首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacokinetics of amikacin in cats   总被引:1,自引:0,他引:1  
Six mixed-breed adult cats were given 5 mg of amikacin sulfate/kg of body weight by rapid IV, IM, and SC routes of administration. The serum concentration-vs-time data were analyzed, using a noncompartmental model. The harmonic mean +/- pseudo-SD of the effective half-life of amikacin was 78.8 +/- 19.3 minutes after IV administration, 118.7 +/- 14.4 minutes after IM administration, and 117.7 +/- 12.8 minutes after SC administration. The arithmetic mean +/- SD of mean residence time was 118.3 +/- 21.7 minutes, 173.4 +/- 19.9 minutes, and 171.7 +/- 19.1 minutes after IV, IM, and SC drug administration, respectively. The mean apparent volume of distribution at steady state was 0.17 +/- 0.02 L/kg, and the mean total body clearance was 1.46 +/- 0.26 ml/min/kg. Mean bioavailability was 95 +/- 20% after IM administration and 123 +/- 33% after SC drug administration. A recommended dosage of 10 mg/kg, q 8 h can be expected to provide a therapeutic serum concentration of amikacin with a mean steady-state concentration of 14 micrograms/ml. The SC route of administration is preferred, because of rapid absorption, good bioavailability, and ease of administration.  相似文献   

2.
Pharmacokinetics and bioavailability of cephalothin in horse mares   总被引:1,自引:0,他引:1  
The pharmacokinetics and bioavailability of cephalothin given to 6 horse mares at a dosage level of 11 mg/kg of body weight IV or IM were investigated. The disposition of cephalothin given IV was characterized by a rapid disposition phase with a mean half-life of 2.89 minutes and a subsequent slower elimination phase with a mean half-life of only 14.7 minutes. The mean residence time of cephalothin was 10.6 +/- 2.11 minutes. The total plasma clearance of cephalothin averaged 13.6 ml/min/kg and was caused by metabolism and renal elimination. Renal clearance of cephalothin averaged 1.32 ml/min/kg and accounted for elimination of about 10.1% of the administered dose. The volume of distribution at steady state averaged 151 mg/kg. Plasma protein binding of cephalothin at a concentration of 10 micrograms/ml averaged 17.9 +/- 2.5%. Cephalothin was rapidly metabolized to desacetylcephalothin. Maximum plasma desacetylcephalothin concentrations were observed in the blood samples collected 5 minutes after IV doses and averaged 22.9 micrograms/ml. The apparent half-life of desacetylcephalothin in plasma was 41.6 minutes and its renal clearance averaged 4.49 +/- 2.43 ml/min/kg. An average of 33.9% of the dose was recovered in the urine as desacetylcephalothin. The maximum plasma cephalothin concentration after IM administration was 11.3 +/- 3.71 micrograms/ml. The terminal half-life was 47.0 minutes and was longer than the half-life after IV administration. The bioavailability of cephalothin given IM ranged from 38.3% to 93.1% and averaged 65.0 +/- 20.5%.  相似文献   

3.
