首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Is the composition of soil organic matter changed by adding compost? To find out we incubated biowaste composts with agricultural soils and a humus‐free mineral substrate at 5°C and 14°C for 18 months and examined the products. Organic matter composition was characterized by CuO oxidation of lignin, hydrolysis of cellulosic and non‐cellulosic polysaccharides (CPS and NCPS) and 13C cross‐polarization magic angle spinning nuclear magnetic resonance (CPMAS 13C‐NMR) spectroscopy. The lignin contents in the compost‐amended soils increased because the composts contained more lignin, which altered little even after prolonged decomposition of the composts in soil. A pronounced decrease in lignin occurred in the soils amended with mature compost only. Polysaccharide C accounted for 14–20% of the organic carbon at the beginning of the experiment for both the compost‐amended soils and the controls. During the incubation, the relative contents of total polysaccharides decreased for 9–20% (controls) and for 20–49% (compost‐amended soils). They contributed preferentially to the decomposition as compared with the bulk soil organic matter, that decreased between < 2% and 20%. In the compost‐amended agricultural soils, cellulosic polysaccharides were decomposed in preference to non‐cellulosic ones. The NMR spectra of the compost‐amended soils had more intense signals of O–alkyl and aromatic C than did those of the controls. Incubation for 18 months resulted mainly in a decline of O–alkyl C for all soils. The composition of the soil organic matter after compost amendment changed mainly by increases in the lignin and aromatic C of the composts, and compost‐derived polysaccharides were mineralized preferentially. The results suggest that decomposition of the added composts in soil is as an ongoing humification process of the composts themselves. The different soil materials affected the changes in soil organic matter composition to only a minor degree.  相似文献   

2.
Ants are known to concentrate phosphorus (P) inside their nests via collection of food and litter. To elucidate the possible effects on long-term availability of soil P, five anthills abandoned by Red wood ant (Formica polyctena Förster) > 5—20 years ago were characterized for soil P forms in a temperate Danish deciduous forest. Sequentially extracted P fractions and liquid-state 31P nuclear magnetic resonance (NMR) spectra were obtained on surface samples (0—10 cm) from abandoned anthills and adjacent topsoil; in addition one representative soil profile in an abandoned anthill was investigated. The results show that different inorganic and all organic P fractions were enriched by a factor of 2.0—3.3 inside anthills relative to the surrounding soil. The soil underneath the abandoned anthill had higher P contents until 50-cm depth. Phosphorus composition was less affected by former anthill construction. Only the younger anthills revealed a preferential accumulation of labile organic P forms such as Na-HCO3 extractable P or diester P. The accumulation of the stable and moderate labile P forms, however, persisted for ≥ 20 years after abandonment. We concluded that former ant activity enhanced long-term P availability of soil due to high local P inputs, whereas changes of the P form distribution lasted 5—10 years after nest abandonment.  相似文献   

3.
In tropical montane forests, soil properties change with increasing altitude, and tree‐growth decreases. In a tropical montane forest in Ecuador, we determined soil and tree properties along an altitudinal transect between 1960 and 2450 m asl. In different vegetation units, all horizons of three replicate profiles at each of eight sites were sampled and height, basal area, and diameter growth of trees were recorded. We determined pH and total concentrations of Al, C, Ca, K, Mg, Mn, N, Na, P, S, Zn, polyphenols, and lignin in all soil horizons and in the mineral soil additionally the effective cation‐exchange capacity (CEC). The soils were Cambisols, Planosols, and Histosols. The concentrations of Mg, Mn, N, P, and S in the O horizons and of Al, C, and all nutrients except Ca in the A horizons correlated significantly negatively with altitude. The C : N, C : P, and C : S ratios increased, and the lignin concentrations decreased in O and A horizons with increasing altitude. Forest stature, tree basal area, and tree growth decreased with altitude. An ANOVA analysis indicated that macronutrients (e.g., N, P, Ca) and micronutrients (e.g., Mn) in the O layer and in the soil mineral A horizon were correlated with tree growth. Furthermore, lignin concentrations in the O layer and the C : N ratio in soil affected tree growth. These effects were consistent, even if the effect of altitude was accounted for in a hierarchical statistical model. This suggests a contribution of nutrient deficiencies to reduced tree growth possibly caused by reduced organic‐matter turnover at higher altitudes.  相似文献   

