 concentrations in washings. There was also a significant relationship between concentrations of 15-keto-13, 14-dihydro PGF2 alpha in plasma and PGF in washings. Intrauterine concentrations of PGF were influenced by cycle stage and in turn the induced acute endometritis interfered with normal ovarian function. Mares with persistent endometritis had significantly higher concentrations of PGF and total protein and percentage of neutrophils and mononuclear cells in washings than normal mares. White blood cells from mares were capable of producing PGF and PGE2 in vitro.  相似文献   

2.
The influence of arachidonic acid metabolites on migration of equine neutrophils under agarose was investigated. Leukotriene B4 (LTB4) was chemotactic at concentrations between 0.1 and 1000 ng ml-1 and prostaglandin E2 (PGE2) at 1 and 10 ng ml-1 but not at higher or lower concentrations. Prostaglandin F2 alpha (PGF2 alpha) was not chemotactic for equine neutrophils at any concentration. Random migration was significantly inhibited (P less than 0.05) by suspension of neutrophils in LTB4 (0.1 to 1000 ng ml-1) and PGF2 alpha (0.1 ng ml-1) but not at high concentrations. There was a significant positive correlation between random migration of neutrophils suspended in uterine washings from persistently endometritic mares and concentrations of endogenous PGF (P less than 0.002) and PGE2 (P less than 0.05) in washings. Thus certain metabolites of arachidonic acid affect migration of equine neutrophils and may play a significant role in recruitment of neutrophils to sites of inflammation in the horse.  相似文献   

3.
Immunosuppressive substances which interfere with lymphocyte blastogenesis are released in vitro by embryos and endometrium from mares in early pregnancy. Immunosuppression was not evident when tissues were cultured in the presence of indomethacin (a prostaglandin-synthesis inhibitor). Various prostaglandins (PGs) were added to equine lymphocytes and lymphocyte proliferation was measured after the addition of concanavalin A (Con A) or phytohaemagglutinin A (PHA). PGE2 and PGF2 alpha inhibited Con A-induced blastogenesis down to final concentrations of 1.8 x 10(-9) M and 1.3 x 10(-6) M, respectively. Other PGs tested (6-keto-PGF1 alpha and 13,14-dihydro-15-keto-PGF2 alpha) did not affect Con A-induced blastogenesis. PHA-induced blastogenesis was inhibited by concentrations down to 1.8 x 10(-9) M PGE2, 3.3 x 10(-7) M PGF2 alpha and 2.8 x 10(-4) M 6-keto-PGF1 alpha. At all concentrations, 13,14-dihydro-15-keto-PGF2 alpha only slightly reduced PHA-induced blastogenesis. Therefore, PGE2 was the only prostaglandin tested which, at physiological concentrations, significantly inhibited incorporation of [3H] thymidine. The mechanism of PGE2-mediated suppression was studied by adding PGE2 and T cell growth factors (TCGF) to TCGF-responsive lymphocytes. PGE2 reduced the TCGF-mediated blastogenic response in a dose-dependent manner. Furthermore, culture supernatant from embryos and endometrium from 14-day pregnant mares inhibited lymphocyte blastogenesis induced by TCGF. These results show that PGE2 interferes with lymphocyte blastogenesis by TCGF-dependent mechanisms. It is suggested that the PGE2 present in the uterus of the early pregnant mare may be one of the factors involved in immunosuppression at the time of maternal recognition of pregnancy.  相似文献   

4.
Arachidonate metabolites were measured in bronchoalveolar lavage fluid (BALF) from horses with (N = 4) and without (N = 7) chronic obstructive pulmonary disease (COPD). Prostaglandin (PG) D2, leukotriene (LT) B4 and LTC4 were present in highest concentrations in BALF from clinically normal horses. Concentrations of PGE2 and PGF were significantly higher in BALF from horses with COPD than in BALF from normal horses, but no differences were detected in thromboxane B2, 6-keto-PGF1 alpha, PGD2, LTB4 or LTC4.  相似文献   