The pharmacokinetics and estimated bioavailability of amoxicillin were determined after IV, intragastric, and IM administration to healthy mares. After IV administration of sodium amoxicillin (10 mg/kg of body weight), the disposition of the drug was best described by a 2-compartment open model. A rapid distribution phase was followed by a rapid elimination phase, with a mean +/- SD half-life of 39.4 +/- 3.57 minutes. The mean volume of distribution was 325 +/- 68.2 ml/kg, and the mean body clearance was 5.68 +/- 0.80 ml/min.kg. It was concluded that frequent IV administration of sodium amoxicillin would be required to maintain therapeutic plasma concentrations of amoxicillin, and thus, the use of this dosage form should be limited to the initiation of treatment or to intensive care situations. After intragastric administration of amoxicillin trihydrate (20 mg/kg), 5% cherry-flavored suspension, the drug was rapidly, but incompletely, absorbed and rapidly eliminated (mean half-life of the decline phase of the plasma amoxicillin concentration-time curve, 51 minutes). The mean estimated bioavailability (fractional absorption) of the administered dose was 10.4%, and the mean peak plasma amoxicillin concentration was 2.73 micrograms/ml at 1.5 hours after dosing. In one horse with clinical signs of abdominal discomfort and diarrhea, the absorption of amoxicillin from the gastrointestinal tract was delayed and the fraction absorbed was increased. It was concluded that this oral dosage form could be recommended only for the treatment of infections caused by bacteria that are highly susceptible to amoxicillin, that frequent dosing would be necessary, and that absorption may be inconsistent in horses with gastrointestinal disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Ceftriaxone was administered to Israeli-Friesian male calves by IV and IM routes. The antibiotic was administered IV (10 mg/kg) to 10 calves and IM to 23 calves; 8 were given the antibiotic at the rate of 10 mg/kg of body weight, 5 were given 20 mg/kg, and 10 were given 10 mg/kg, together with probenecid at 40 mg/kg. Serum concentration vs time profiles measured after IV and IM administration were analyzed by use of statistical moment theory. The following mean values +/- SD were found: elimination half-life (t1/2) was 83.8 +/- 8.6 minutes after IV administration and significantly longer 116.8 +/- 20.5 minutes (P less than 0.001) after IM administration at 10 mg/kg. The t1/2 was increased to 141.3 +/- 24.4 minutes by the coadministration of probenecid and to 145.0 +/- 48.2 minutes by doubling the IM dosage to 20 mg/kg. The total body clearance was 3.39 +/- 0.42 ml/min/kg and the renal clearance 2.37 +/- 0.74 ml/min/kg. The specific volume of distribution was 0.2990 +/- 0.0510 L/kg. The average mean residence time (MRT) was 94.0 +/- 12.3 minutes after IV administration and 137.6 +/- 19.9 minutes after IM administration of ceftriaxone at 10 mg/kg. The MRT was increased to 198 +/- 48.8 minutes by the coadministration of probenecid and to 191.0 +/- 59.4 minutes by doubling the IM dose. The former value was significantly different from the MRT after IM administration of the antibiotic at 10 mg/kg. Bioavailability of ceftriaxone after IM administration at 10 mg/kg and at 20 mg/kg was 78% and 83%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Healthy mature pony mares (n = 6) were given a single dose of gentamicin (5 mg/kg of body weight) IV or IM 8 days apart. Venous blood samples were collected at 0, 5, 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, 30, 36, 40, and 48 hours after IV injection of gentamicin, and at 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, and 30 hours after IM injection of gentamicin. Gentamicin serum concentration was determined by a liquid-phase radioimmunoassay. The combined data of IV and IM treatments were analyzed by a nonlinear least-square regression analysis program. The kinetic data were best fitted by a 2-compartment open model, as indicated by residual trends and improvements in the correlation of determination. The distribution phase half-life was 0.12 +/- 0.02 hour and postdistribution phase half-life was 1.82 +/- 0.22 hour. The volume of the central compartment was 115.8 +/- 6.0 ml/kg, volume of distribution at steady state was 188 +/- 9.9 ml/kg, and the total body clearance was 1.27 +/- 0.18 ml/min/kg. Intramuscular absorption was rapid with a half-life for absorption of 0.64 +/- 0.14 hour. The extent of absorption was 0.87 +/- 0.14. Kinetic calculations predicted that IM injections of 5 mg of gentamicin/kg every 8 hours would provide average steady-state serum concentrations of 7.0 micrograms/ml, with maximum and minimum steady-state concentrations of 16.8 and 1.1 micrograms/ml, respectively.  相似文献   

6.