4.
Due to high nitrogen deposition in central Europe, the C : N ratio of litter and the forest floor has narrowed in the past. This may cause changes in the chemical composition of the soil organic matter. Here we investigate the composition of organic matter in Oh and A horizons of 15 Norway spruce soils with a wide range of C : N ratios. Samples are analyzed with solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy, along with chemolytic analyses of lignin, polysaccharides, and amino acid‐N. The data are investigated for functional relationships between C, N contents and C : N ratios by structural analysis. With increasing N content, the concentration of lignin decreases in the Oh horizons, but increases in the A horizons. A negative effect of N on lignin degradation is observed in the mineral soil, but not in the humus layer. In the A horizons non‐phenolic aromatic C compounds accumulate, especially at low N values. At high N levels, N is preferentially incorporated into the amino acid fraction and only to a smaller extent into the non‐hydrolyzable N fraction. High total N concentrations are associated with a higher relative contribution of organic matter of microbial origin.  相似文献   

5.
Abstract

The influence of cultivation practice on the fertility of volcanic soils on Santorini, an important wine‐producing area of Greece, has been examined. In conventional agriculture, weed control, typically of N‐fixing species, is carried out using herbicides, whereas in organic practice it is achieved though plowing, leaving the soil vulnerable to erosion. Soil samples were taken from conventionally and organically cultivated vines and tomatoes and from abandoned vineyards at five locations. Biological indicators of soil quality were measured in addition to physicochemical properties. The loam sandy soils had an acid to slightly alkaline pH reaction, with low organic matter. Earthworms (Lumbricidae) were not found. Enchytreids were absent from conventional soils but were found in low abundance in organic and abandoned vineyard systems. Enzyme activity showed no dependence on cultivation systems but was low compared with other Greek soils. Organic practices adopted on Santorini have maintained soil fertility in the short term.  相似文献   

6.
 To study the effect of Hieracium pilosella L. invasion on the transformations of soil organic matter of New Zealand tussock grassland soils (Ustochrepts), plant material and soils underneath Hieracium, the surrounding halo, and the adjacent herbfield (depleted tussock grassland) were examined for their chemical composition. An attempt was made to reveal possible changes in chemical composition of the soil organic matter induced by H. pilosella invasion. Small differences were detected by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy in the composition of the plant and soil materials from these zones. Most of the differences in soil organic matter occurred due to differences in the amount and quality of plant-residue inputs. Comparable amounts of phenolic C were detected in the solid-state 13C NMR spectra of H. pilosella and herbfield vegetation, while alkaline CuO oxidation yielded considerable lower lignin oxidation products for H. pilosella. A slightly higher proportion of these compounds in H. pilosella soil revealed an accumulation and a low degradation rate of lignin compounds under H. pilosella. The HCl hydrolysis and solid-state 15N NMR spectroscopy showed similar chemical compositions of the N fractions of the three different soils. The absence of 15N NMR signal intensity assignable to aniline derivatives or aromatic heterocyclic N indicates that the condensation of phenolic compounds with N groups plays a minor role in N sequestration in these soils. Received: 6 September 1999  相似文献   