5.
The role of prostaglandin F2 alpha (PGF2 alpha) in embryonic loss following induced endotoxemia was studied in mares that were 21 to 44 days pregnant. Thirteen pregnant mares were treated with a nonsteroidal anti-inflammatory drug, flunixin meglumine, to inhibit the synthesis of PGF2 alpha caused by Salmonella typhimurium endotoxin given IV. Flunixin meglumine was administered either before injection of the endotoxin (group 1, -10 min; n = 7), or after endotoxin injection into the mares (group 2, 1 hour, n = 3; group 3, 2 hours, n = 3); 12 pregnant mares (group 4) were given only S typhimurium endotoxin. In group 4, the secretion of PGF2 alpha, as determined by plasma 15-keto-13,14-dihydro-PGF2 alpha concentrations, was biphasic, initially peaking at 30 minutes followed by a second, larger peak approximately 105 minutes after the endotoxin was given IV. When flunixin meglumine was administered at -10 minutes, synthesis of PGF2 alpha was inhibited for several hours, after administration of flunixin meglumine at 1 hour, the second secretory surge of PGF2 alpha was blocked, and administration of the drug at 2 hours did not substantially modify the secretion of PGF2 alpha. Plasma progesterone concentrations were unchanged after endotoxin injections were given in group 1. In group 2, progesterone values decreased less than 2 ng/ml and remained low for several days. In group 3 and group 4, progesterone concentrations decreased to values less than 0.5 ng/ml by 48 hours after endotoxin injections were given.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
These experiments were undertaken to determine the potential for estradiol-17 beta (E2), 2-hydroxyestradiol-17 beta (2-OH-E2) and 4-hydroxyestradiol-17 beta (4-OH-E2) to regulate prostaglandin (PG) E and F2 alpha synthesis by pig endometrium. Endometrium was collected from pigs on d 10 of pregnancy and incubated (15 to 20 mg/well) for three 2-h periods in 2 ml of medium in 24-well culture plates. At the end of each period, the medium was removed and frozen. Later media were thawed and assayed for PGE and PGF2 alpha. During Periods 2 and 3, the medium contained 0, 25, 50, 100 or 150 microM 2-OH-E2 (Exp. 1); 0, 25 or 50 microM 4-OH-E2 (Exp. 2); or 0, 25 or 50 microM E2 (Exp. 3). Each experiment was a factorial with 2-OH-E2, 4-OH-E2 or E2 as one main effect and 0 or 1 mM ascorbate as a second main effect. Ascorbate decreased (P less than .01) PGE and PGF2 alpha release in all experiments. Two-hydroxyestradiol-17 beta decreased (P less than .01) PGE and PGF2 alpha release into the medium during Periods 2 and 3 in a dose-dependent manner (Exp. 1). In Exp. 2, 4-OH-E2 decreased (P less than .07) endometrial release of PGE and PGF2 alpha in Periods 2 and 3 and increased (P less than .01) the PGE:PGF2 alpha in Period 3. In Exp. 3, E2 decreased release of PGE during Period 3 and PGF2 alpha release during Period 2. The PGE:PGF2 alpha was not altered by E2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Plasma glucose and serum insulin, growth hormone and glucocorticoid concentrations were determined in five yearling bulls given (im) 5, 15 or 30 mg prostaglandin E2 (PGE2), 30 mg prostaglandin F2 alpha(PGF2 alpha) or saline. Jugular blood was collected at frequent intervals around the time of injection and at .5--hr intervals from 1 to 9 hr after injections. Thirty milligrams PGE2 and 30 mg PGF2 alpha each caused 15- to 20-fold increases in serum glucocorticoids. Glucocorticoids increased with increasing doses of PGE2. Although PGE2 and PGF2 alpha each increased blood growth hormone, this effect was about twofold larger after PGE2. By contrast, PGE2 depressed serum insulin about 50% for 1 hr, then insulin increased about sixfold until 3 to 4 hours. Blood serum insulin increased after PGF2 alpha, but this effect only approached significance (P less than .10). Plasma glucose increased about 10 mg/100 ml after PGE2, but was not affected significantly by PGF2 alpha. Thus, the effects of PGE2 and PGF2 alpha on hormones which control glucose metabolism differ markedly. We speculate that PGE2 caused a twofold increase in growth hormone secretion within 10 to 20 min, that increased growth hormone induced increased blood glucose within 1 to 2 hr and that increased glucose caused increased insulin secretion at 2 to 4 hr, but we cannot rule out a transitory (1 hr) suppressive effect of PGE2 directly on the pancreas.  相似文献   