Ceftazidime pharmacokinetic values were studied in unweaned calves given the antibiotic alone or in combination with probenecid. Ceftazidime was administered IV to 9 calves at a dosage of 10 mg/kg of body weight and IM (10 mg/kg) to 8 calves, to 7 calves (10 mg/kg plus probenecid [40 mg/kg]), and to 9 calves (10 mg/kg plus probenecid [80 mg/kg]). Serum concentration-vs-time data were analyzed, using noncompartmental methods based on statistical moment theory. The data for IV ceftazidime administration also were fitted by use of a linear, open 2-compartment model. The mean (+/- SD) terminal half-life was 138.7 +/- 23.6 minutes and 126.3 +/- 10.5 minutes after IV and IM administrations, respectively. The mean residence time was 167.3 +/- 21.1 minutes and 201.4 +/- 16.8 minutes after IV and IM administrations, respectively. Coadministeration of probenecid did not affect the terminal half-life or mean residence time values. The total body clearance was 1.75 +/- 0.26 ml/min/kg, and the volume of distribution at steady state was 0.294 +/- 0.064 L/kg. The estimated mean absorption time was 34.1 minutes. There were no significant differences between the mean residence time calculated by statistical moment theory or by compartmental analysis, indicating central compartment output of ceftazidime. The 90% minimal inhibitory concentration values of ceftazidime determined for Escherichia coli, Salmonella spp, Pasteurella multocida, and P haemolytica isolates ranged from less than 0.01 to 0.1 micrograms/ml.  相似文献   

7.
The pharmacokinetics and bioavailability of rifampin were determined after IV (10 mg/kg of body weight) and intragastric (20 mg/kg of body weight) administration to 6 healthy, adult horses. After IV administration, the disposition kinetics of rifampin were best described by a 2-compartment open model. A rapid distribution phase was followed by a slower elimination phase, with a half-life (t1/2[beta]) of 7.27 +/- 1.11 hours. The mean body clearance was 1.49 +/- 0.41 ml/min.kg, and the mean volume of distribution was 932 +/- 292 ml/kg, indicating that rifampin was widely distributed in the body. After intragastric administration of rifampin in aqueous suspension, a brief lag period (0.31 +/- 0.09 hour) was followed by rapid, but incomplete, absorption (t1/2[a] = 0.51 +/- 0.32 hour) and slow elimination (t1/2[d] = 11.50 +/- 1.55 hours). The mean bioavailability (fractional absorption) of the administered dose during the first 24 hours was 53.94 +/- 18.90%, and we estimated that 70.0 +/- 23.6% of the drug would eventually be absorbed. The mean peak plasma rifampin concentration was 13.25 +/- 2.70 micrograms/ml at 2.5 +/- 1.6 hours after dosing. All 6 horses had plasma rifampin concentrations greater than 2 micrograms/ml by 45 minutes after dosing; concentrations greater than 3 micrograms/ml persisted for at least 24 hours. Mean plasma rifampin concentrations at 12 and 24 hours after dosing were 6.86 +/- 1.69 micrograms/ml and 3.83 +/- 0.87 micrograms/ml, respectively. We tested 162 isolates of 16 bacterial species cultured from clinically ill horses for susceptibility to rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Healthy mature roosters (n = 10) were given gentamicin (5 mg/kg of body weight, IV) and, 30 days later, another dose IM. Serum concentrations of gentamicin were determined over 60 hours after each drug dosing, using a radioimmunoassay. Using nonlinear least-square regression methods, the combined data of IV and IM treatments were best fitted by a 2-compartment open model. The mean distribution phase half-life was 0.203 +/- 0.075 hours (mean +/- SD) and the terminal half-life was 3.38 +/- 0.62 hours. The volume of the central compartment was 0.0993 +/- 0.0097 L/kg, volume of distribution at steady state was 0.209 +/- 0.013 L/kg, and the total body clearance was 46.5 +/- 7.9 ml/h/kg. Intramuscular absorption was rapid, with a half-life for absorption of 0.281 +/- 0.081 hours. The extent of IM absorption was 95 +/- 18%. Maximal serum concentration of 20.68 +/- 2.10 micrograms/ml was detected at 0.62 +/- 0.18 hours after the dose. Kinetic calculations predicted that IM injection of gentamicin at a dosage of 4 mg/kg, q 12 h, and 1.5 mg/kg, q 8 h, would provide average steady-state serum concentrations of 6.82 and 3.83 micrograms/ml, with minimal steady-state serum concentrations of 1.54 and 1.50 micrograms/ml and maximal steady-state serum concentrations of 18.34 and 7.70 micrograms/ml, respectively.  相似文献   

9.