7.
Although acid soils are common in forest ecosystems, and there is documented evidence of pH influencing transformations of organic matter in soil, there are surprisingly few studies on the influence of soil pH on the chemical structure of physically fractionated soil organic matter (SOM). The aim of this study was to characterize the influence of pH on the chemical and physical processes involved in SOM stabilization. Forest soils of different pH (4.4 and 7.8) sampled from two long‐term experiments at Rothamsted Research (UK) were physically fractionated. The free light fraction (FLF), the intra‐aggregate light fraction and the fine silt and clay (S + C, <25 µm) were characterized using elemental, isotopic (δ13C), thermogravimetric, differential thermal, diffuse reflectance infrared Fourier transform spectroscopy and high‐resolution magic angle spinning 1H nuclear magnetic resonance analyses. The quantitative distribution of carbon (C) between SOM fractions differed between the two soils. Carbon contents in the light fractions from the acid soil were significantly greater than in those of the alkaline soil. In contrast, in S + C fractions, C content was greater in the alkaline soil. FLF from the acid soil was characterized by a greater C:N ratio, smaller δ13C and greater content of thermo‐labile compounds compared with FLF from the alkaline soil. In contrast, there was only a weak effect of soil pH on the chemical composition of the organic matter in S + C fractions. Irrespective of soil pH, these latter fractions contained mainly aliphatic compounds such as carbohydrates, carboxylic acid, amide and peptide derivates. This suggested that physical mechanisms, involving the interactions between SOM and mineral surfaces, are of greater importance than the presence of chemically recalcitrant species in protecting SOM associated with the finest soil fractions.  相似文献   

8.
This study compared soil physical, chemical, and biological characteristics between natural grassland and recently abandoned rice fields in order to identify those variables that might explain the observed increase of Camponotus punctulatus anthills in abandoned rice paddy fields from Northern Argentina. Mainly due to a reduction of macropores and mesopores, overall porosity decreased by around 6% and bulk density was about 7% greater, in the 0- to 10- and 10- to 20-cm layers of the abandoned rice fields. Carbon and nitrogen content from organic matter increased (29% and 41% respectively for the 0- to 20-cm horizon) during cultivation but decreased (38% and 24%) 2 years after the last rice harvest. Forty percent of natural grassland-organic matter and 30% of abandoned rice-organic matter mineralized in less than 2 years. There was a different community structure between the abandoned rice fields and the undisturbed natural grassland and only a 20.6% (i.e. only 19 species from a total of 92) overlap in species composition. The abundance of macrofauna was greater in abandoned rice fields (2,208 individuals m–2) in comparison to natural grasslands (288 ind m–2) due to higher densities of small earthworms and Camponotus punctulatus ants; however, the Shannon index showed lower values in comparison to natural grasslands. Earthworms and C. punctulatus in the abandoned rice fields showed a change in their 13C signature indicating a switch in diet from natural grassland organic matter (C4) to organic matter from rice (C3). Our results indicate that the effects of rice cultivation practices did not seem to produce any physical or trophic limitations to recolonization by the macrofauna. It seems that changes in overall soil conditions have favored a change in the construction behavior of C. punctulatus which, in combination with population increases, could explain the explosion in number of anthills.  相似文献   

9.
This study investigates if Araucaria forest (C3 metabolism) expansion on frequently burnt grassland (C4 metabolism) in the southern Brazilian highland is linked to the chemical composition of soil organic matter (SOM) in non‐allophanic Andosols. We used the 13C/12C isotopic signature to group heavy organo‐mineral fractions according to source vegetation and 13C NMR spectroscopy, lignin analyses (CuO oxidation) and measurement of soil colour lightness to characterize their chemical compositions. Large proportions of aromatic carbon (C) combined with small contents of lignin‐derived phenols in the heavy fractions of grassland soils and grass‐derived lower horizons of Araucaria forest soils indicate the presence of charred grass residues in SOM. The contribution of this material may have led to the unusual increase in C/N ratios with depth in burnt grassland soils and to the differentiation of C3‐ and C4‐derived SOM, because heavy fractions from unburnt Araucaria forest and shrubland soils have smaller proportions of aromatic C, smaller C/N ratios and are paler compared with those with C4 signatures. We found that lignins are not applicable as biomarkers for plant origin in these soils with small contents of strongly degraded and modified lignins as the plant‐specific lignin patterns are absent in heavy fractions. In contrast, the characteristic contents of alkyl C and O/N‐alkyl C of C3 trees or shrubs and C4 grasses are reflected in the heavy fractions. They show consistent changes of the (alkyl C)/(O/N‐alkyl C) ratio and the 13C/12C isotopic signature with soil depth, indicating their association with C4 and C3 vegetation origin. This study demonstrates that soils may preserve organic matter components from earlier vegetation and land‐use, indicating that the knowledge of past vegetation covers is necessary to interpret SOM composition.  相似文献   