8.
The role of decreased luteal activity in embryonic loss after induced endotoxemia was studied in mares 21 to 35 days pregnant. Fourteen pregnant mares were treated daily with 44 mg of altrenogest to compensate for the loss of endogenous progesterone secretion caused by prostaglandin F2 alpha (PGF2 alpha) synthesis and release following intravenous administration of Salmonella typhimurium endotoxin. Altrenogest was administered daily from the day of endotoxin injection until day 40 of gestation (group 1; n = 7), until day 70 (group 2; n = 5), or until day 50 (group 3; n = 2). In all mares, secretion of PGF2 alpha, as determined by the plasma 15-keto-13,14-dihydro-PGF2 alpha concentrations, followed a biphasic pattern, with an initial peak at 30 minutes followed by a second, larger peak at 105 minutes after endotoxin injection. Plasma progesterone concentrations decreased in all mares to values less than 1 ng/ml within 24 hours after endotoxin injection. In group 1, progesterone concentrations for all mares were less than 1 ng/ml until the final day of altrenogest treatment. In 6 of 7 mares in group 1, the fetuses died within 4 days after the end of treatment, with progesterone concentrations less than 1 ng/ml at that time. In the mare that remained pregnant after the end of treatment, plasma progesterone concentration was 1.6 ng/ml on day 41 and increased to 4.4 ng/ml on day 44. In group 2, all mares remained pregnant, even though plasma progesterone concentrations were less than 1 ng/ml in 4 of 5 mares from the day after endotoxin injection until after the end of altrenogest treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Luminal epithelial, glandular epithelial, and stromal cells were isolated from pig endometrium by enzymatic dispersion and sieve filtration. The three cell types, maintained in primary culture, showed distinctly different morphologies when viewed by light and scanning electron microscopy. Immunocytochemical staining indicated that luminal and glandular epithelial cells were positive for both cytokeratin and vimentin. However, stromal cells were positive only for vimentin. Acid phosphatase activity was detected in the culture medium of glandular cells and increased (P less than .05) when progesterone (.1 microM) was included in the culture medium. The secretion of uteroferrin by glandular cells was also indicated by one-dimensional PAGE and Western blot analysis. Stromal cells produced more (P less than .01) prostaglandin E (PGE) than prostaglandin F2 alpha (PGF2 alpha), whereas glandular cells secreted more (P less than .01) PGF2 alpha than PGE. Pregnancy status affected prostaglandin secretion in that stromal cells secreted less (P less than .01) PGE and PGF2 alpha and glandular cells secreted less (P less than .05) PGF2 alpha when they were harvested from pregnant vs cyclic pigs. Furthermore, the PGE:PGF2 alpha ratio in medium from stromal cells was greater (P less than .01) for cells collected from pregnant pigs. This culture system provides an in vitro model for studying the hormonal regulation of the endometrium and potentially may be useful for studying interactions between endometrial cells and embryos in the pig.  相似文献   