Twenty-nine healthy 17- to 29-day-old unweaned Israeli-Friesian male calves were each given a single IV or IM injection of 10 or 20 mg of moxalactam disodium/kg of body weight. Serum concentrations were measured serially during a 12-hour period. Serum concentration vs time profiles were analyzed by use of linear least-squares regression analysis and the statistical moment theory. The elimination half-lives after IV administration were 143.7 +/- 30.2 minutes and 155.5 +/- 10.5 minutes (harmonic mean +/- SD) at dosages of 10 and 20 mg of moxalactam/kg of body weight, respectively. Corresponding mean residence time values were 153.1 +/- 26.8 minutes and 169.9 +/- 19.3 minutes (arithmetic mean +/- SD). Mean residence time values after IM administration were 200.4 +/- 17.5 minutes and 198.4 +/- 19.9 minutes at dosages of 10 and 20 mg/kg, respectively. The volumes of distribution at steady state were 0.285 +/- 0.073 L/kg and 0.313 +/- 0.020 L/kg and total body clearance values were 1.96 +/- 0.69 ml/min/kg and 1.86 +/- 0.18 ml/min/kg after administration of dosages of 10 and 20 mg/kg, respectively. Moxalactam was rapidly absorbed from the IM injection site and peak serum concentrations occurred at 1 hour. The estimated bioavailability ranged from 69.8 to 79.1%. The amount of serum protein binding was 53.4, 55.0, and 61.5% when a concentration of moxalactam was at 50, 10, and 2 micrograms/ml, respectively. The minimal inhibitory concentrations of moxalactam ranged from 0.01 to 0.2 micrograms/ml against Salmonella and Escherichia coli strains and from 0.005 to 6.25 micrograms/ml against Pasteurella multocida strains.  相似文献   

10.
Pharmacokinetics of tobramycin in cats   总被引:1,自引:0,他引:1  
Tobramycin was administered to cats and its serum concentration vs time data were analyzed by use of a noncompartmental model. In the first experiment, 5 mg of tobramycin/kg of body weight was administered IV, IM, and then SC to 6 cats, 3 weeks apart. After IV administration, the mean +/- SD total body clearance of tobramycin was 2.21 +/- 0.59 ml/min/kg, and the apparent volume of distribution at steady state was 0.19 +/- 0.03 L/kg. The mean residence time was 90.5 +/- 16.2 minutes, with a harmonic mean serum half-life of 68.9 +/- 9.7 minutes. Blood urea nitrogen and serum creatinine concentrations were increased 3 weeks after the IV injection and also 3 weeks after the IM injection, which suggested possible renal damage. Moreover, large area under the curve values developed after IM and SC administrations, resulting in bioavailabilities of 159.5% and 189.9%, respectively, with no change in elimination rate. These results suggested a change in distribution, possibly caused by saturation of renal binding sites by residual tobramycin from the previous injection of 5 mg/kg. In experiment 2, 6 other cats were given 3 mg of tobramycin/kg by the same routes as before, but using a crossover design. Bioavailability after IM and SC administrations was 102.5% and 99.2%, respectively, indicating complete absorption of tobramycin. The BUN concentration increased in 3 cats, and serum creatinine concentration increased in 1 of these 3 cats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Pharmacokinetics and bioavailability of cefazolin in horses   总被引:1,自引:0,他引:1  
