首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is a 22,000-dalton glycoprotein that stimulates the growth of myeloid progenitor cells and acts directly on mature neutrophils. A full-length complementary DNA clone encoding human GM-CSF was used as a probe to screen a human genomic library and isolate the gene encoding human GM-CSF. The human GM-CSF gene is approximately 2.5 kilobase pairs in length with at least three intervening sequences. The GM-CSF gene was localized by somatic cell hybrid analysis and in situ hybridization to human chromosome region 5q21-5q32, which is involved in interstitial deletions in the 5q- syndrome and acute myelogenous leukemia. An established, human promyelocytic leukemia cell line, HL60, contains a rearranged, partially deleted GM-CSF allele and a candidate 5q- marker chromosome, indicating that the truncated GM-CSF allele may reside at the rejoining point for the interstitial deletion on the HL60 marker chromosome.  相似文献   

2.
3.
Gene probes for interferons alpha and beta 1 and v-ets were hybridized to metaphase chromosomes from three patients with acute monocytic leukemia who had a chromosomal translocation, t(9;11)(p22;q23). The break in the short arm of chromosome 9 split the interferon genes, and the interferon-beta 1 gene was translocated to chromosome 11. The c-ets-1 gene was translocated from chromosome 11 to the short arm of chromosome 9 adjacent to the interferon genes. No DNA rearrangement was observed when these probes were hybridized to genomic DNA from leukemic cells of two of the patients. The results suggest that the juxtaposition of the interferon and c-ets-1 genes may be involved in the pathogenesis of human monocytic leukemia.  相似文献   

4.
Human probes identifying the cellular homologs of the v-ets gene, Hu-ets-1 and Hu-ets-2, and two panels of rodent-human cell hybrids were used to study specific translocations occurring in acute leukemias. The human ets-1 gene was found to translocate from chromosome 11 to 4 in the t(4;11)(q21;23), a translocation characteristic of a subtype of leukemia that represents the expansion of a myeloid/lymphoid precursor cell. Similarly, the human ets-2 gene was found to translocate from chromosome 21 to chromosome 8 in the t(8;21)(q22;q22), a nonrandom translocation commonly found in patients with acute myeloid leukemia with morphology M2 (AML-M2). Both translocations are associated with expression different from the expression in normal lymphoid cells of ets genes, raising the possibility that these genes play a role in the pathogenesis of these leukemias.  相似文献   

5.
Bilateral acoustic neurofibromatosis (BANF) is a genetic defect associated with multiple tumors of neural crest origin. Specific loss of alleles from chromosome 22 was detected with polymorphic DNA markers in two acoustic neuromas, two neurofibromas, and one meningioma from BANF patients. This indicates a common pathogenetic mechanism for all three tumor types. The two neurofibromas were among three taken from the same patient, and both showed loss of identical alleles demonstrating that the same chromosome suffered deletion in both tumors. The third neurofibroma from this patient showed no detectable loss of heterozygosity, which suggests the possibility of a more subtle mutational event that affects chromosome 22. In the two acoustic neuromas, only a portion of chromosome 22 was deleted, narrowing the possible chromosomal location of the gene that causes BANF to the region distal to the D22S9 locus in band 22q11. The identification of progressively smaller deletions on chromosome 22 in these tumor types may well provide a means to clone and characterize the defect.  相似文献   

6.
The human c-mos proto-oncogene is located on chromosome 8 at band q22, close to the breakpoint in the t(8;21) (q22;q22) chromosome rearrangement. This translocation is associated with acute myeloblastic leukemia, subgroup M2. The c-myc gene, another proto-oncogene, has been mapped to 8q24. The breakpoint at 8q22 separates these genes, as determined by in situ hybridization of c-mos and c-myc probes. The c-mos gene remains on the 8q-chromosome and the c-myc gene is translocated to the 21q+ chromosome. Southern blot analysis of DNA from bone marrow cells of four patients with this translocation showed no rearrangement of c-mos.  相似文献   

7.
In this study, the joining sequences between chromosomes 14 and 18 on the 14q+ chromosomes of a patient with pre-B-cell leukemia and four patients with follicular lymphoma carrying a t(14;18) chromosome translocation were analyzed. In each case, the involved segment of chromosome 18 has recombined with the immunoglobulin heavy-chain joining segment (JH) on chromosome 14. The sites of the recombination on chromosome 14 are located close to the 5' end of the involved JH segment, where the diversity (D) regions are rearranged with the JH segments in the production of active heavy-chain genes. As extraneous nucleotides (N regions) were observed at joining sites and specific signal-like sequences were detected on chromosome 18 in close proximity to the breakpoints, it is concluded that the t(14;18) chromosome translocation is the result of a mistake during the process of VDJ joining at the pre-B-cell stage of differentiation. The putative recombinase joins separated DNA segments on two different chromosomes instead of joining separated segments on the same chromosome, causing a t(14;18) chromosome translocation in the involved B cells.  相似文献   