10.
Climatic effect on lignin and polysaccharides in particle-size fractions of zonal steppe soils, Russia Zonal soils derived from similar parent materials are suitable for investigating the question, whether and how climate affects soil organic matter properties. For this reason we sampled 10 native surface (0—10 cm) and subsurface (ca. 50—60 cm) soil horizons in the native steppe and forest steppe of Russia. Polysaccharides and the vanillyl, syringyl and cinnamyl structural units of lignin (VSC) were determined in the fine earth (< 2 mm) as well as in clay (< 2 μm) and silt (2—20 μm) fractions. As the ratio of mean annual precipitation to potential evaporation (N/V) decreased, the concentrations of polysaccharides tended to decrease in the subsoil horizons. This was indicated most clearly for the silt fractions (r = 0.98**). In contrast, the VSC contents (in g kg—1 organic C) of the subsoils increased as N/V decreased (r = —0.92*), resulting in increasing VSC/polysaccharide ratios of the subsoil horizons with decreasing N/V ratio (r = —0.94*). It is suggested that production of polysaccharides or their transport into the mineral subsoil or both is favored at sites with wide rather than narrow N/V ratio, whereas lignin might be selectively enriched during intense soil organic matter decay at the Southern sites.  相似文献   

11.
Chemical fixation of NH3 to soil organic matter was studied in two Swedish soils with different contents of organic matter: a clay soil with 2.3% C and an organic soil with 36.6% C. 15N‐labelled urea was applied at different rates to both sterilized and non‐sterilized soils. After 10 days, the soils were extracted and washed with K2SO4 and determined for total N and atom% 15N excess. Urea N was recovered as non‐extractable N in sterilized soil corresponding to 9.7% of supplied l5N‐labelled urea in the organic soil and 2.2% in the clay soil. Since no biological immobilization is thought to occur in the sterile soil, this non‐extractable N is suggested to be chemically fixed to soil organic matter. Owing to urea hydrolysis in the clay soil, pH increased from 6.3 to 9.3 and in the organic soil from 5.7 to 6.9 and 8.8, respectively, at the low and high urea supply.  相似文献   

12.
Land-use history and fire effects on soil fertility in eastern Spain   总被引:2,自引:0,他引:2  
Changes in land use and fire directly affect the physico‐chemical properties of the soil. In an eastern Spanish area, we analysed the effects of land‐use history and fire frequency prior to fire on soil fertility 9 years after fire. The results showed that long‐term cultivation caused decreases in soil organic matter, total nitrogen (N) and C/N. Between 20 and 40 years after cropping ceased, soil organic carbon (C) and total N had generally not recovered values similar to those found in soils that were never cropped. Total phosphorus and available phosphorus contents were larger in the latest abandoned plots than in the earliest abandoned plots and the uncropped ones, which was interpreted as a result of fertilization. Increasing fire frequency from one to two fires generally caused a decrease in soil organic C, total N, C/N, total phosphorus and available phosphorus. We observed that the losses of organic C in the soil caused by fire were larger among the uncropped plots and hypothesized that fuel loads and thus fire intensities were larger in these ecosystems. Our results also suggested that both long‐term cultivation and fire would tend to separate C and P cycles.  相似文献   