10.
The present studies were undertaken to examine the effect of tumour necrosis factor (TNF) alpha on prostaglandins (PGs) F(2alpha) and E(2) release by cultured porcine endometrial cells harvested on days 13-16 after oestrus in comparison to stimulation with oxytocin (OT) and luteinizing hormone (LH). A time-dependent effect of TNFalpha (10 ng/ml) on PGF(2alpha) release was observed in stromal and luminal epithelial cells. Moreover, TNFalpha increased PGF(2alpha) secretion from both endometrial cell types with effective concentrations of 1 (p < 0.05), 10 and 50 ng/ml (p < 0.01). The effect of TNFalpha (10 ng/ml) on endometrial PGF(2alpha) and PGE(2) release was compared with OT (100 nmol/l) and LH (100 ng/ml). All factors affected PGF(2alpha) secretion from stromal cells, however, the stimulation tended to be more potent after OT and LH (p < 0.01) than after TNFalpha (p < 0.05) treatment. In epithelial cells, only TNFalpha was able to stimulate PGF(2alpha) release (p < 0.001). PGE(2) secretion from stromal cells increased after incubation with TNFalpha and OT (p < 0.05). Only LH stimulated PGE(2) release from epithelium (p < 0.001), and its action was very effective when compared with TNFalpha or OT (p < 0.01). Summarizing, TNFalpha induces both PGs secretion from cultured porcine endometrium, but preferentially stimulates PGF(2alpha) release from luminal epithelial cells. Therefore, similarly to OT and LH, TNFalpha may be considered as a potential modulator of endometrial PGF(2alpha) production during luteolysis in the pig.  相似文献   

11.
Acute endometritis was induced in ovariectomized pony mares by infusion of a 1% solution of oyster glycogen. Maximum concentrations of immunoreactive leukotriene B4 in uterine washings coincided with the greatest rate of infiltration of neutrophils into the uterine lumen. Concentrations of immunoreactive leukotriene B4 decreased to basal levels 6 h after infusion and were unaffected by administration of ovarian steroids to ovariectomized mares. Uterine washings from mares with persistent endometritis did not contain significantly different concentrations of leukotriene B4 from genitally normal mares.  相似文献   

12.
We have studied in the porcine endometrium the expression of oxytocin receptor (OTR) mRNA and the effect of progesterone (P4) on oxytocin/oxytocin receptor (OT/OTR) function concerning intracellular Ca2+ mobilisation ([Ca2+]i), prostaglandin F2alpha (PGF2alpha) and E2 (PGE2; PG) secretion. Tissue was taken from cyclic and early pregnant pigs (days 14-16). A higher expression of OTR mRNA (P < 0.05) was observed in the endometrium of cyclic than pregnant pigs. The stimulatory (P < 0.05) effect of OT (10(-7) M) on [Ca2+]i mobilisation was noticed within 15-60 s and 30-60 s in endometrial stromal cells of cyclic and pregnant pigs, respectively. In the presence of P4 (10(-5) M) basal and OT-stimulated [Ca2+]i concentrations decreased in stromal cells during luteolysis and pregnancy. In stromal cells P4 delayed mobilisation of [Ca2+]i in response to OT by 15 s during luteolysis and had no effect during pregnancy. In cyclic and pregnant epithelial cells OT stimulated mobilisation of [Ca2+]i in 45 s and 60 s, respectively. Oxytocin increased (P < 0.05) PGF2alpha secretion during luteolysis and pregnancy and PGE2 during luteolysis from endometrial slices. Progesterone did not inhibit this stimulatory effect. During luteolysis OT increased (P < 0.05) PGF2alpha in epithelial and stromal cells and PGE2 secretion in epithelial cells. In the presence of P4 this effect of OT was reduced only in stromal cyclic cells (6 h culture). The presence of P4 decreased the effect of OT on [Ca2+]i mobilisation only in stromal cells. We found that, in most conditions, P4 did not inhibit the OT-stimulated secretion of PG in the porcine endometrium.  相似文献   