The pharmacokinetics and bioavailability of cefazolin given (IV, IM) to horses at the dosage of 11 mg/kg were investigated. The disposition of cefazolin given by IV route was characterized by a rapid disposition phase with a half-life of 5 to 10 minutes and a subsequent slower elimination phase with a half-life of 35 to 46 minutes. The total plasma clearance of cefazolin averaged 5.51 ml/min/kg and was due mainly to renal clearance (5.39 ml/min/kg) of unchanged drug. The volume of distribution at steady-state averaged 188 ml/kg. Plasma protein binding of cefazolin at a concentration of 10 micrograms/ml averaged 8.1 +/- 1.9%. Given by the IM route, cefazolin was rapidly absorbed; the extent of bioavailability was 78.4 +/- 18.8%, and the terminal half-life ranged from 49 to 99 minutes. Thus, cefazolin was extensively absorbed, but was eliminated more slowly than after IV administration.  相似文献   

12.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin administered IV and orally to foals. ANIMALS: 5 clinically normal foals. PROCEDURE: A 2-dose cross-over trial with IV and oral administration was performed. Enrofloxacin was administered once IV (5 mg/kg of body weight) to 1-week-old foals, followed by 1 oral administration (10 mg/kg) after a 7-day washout period. Blood samples were collected for 48 hours after the single dose IV and oral administrations and analyzed for plasma enrofloxacin and ciprofloxacin concentrations by use of high-performance liquid chromatography. RESULTS: For IV administration, mean +/- SD total area under the curve (AUC0-infinity) was 48.54 +/- 10.46 microg x h/ml, clearance was 103.72 +/- 0.06 ml/kg/h, half-life (t1/2beta) was 17.10 +/- 0.09 hours, and apparent volume of distribution was 2.49 +/- 0.43 L/kg. For oral administration, AUC0-infinity was 58.47 +/- 16.37 microg x h/ml, t1/2beta was 18.39 +/- 0.06 hours, maximum concentration (Cmax) was 2.12 +/- 00.51 microg/ml, time to Cmax was 2.20 +/- 2.17 hours, mean absorption time was 2.09 +/- 0.51 hours, and bioavailability was 42 +/- 0.42%. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with adult horses given 5 mg of enrofloxacin/kg IV, foals have higher AUC0-infinity, longer t1/2beta, and lower clearance. Concentration of ciprofloxacin was negligible. Using a target Cmax to minimum inhibitory concentration ratio of 1:8 to 1:10, computer modeling suggests that 2.5 to 10 mg of enrofloxacin/kg administered every 24 hours would be effective in foals, depending on minimum inhibitory concentration of the pathogen.  相似文献   

13.
Healthy adult mixed-breed dogs, assigned to 2 groups of 6 dogs each, were given 3 mg of gentamicin sulfate/kg of body weight on 3 injection days 7 days apart. Group 1 was given gentamicin by rapid IV injection, by injection into the belly of the longissimus muscle at the first lumbar vertebrae (IM site 1), and by injection in the belly of the biceps femoris muscle (IM site 2). Group 2 was given gentamicin by rapid IV injection, by SC injection into the space over the cranial angle of the scapula on the midline (SC site 1), and by SC injection just caudal to the crest of the ilium (SC site 2). Pharmacokinetic values (mean +/- SD) from 12 dogs given gentamicin IV were 54.4 +/- 15.4 minutes for the effective half life, 2.29 +/- 0.48 ml/kg/min for clearance, and 172 +/- 25.4 ml/kg for volume of distribution at steady state. Bioavailability (93.92 to 96.65%) and peak plasma gentamicin concentration (9.43 to 10.89 micrograms/ml) were independent of injection site, but time to peak concentration when gentamicin was given at SC site 2 (43.33 minutes) was significantly (P less than 0.05) longer than that when gentamicin was given at IM site 1 (27.50 minutes). Absorption half-life was shorter after injections were given at both IM sites (8.9 and 9.8 minutes) than after injection was given at SC site 2 (18 minutes).  相似文献   

14.