13.
Paddy soil management is generally thought to promote the accumulation of soil organic matter (SOM) and specifically lignin. Lignin is considered particularly susceptible to accumulation under these circumstances because of the recalcitrance of its aromatic structure to biodegradation under anaerobic conditions (i.e ., during inundation of paddy fields). The present study investigates the effect of paddy soil management on SOM composition in comparison to nearby agricultural soils that are not used for rice production (non‐paddy soils). Soil types typically used for rice cultivation were selected, including Alisol, Andosol and Vertisol sites in Indonesia (humid tropical climate of Java) and an Alisol site in China (humid subtropical climate, Jiangxi province). These soil types represent a range of soil properties to be expected in Asian paddy fields. All upper‐most A horizons were analysed for their SOM composition by solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy and for lignin‐derived phenols by the CuO oxidation method. The SOM composition was similar for all of the above named parent soil types (non‐paddy soils) and was also not affected by paddy soil management. A substantial proportion (up to 23%) of the total aryl‐carbon in some paddy and non‐paddy soils was found to originate from condensed aromatic‐carbon (e.g ., charcoal). This may be attributed to the burning of crop residues. On average, the proportion of lignin was low and made up 20% of the total SOM, and showed no differences between straw, particulate organic matter (POM), and the bulk soil material. The results from CuO oxidation are consistent with the data obtained from solid‐state 13C NMR spectroscopy. The extraction of lignin‐derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils in a range (4 to 12 g kg−1 OC) that was typical for agricultural soils. In comparison to adjacent non‐paddy soils, the data do not provide evidence for a substantial accumulation of phenolic lignin‐derived structures in the paddy soils, even for those characterized by higher organic carbon (OC) contents (e.g ., Andosol‐ and Alisol (China)‐derived paddy soils). We conclude that the properties of the parent soil types are more important for the lignin content of the soils than the effect of paddy management itself.  相似文献   

14.
Soil organic matter contents, soil microbial biomass, potentially mineralizable nitrogen (N) and soil pH values were investigated in the Ap horizons of 14 field plots at 3 sites which had been under organic farming over various periods. The objective was to test how these soil properties change with the duration of organic farming. Site effects were significant for pH values, microbial biomass C and N, and for potentially mineralizable N at 0—10 cm depth. The contents of total organic C, total soil N, and potentially mineralizable N tended to be higher in soils after 41 versus 3 years of organic farming, but the differences were not significant. Microbial biomass C and N contents were higher after 41 years than after 3 years of organic farming at 0—10 cm depth, and the pH values were increased at 10—27 cm depth. Nine years of organic farming were insufficient to affect soil microbial biomass significantly. Increased biomass N contents help improve N storage by soil micro‐organisms in soils under long‐term organic farming.  相似文献   

15.
The kinetics of N immobilisation/mineralisation for cellulose-, glucose- and straw-amended sandy soils were investigated in a series of laboratory incubations. Three Scottish soils expected to exhibit a range of biological activity were used: a loamy sand, intensively cropped horticultural soil subject to large inputs of inorganic fertilisers and pesticides (Balmalcolm - pH 7.2, organic matter 3.3%); a sandy loam soil highly enriched with organic manures and used for organic vegetable production (Strathmiglo - pH 7.1, organic matter 7.3%); and a loamy sand soil of low fertility in a zero-grazing, low intensity organic ley-arable rotation (Aldrochty pH 6.0, organic matter 5.0%). Incubations of soils with 1,000 mg cellulose-C kg-1 soil at 8°C, showed peak N immobilisation of 71Lj, 92Lj and 65ᆣ mg N g-1 added C for the Balmalcolm (after 34 days), Strathmiglo (after 34 days) and Aldrochty soils (after 63 days). The N remineralisation by the end of the incubation (>300 days) was 0, 50 and 22 mg N g-1 cellulose-C in the Balmalcolm, Strathmiglo soil and Aldrochty soils, respectively. Only about 30% of the N immobilisation could be explained by soil microbial biomass N accumulation (much less than expected from model simulations). The C/N ratio of the extra microbial biomass was quite wide (19). Bacterial, protozoan and nematode biomass accounted for only 18%, 0.1% and 0.5% of the extra C immobilisation, respectively. These data suggest that fungal biomass growth and deposition of recalcitrant fungal metabolites are the main sinks for the N immobilised. With 1,000 mg glucose-C kg -1 added to the Balmalcolm soil, about 75 mg N g-1 added C were immobilised after 6 days. Under less well aerated conditions at 15°C, immobilisation of only 10-20 mg N g-1 added cellulose C took place in 2-4 weeks, but soluble organic C increased greatly. The N remineralised after 4-6 weeks.  相似文献   