13.
Follicular growth, circulating estradiol concentrations and endometrial prostaglandin F2 alpha (PGF2 alpha) production were measured to determine whether there is an interrelationship among these factors associated with luteolysis. Follicular growth was monitored by rectal palpation every other day during diestrus in 16 mares. Plasma estradiol was determined for daily samples during all estrous cycles. Endometrial tissue was removed for PGF2 alpha analysis by radioimmunoassay on d 10, 12, 14 or 16 during several normal cycles and after d 30 during spontaneously prolonged cycles. Circulating estradiol concentrations were highly correlated with follicular diameter. Follicular growth was initiated before d 14 in normal cycles, thus estradiol was significantly elevated during the portion of diestrus prior to luteolysis. This was not the case during spontaneously prolonged cycles in which a) there was no correlation between follicular size and circulating estradiol, b) follicular growth was initiated an average of 19 d postovulation, and c) estradiol concentrations did not increase. Diestrous estradiol concentrations, during normal cycles, were significantly elevated immediately (72 to 24 h) prior to the time at which peak endometrial PGF2 alpha production occurred (d 12 and 14). During spontaneously prolonged cycles, estradiol concentrations did not rise at the time of expected luteolysis, and endometrial PGF2 alpha production was minimal in d 30 biopsies. Results suggest that diestrus follicular growth and its consequent estradiol production may play a role in initiating luteolysis through endometrial PGF2 alpha production and that delay or failure of this process may result in spontaneously prolonged corpora luteal function.  相似文献   

14.
Our objectives were to determine whether repeated administration of prostaglandin F2alpha (PGF2alpha) to simulate the endogenous mode of secretion would be more effective than a single injection in inducing luteolysis and enable use of smaller doses less likely to cause adverse side effects. The main study comprised 43 dioestrous mares, who were given im. either a single 10 mg dose of natural PGF2alpha (n = 22) or 2 doses of 0.5 mg PGF2, 24 h apart (n = 21). The intensity of side effects was assessed in 8 dioestrous mares given 5, 1.5, 0.5 or 0 mg PGF2alpha in consecutive cycles. Two doses of 0.5 mg PGF2alpha 24 h apart caused lysis of the corpus luteum in all mares, whether this was determined from a fall in plasma progesterone concentrations or reproductive tract/behavioural changes; and when 10 mg PGF2, was given, the corpus luteum was lysed in 17 of 22 mares i.e. a lower proportion (P = 0.0485). A single dose of 0.5 mg PGF2a was no more effective than saline in inducing luteolysis.The intensity of side effects of PGF2alpha increased with dose. Although the 0.5 mg dose was no more likely than saline to cause sweating or muscle spasms, it raised plasma cortisol concentrations and prevented the decline in heart rate seen after saline. We conclude that a 2 dose regimen of administration increases the luteolytic efficacy of PGF2alpha and thereby provides a way to minimise adverse side effects.  相似文献   

15.
At day 24 of gestation, pregnant mares were allotted to 1 of 5 treatment groups (3 to 5 mares/group): group A--nontreated controls; group B--intraembryonic injection of 4 mg of colchicine on day 24; group C--removal of embryo on day 24; group D--subcutaneous injection of 1.25 mg of prostaglandin F2alpha (PGF2alpha) on day 32; and group E--removal of embryo on day 24 and subcutaneous injection of PGF2alpha on day 32. In all mares treated with colchicine (group B), the fetal bulge was absent within 2 days. The interval from injection of colchicine to onset of estrus was very short (mean, 4 days). These results indicated that treatment with colchicine was lethal to the 24-day embryo, and pseudopregnancy did not occur. Surgical removal of the embryo (group C) resulted in pseudopregnancy characterized by a prolonged interval from treatment to return to estrus (mean, greater than 31 days), prolonged production of progesterone, and prolonged maintenance of tense uterine and cervical tone. The interval from treatment to ovulatory estrus was longer (P less than 0.05) for group C mares than for group B mares. The mean interval from treatment to complete loss of tense tubular uterine tone was not significantly different between group A pregnant controls (28.3 days) and group C pseudopregnant mares (30 days). Treatment of pregnant mares (group D) with a single injection of PGF2alpha on day 32 resulted in loss of pregnancy in 4 of 4 mares within 2 to 5 days, and in all group D mares a large decrease in progesterone concentration occurred on day 33, 34, or 35. Although subsequent reproductive activity was variable, all group D mares rapidly lost the tense uterine and cervical tone characteristic of early pregnancy. These results indicated that a single subcutaneous injection of 1.25 mg of PGF2alpha caused loss of pregnancy, and pseudopregnancy did not occur. Treatment of group E mares, which had been made pseudopregnant by removal of embryo, with 1.25 mg of PGF2alpha resulted in termination of pseudopregnancy in 5 of 5 mares. All group E mares returned to estrus within 2 to 5 days after treatment, and progesterone concentration decreased (P less than 0.05) within 2 days after treatment. There was no significant difference in loss of tense tubular uterine or cervical tone between pregnant (group D) and pseudopregnant (group E) mares after PGF2alpha treatment.  相似文献   