8.
Deletions of the long arm of chromosome 6 (6q-) are frequently found in hematopoietic neoplasms, including acute lymphoblastic leukemias, non-Hodgkin lymphomas and (less frequently) myeloid leukemias. The c-myb proto-oncogene has been mapped to region 6q21-24, which suggests that it could be involved in the 6q- aberrations. By means of in situ chromosomal hybridization on cells from six hematopoietic malignancies, it was demonstrated that the c-myb locus is not deleted, but is retained on band q22, which is consistently bordered by the chromosomal breakpoints in both interstitial and terminal 6q- deletions. The deletion breakpoints were located at some distance from the myb locus since no rearrangement of c-myb sequences was found. In one case, however, amplification of the entire c-myb locus was detectable. Furthermore, in all cases tested that carry 6q- deletions, myb messenger RNA levels were significantly higher than in normal cells or in malignant cells matched for lineage and stage of differentiation but lacking the 6q- marker. These results indicate that 6q- deletions are accompanied by structural and functional alterations of the c-myb locus and that these alterations may be involved in the pathogenesis of leukemias and lymphomas.  相似文献   

9.
Chronic myelogeneous leukemia (CML) is genetically characterized by fusion of the bcr and abl genes on chromosomes 22 and 9, respectively. In most cases, the fusion involves a reciprocal translocation t(9;22)(q34;q11), which produces the cytogenetically distinctive Philadelphia chromosome (Ph1). Fusion can be detected by Southern (DNA) analysis or by in vitro amplification of the messenger RNA from the fusion gene with polymerase chain reaction (PCR). These techniques are sensitive but cannot be applied to single cells. Two-color fluorescence in situ hybridization (FISH) was used with probes from portions of the bcr and abl genes to detect the bcr-abl fusion in individual blood and bone marrow cells from six patients. The fusion event was detected in all samples analyzed, of which three were cytogenetically Ph1-negative. One of the Ph1-negative samples was also PCR-negative. This approach is fast and sensitive, and provides potential for determining the frequency of the abnormality in different cell lineages.  相似文献   

10.
11.
Several of the endothelial cell polypeptide mitogens that have been described probably play a role in blood vessel homeostasis. Two overlapping complementary DNA clones encoding human endothelial cell growth factor (ECGF) were isolated from a human brain stem complementary DNA library. Southern blot analysis suggested that there is a single copy of the ECGF gene and that it maps to human chromosome 5 at bands 5q31.3 to 33.2 A 4.8-kilobase messenger RNA was present in human brain stem messenger RNA. The complete amino acid sequence of human ECGF was deduced from the nucleic acid sequence of these clones; it encompasses all the well-characterized acidic endothelial cell polypeptide mitogens described by several laboratories. The ECGF-encoding open reading frame is flanked by translation stop codons and provides no signal peptide or internal hydrophobic domain for the secretion of ECGF. This property is shared by human interleukin-1, which is approximately 30 percent homologous to ECGF.  相似文献   

12.
The Hu-ets-1 oncogene was found to be rearranged and amplified 30-fold in one case of acute myelomonocytic leukemia in which a homogeneously staining region occurred on 11q23; the oncogene was rearranged and amplified approximately tenfold in a case of small lymphocytic cell lymphoma with an inverted insertion that also involved band 11q23. This work suggests that Hu-ets-1 is an unusual oncogene that can help explain the common involvement of chromosome band 11q23 in various subtypes of hematopoietic malignancies.  相似文献   

13.
Characterization of the supernumerary chromosome in cat eye syndrome   总被引:18,自引:0,他引:18  
Most individuals with cat eye syndrome (CES) have a supernumerary bisatellited chromosome which, on the basis of cytogenetic evidence, has been reported to originate from either chromosome 13 or 22. To resolve this question, a single-copy DNA probe, D22S9, was isolated and localized to 22q11 by in situ hybridization to metaphase chromosomes. The number of copies of this sequence was determined in CES patients by means of Southern blots and densitometry analysis of autoradiographs. In patients with the supernumerary chromosome, four copies were found, whereas in one patient with a duplication of part of chromosome 22, there were three copies. Therefore, the syndrome results from the presence of either three or four copies of DNA sequences from 22q11; there is no evidence that sequences from other chromosomes are involved. This work demonstrates how DNA sequence dosage analysis can be used to study genetic disorders that are not readily amenable to standard cytogenetic analysis.  相似文献   