16.
Tropical regions are currently undergoing remarkable rates of land use change accompanied by altered litter inputs to soil. In vast areas of Southern Ecuador forests are clear cut and converted for use as cattle pastures. Frequently these pasture sites are invaded by bracken fern, when bracken becomes dominant pasture productivity decreases and the sites are abandoned. In the present study implications of invasive bracken on soil biogeochemical properties were investigated. Soil samples (0-5 cm) were taken from an active pasture with Setaria sphacelata as predominant grass and from an abandoned pasture overgrown by bracken. Grass (C4 plant) and bracken (C3 plant) litter, differing in C:N ratio (33 and 77, respectively) and lignin content (Klason-lignin: 18% and 45%, respectively), were incubated in soils of their corresponding sites and vice versa for 28 days at 22 °C. Unamended microcosms containing only the respective soil or litter were taken as controls. During incubation the amount of CO2 and its δ13C-signature were determined at different time intervals. Additionally, the soil microbial community structure (PLFA-analysis) as well as the concentrations of KCl-extractable C and N were monitored. The comparison between the control soils of active and abandoned pasture sites showed that the massive displacement of Setaria-grass by bracken after pasture abandonment was characterized by decreased pH values accompanied by decreased amounts of readily available organic carbon and nitrogen, a lower microbial biomass and decreased activity as well as a higher relative abundance of actinomycetes. The δ13C-signature of CO2 indicated a preferential mineralization of grass-derived organic carbon in pasture control soils. In soils amended with grass litter the mineralization of soil organic matter was retarded (negative priming effect) and also a preferential utilization of easily available organic substances derived from the grass litter was evident. Compared to the other treatments, the pasture soil amended with grass litter showed an opposite shift in the microbial community structure towards a lower relative abundance of fungi. After addition of bracken litter to the abandoned pasture soil a positive priming effect seemed to be supported by an N limitation at the end of incubation. This was accompanied by an increase in the ratio of Gram-positive to Gram-negative bacterial PLFA marker. The differences in litter quality between grass and bracken are important triggers of changes in soil biogeochemical and soil microbial properties after land use conversion.  相似文献   

17.
Abstract

Environmental changes and management practices which alter soil properties may affect the capacity of soils to sorb trace metals, such as copper (Cu), zinc (Zn), and cadmium (Cd), and thus influence the bioavailability and leach ability of the metals. Two agricultural soils were treated to partially oxidize organic matter and to decrease soil pH for evaluating the effects of acidification and organic matter oxidation on trace metal sorption onto soils. For the one soil with a pH value of 6.74 and organic carbon (C) content of 46.9 g‐kg‐1, loss of 11% of its organic matter reduced by 97, 72, and 62% the original sorption capacity for Cu, Zn, and Cd, respectively, while the corresponding values caused by acidifying the soil one pH‐unit were 32, 16, and 29%. For the another soil with a pH of 4.69 and organic C content of 16.3 g‐kg‐1, a decrease in pH by one unit resulted in a loss of 43, 21, and 52% of the sorption capacity for Cu, Zn, and Cd, respectively.  相似文献   