16.
Enhanced accumulation of follicular PGF2 alpha with respect to PGE2 during the later phase of the preovulatory period is an apparent prerequisite for ovulation in sheep. Prostaglandin (PG) E2-9-ketoreductase is the enzyme that converts PGE2 into PGF2 alpha. Expression of activity of this enzyme by tissue homogenates of preovulatory ovine follicles was assessed. Homogenates were incubated in the presence of tritiated PGE2. Prostaglandin F2 alpha (i.e., product) was separated from PGE2 by Sephadex chromatography and quantitated by liquid scintillation counting. Progesterone in follicular fluid was measured by RIA. Follicular activity of PGE2-9-ketoreductase and content of progesterone increased approximately sixfold as the time of ovulation approached. Formation of PGF2 alpha from PGE2 was not influenced by inhibition of follicular synthesis of prostaglandins by indomethacin, nor did such treatment affect follicular production of progesterone. Inhibition of follicular synthesis of progesterone by isoxazol suppressed enzymatic conversion of PGE2 into PGF2 alpha; this effect was reversed by progesterone. It appears that progesterone plays an intrafollicular role in induction of activity of PGE2-9-ketoreductase in sheep.  相似文献   

17.
18.
To determine the minimal effective dose of prostagiandin (PGF2alpha; tromethamine salt) given subcutaneously (SC), mares of mixed breeding (400 kg av body weight) were given 2-, 3-, 5-, and 10-mg doses from 7 to 9 days after ovulation. In some but not all mares given doses of 2 and 3 mg of PGF2alpha, luteolysis occurred, but doses of 5 or 10 mg of PGF2alpha were luteolytic in all mares. The 10-mg dose of PGF2alpha did not cause luteolysis in mares 1 day after ovulation, and caused luteolysis in only 2 of 5 mares on day 3 after ovulation. The same dose of PGF2alpha, however, caused luteolysis in all mares on days 5 or 7 after ovulation. The results indicate that the minimal effective luteolytic dose of PGF2alpha (free-acid equivalent) is about 9 mug/kg, and that PGF2alpha is effective fromday 5 after ovulation.  相似文献   

19.
20.
Prostaglandins (PGs) F and E2 were measured in lavage fluid from the uterus of ovariectomised mares after experimental induction of uterine inflammation. Treatment with progesterone alone, or progesterone followed by oestradiol, significantly increased the concentrations of these PGs in the lavage compared with mares treated with oestradiol or control mares. Ovarian steroids, therefore, influenced uterine PG synthesis in response to an inflammatory stimulus. To determine whether the uterine lavage procedure might contribute to the concentrations of prostaglandins in the lavage, the procedure was also performed on six intact mares. With the exception of washings obtained at luteolysis, uterine concentrations of PGF (measured as the plasma metabolite 15-keto-13,14-dihydro PGF2 alpha) had returned to prewashing levels within 30 minutes of the start of uterine lavage. Lavage was therefore unlikely to have influenced the concentrations of prostaglandins in the lavage fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号