14.
Site-specific integration of H-ras in transformed rat embryo cells   总被引:1,自引:0,他引:1  
A karyotypic analysis was performed on seven independently derived clones of primary rat embryo cells transformed by the ras oncogene plus the cooperating oncogene myc. The transfected oncogenes were sometimes present in amplified copy number, with heterogeneity in the levels of amplification. Some chromosomal features, such as aberrantly banding regions and double-minute chromosomes, typical of cells carrying amplified genes, were also seen in three of the seven cell lines. Underlying this heterogeneity there was an unexpected finding. All seven lines showed a common integration site for ras on the q arm of rat chromosome 3 (3q12), though some lines also had other sites of integration. In four of the lines integration of ras was accompanied by deletion of the p arm of chromosome 3 or its possible translocation to chromosome 12.  相似文献   

15.
The T-cell antigen receptor is a cell-surface molecule that participates in the immune response. In the present experiments the genes encoding the beta chain of the T-cell receptor were found to reside on the long arm of human chromosome 7 at or near band q32. Related sequences were found on the short arm of chromosome 7 in bands p15-21 in some experiments. Chromosomal rearrangements in T-cells from normal individuals and patients with ataxia telangiectasia have previously been observed at and near these map assignments for the beta-chain genes.  相似文献   

16.
There is much speculation about fragile sites on human chromosomes predisposing to specific chromosome rearrangements seen in cancer. Acute myelomonocytic leukemia is characterized by neoplastic chromosome rearrangements involving band 16q22 in patients who carry the rare fragile site at 16q22. This specific leukemic breakpoint is within the metallothionein gene cluster, which is here shown to be proximal to the rare fragile site (FRA16B) and to a common fragile site (FRA16C) in this region. Hence neither of these fragile sites are at the breakpoint in this leukemic chromosomal rearrangement.  相似文献   

17.
Nonrandom chromosome rearrangements of chromosome 22 have been identified in different human malignancies. As a result of Southern blot hybridization of a c-sis probe to DNA's from mouse-human somatic cell hybrids, the human homolog (c-sis) of the transforming gene of simian sarcoma virus was assigned to chromosome 22. Hybrids between thymidine kinase-deficient mouse cells and human fibroblasts carrying a translocation of the region q11-qter of chromosome 22 to chromosome 17 were also analyzed. These studies demonstrate that the human c-sis gene is on region 22q11 greater than qter.  相似文献   

18.
Two anonymous DNA segments distinguish the Wilms' tumor and aniridia loci   总被引:9,自引:0,他引:9  
The association of Wilms' tumor with aniridia (the WAGR complex) in children with 11p13 chromosomal abnormalities has been established, but the paucity of molecular probes in 11p13 has hampered identification of the responsible genes. Two new anonymous DNA segments have been identified that map to the WAGR region of 11p13. Both DNA probes identify a cytologically undetectable deletion associated with a balanced chromosome translocation inherited by a patient with familial aniridia, but not Wilms' tumor. The same two DNA segments are also included in the distal p13-p14.1 deletion of another patient, who has aniridia, Wilms' tumor, and hypogonadism, but they are not included in the p12-p13 deletion of a third patient, who does not have aniridia but has had a Wilms' tumor. The discovery of this aniridia deletion and these two DNA segments that physically separate the Wilms' tumor and aniridia loci should facilitate identification of the genes in the WAGR locus, beginning with the aniridia gene.  相似文献   

19.
The ZFY gene in the sex-determining region of the human Y chromosome encodes a "zinc-finger" protein that may be the testis-determining factor, TDF. Although the Y chromosomes of most placental mammals carry a single homolog of ZFY, the mouse Y chromosome has two homologs, both in the sex-determining (Sxr) region. Zfy-1 alone may suffice to determine maleness; Zfy-2 is dispensable, as it was deleted in an Sxr variant that retains sex-determining function but has lost other genes. Both loci mapped near the centromere of the mouse Y chromosome. The Y chromosomes of the subspecies Mus musculus musculus and M. m. domesticus were distinguishable by a Zfy-1 restriction fragment polymorphism, which can be used to study their differing interactions with autosomal sex-determining genes.  相似文献   

20.
Common region on chromosome 14 in T-cell leukemia and lymphoma   总被引:28,自引:0,他引:28  
Chromosome 14 breakpoints in malignant human lymphocytes cluster on the long (q) arm near bands q11 and q32. An inversion of chromosome 14 due to breaks in q11.2 and q32.3 has now been found in a newly established childhood T-cell lymphoma cell line and confirmed in T-cell chronic lymphocytic leukemia. A translocation was also found between chromosomes 10 and 14 with a breakpoint at 14q11.2 in another T-cell lymphoma cell line. It is proposed that a proximal region on chromosome 14 in or near sub-band q11.2 is related to T-cell function. Rearrangements in this region may affect the growth of T lymphocytes and be involved in the development of T-cell malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号