Nineteen cats were given 3 mg of gentamicin sulfate/kg of body weight by rapid IV, SC, or IM injection for baseline values. Serum concentration of gentamicin vs time data were analyzed using a noncompartmental model based on statistical moment theory. One week later, each cat was given 0.5 microgram of Escherichia coli endotoxin/kg, IV. After cats had an increase in rectal temperature of at least 1 C, 3 mg of gentamicin/kg was administered by the same route used the previous week. Serum concentration of gentamicin vs time data were analyzed, and pharmacokinetic values were compared with base-line values. For IV studies, the half-life (t1/2) of gentamicin and the mean residence time were significantly different (P less than 0.05) compared with base line, whereas the total body clearance and apparent volume of distribution at steady state were not. The harmonic mean +/- pseudo SD for the t1/2 of gentamicin after IV administration was 76.8 +/- 12.6 minutes for base line and was 65.2 +/- 12.2 minutes in the same cats given endotoxin. The t1/2 of gentamicin after SC administration was 74.6 +/- 6.2 minutes for base line and was 65.2 +/- 13.6 minutes in the same cats given endotoxin. After IM administration, the t1/2 of gentamicin was 60.3 +/- 10 minutes for base line and was 59.7 +/- 13.6 minutes in the same cats given endotoxin. After IV administration of gentamicin, the arithmetic mean +/- SD for the mean residence time was 102.4 +/- 16.1 minutes for base line vs 79.2 +/- 18.4 minutes in the same cats given endotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The pharmacokinetics, bioavailability, and distribution to the tears of ormetoprim (OMP; 5.5 mg/kg of body weight) and sulfadimethoxine (SDM; 27.5 mg/kg of body weight) were determined following IV or oral administration to 6 Holstein steers. After IV administration, the disposition kinetics of both drugs were best described by a 2-compartment open model. Sulfadimethoxine had a moderately rapid distribution phase, followed by a slower elimination phase, with a mean half-life (t 1/2) of 7.91 hours. The mean volume of distribution of SDM was 185 ml/kg, and the mean body clearance was 0.28 ml/min X kg. The concentration of SDM in tears was lower than the corresponding plasma concentration, and the elimination of SDM from tears (t 1/2 = 3.02 hours) was significantly faster than its elimination from plasma (t 1/2 = 7.91 hours). The disposition of OMP administered IV was characterized by a rapid distribution phase, followed by a rapid elimination phase (t 1/2 = 1.37 hours). The high values of the mean volume of distribution (1,450 ml/kg) and mean rate of body clearance (13.71 ml/min X kg) indicated that OMP was widely distributed in the body and was rapidly cleared from the body. Ormetoprim concentrations in tears exceeded corresponding plasma concentrations, and the elimination of OMP from tears was significantly slower (t 1/2 = 1.91 hours) than from plasma (t 1/2 = 1.37 hours). After oral administration of an OMP-SDM combination in bolus form, the absorption of SDM was slow (absorption t 1/2 = 3.32 hours), but complete.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The pharmacokinetics of flunixin were studied in 6 adult lactating cattle after administration of single IV and IM doses at 1.1 mg/kg of body weight. A crossover design was used, with route of first administration in each cow determined randomly. Plasma and milk concentrations of total flunixin were determined by use of high-pressure liquid chromatography, using an assay with a lower limit of detection of 50 ng of flunixin/ml. The pharmacokinetics of flunixin were best described by a 2-compartment, open model. After IV administration, mean plasma flunixin concentrations rapidly decreased from initial concentrations of greater than 10 micrograms/ml to nondetectable concentrations at 12 hours after administration. The distribution phase was short (t1/2 alpha, harmonic mean = 0.16 hours) and the elimination phase was more prolonged (t1/2 beta, harmonic mean = 3.14 hours). Mean +/- SD clearance after IV administration was 2.51 +/- 0.96 ml/kg/min. After IM administration, the harmonic mean for the elimination phase (t1/2 beta) was prolonged at 5.20 hours. Bioavailability after IM dosing gave a mean +/- SD (n = 5) of 76.0 +/- 28.0%. Adult, lactating cows (n = 6) were challenge inoculated with endotoxin as a model of acute coliform mastitis. After multiple administration (total of 7 doses; first IV, remainder IM) of 1.1 mg/kg doses of flunixin at 8-hour intervals, plasma flunixin concentrations were approximately 1 microgram/ml at 2 hours after each dosing and 0.5 micrograms/ml just prior to each dosing. Flunixin was not detected in milk at any sampling during the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