18.
The magnitude of and mechanisms for long‐term differences in soil organic matter stocks under no‐tillage and conventional tillage are still relatively poorly known. We quantified differences in total C and N stocks after 32 years of no‐tillage (NT) and conventional tillage (CT) in plots with a long‐term cultivation history before differentiation and the same annual C and N returns to the soil. The role of physical protection of organic matter (OM) in these stock differences was further investigated by examining the changes at different levels of structural complexity, i.e. organic matter fractions, aggregation and pore‐size distribution. Four structural zones were sampled: loose and dense soil zones under CT and the 0–5 cm (rich in OM) and 5–20 cm (massive structure) soil layers under NT. The C and N stocks, calculated for an equivalent mass of dry soil, were only 10–15% larger under NT than under CT. Mineral‐associated N and particulate organic matter accounted for about 50% of the difference in N stocks. However, 66% of the total difference in C stocks was due to differences in the particulate organic matter (58%) and free residues (8%) fractions. The additional C and N under NT were almost exclusively situated in aggregates larger than 250 μm in diameter. Our results suggest that physical protection of OM under NT contributes significantly to the differences in C and N stocks between NT and CT by (i) enhanced macroaggregate formation in the 0–5 cm layer due to greater microbial activity and OM content and (ii) a better protection of soil organic matter in the 5–20 cm layer due to the presence of small pores and lack of soil disruption by tillage or climate.  相似文献   

19.
Intensive greenhouse vegetable‐production systems commonly utilize excessive fertilizer inputs that are inconsistent with sustainable production and may affect soil quality. Soil samples were collected from 15 commercial greenhouses used for tomato production and from neighboring fields used for wheat cropping to determine the effects of intensive vegetable cultivation on soil microbial biomass and community structure. Soil total nitrogen (N) and organic‐matter contents were greater in the intensive greenhouse tomato soils than the open‐field wheat soils. Soil microbial carbon (C) contents were greater in the greenhouse soils, and soil microbial biomass N showed a similar trend but with high variation. The two cropping systems were not significantly different. Soil microbial biomass C was significantly correlated with both soil total N and soil organic matter, but the relationships among soil microbial biomass N, soil total N, and organic‐matter content were not significant. The Biolog substrate utilization potential of the soil microbial communities showed that greenhouse soils were significantly higher (by 14%) than wheat soils. Principal component (PC) analysis of soil microbial communities showed that the wheat sites were significantly correlated with PC1, whereas the greenhouse soils were variable. The results indicate that changes in soil microbiological properties may be useful indicators for the evaluation of soil degradation in intensive agricultural systems.  相似文献   

20.
Summary Microbial biomass C and N respond rapidly to changes in tillage and soil management. The ratio of biomass C to total organic C and the ratio of mineral N flush to total N were determined in the surface layer (0–5 cm) of low-clay (8–10%), fine sandy loam, Podzolic soils subjected to a range of reduced tillage (direct drilling, chisel ploughing, shallow tillage) experiments of 3–5 years' duration. Organic matter dynamics in the tillage experiments were compared to long-term conditions in several grassland sites established on the same soil type for 10–40 years. Microbial biomass C levels in the grassland soils, reduced tillage, and mouldboard ploughing treatments were 561, 250, and 155 g g-1 soil, respectively. In all the systems, microbial biomass C was related to organic C (r=0.86), while the mineral N flush was related to total N (r=0.84). The average proportion of organic C in the biomass of the reduced tillage soils (1.2) was higher than in the ploughed soils (0.8) but similar to that in the grassland soils (1.3). Reduced tillage increased the average ratio of mineral N flush to total soil N to 1.9, compared to 1.3 in the ploughed soils. The same ratio was 1.8 in the grassland soils. Regression analysis of microbial biomass C and percent organic C in the microbial biomass showed a steeper slope for the tillage soils than the grassland sites, indicating that reduced tillage increased the microbial biomass level per unit soil organic C. The proportion of organic matter in the microbial biomass suggests a shift in organic matter equilibrium in the reduced tillage soils towards a rapid, tillage-induced, accumulation of organic matter in the surface layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号