OBJECTIVE: To compare pharmacokinetic variables of enrofloxacin (ENR) after IV administration in mice, rats, rabbits, sheep, and cows and to perform allometric analysis of ENR. ANIMALS: 47 mice, 5 rats, 5 rabbits, 5 sheep, and 5 cows. PROCEDURE: Serially obtained plasma samples were assayed for ENR concentration, using high-performance liquid chromatography. In vitro plasma protein binding was determined by ultrafiltration. Plasma ENR concentration versus time curves were fitted by use of nonlinear least-squared regression analysis. Pharmacokinetic variables were correlated further with body weight. RESULTS: In all species studied, the best fit was obtained for a two-compartment open model; ENR half-life ranged from 89 minutes in mice to 169 minutes in cows. Volume of distribution was large in all species studied, with values ranging from 10.5 L/kg in mice to 1.5 L/kg in sheep. Body clearance ranged from 68.1 ml/min/kg for mice to 4.6 ml/min/kg for sheep. Unbound ENR was found to be (mean +/- SD) 58+/-2, 50+/-6, 50+/-2, 31+/-2, and 40+/-3% in plasma of mice, rats, rabbits, sheep, and cows, respectively. The only pharmacokinetic variables that could be correlated with body weight were elimination half-life, clearance, and volume of distribution. Allometric exponents denoting proportionality of half-life, body clearance, and volume of distribution with body weight were 0.06, 0.82, and 0.90, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: An allometric approach could provide a suitable method for determining a scale for ENR pharmacokinetics among various mammalian species. This would faciliatate the administration of appropriate doses of ENR to all animals.  相似文献   

18.
The absorption kinetics of porcine regular insulin following IV, IM, and SC administration were evaluated in 10 dogs with alloxan-induced diabetes mellitus. Plasma immunoreactive insulin (IRI) concentrations were evaluated immediately prior to and at 10, 20, 30, 45, 60, 90, 120, 180, and 240 minutes following IV administration; and immediately prior to and every 30 minutes for 2 hours and then every hour for 6 hours following IM and SC administration of 0.55 U of porcine regular insulin/kg of body weight. Model-independent pharmacokinetic analysis was performed on each data set. Plasma IRI concentration declined rapidly after IV administration of regular insulin and then returned to baseline IRI concentration by 3.2 +/- 0.8 hours. The absorption kinetics following IV administration of regular insulin were similar to those found in earlier studies in healthy dogs and human beings. The IM and SC routes of regular insulin administration resulted in a pharmacologic concentration of IRI at 30 minutes. The peak mean (+/- SD) plasma IRI concentration was significantly (P less than 0.05) greater following SC administration than it was following IM administration of regular insulin (263 +/- 185 and 151 +/- 71 I microU/ml, respectively). The time of the peak plasma IRI concentration (68 +/- 31 minutes and 60 +/- 30 minutes) and the time to return to baseline plasma IRI concentration (5.8 +/- 1.2 hours and 5.8 +/- 1.3 hours) were not significantly different following SC and IM administration of regular insulin, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Pharmacokinetics of cefotaxime in the domestic cat   总被引:1,自引:0,他引:1  
Cefotaxime was administered as single IV or IM dose for the purpose of examining its pharmacokinetics in healthy cats. The mean predicted plasma concentration of cefotaxime in 6 cats at 0 time after a single IV dosage of 10 mg/kg of body weight was 88.9 micrograms/ml. The mean plasma concentrations decreased to 10.8 micrograms/ml at 2 hours, 3.7 micrograms/ml at 3 hours, and 0.5 microgram/ml at 6 hours. The half-life was 0.98 +/- 0.25 hour (mean +/- SD), and the total body clearance was determined to be 2.76 +/- 1.25 ml/min/kg. After a single IM injection of 10 mg/kg of body weight, the mean maximum observed plasma concentration was 36.2 micrograms/ml at 0.75 hour. The mean absorption half-life was 0.24 hour. In 2 animals, the bioavailability of an IM injection was 98.2% and 93.0%.  相似文献   

20.
Pharmacokinetics of oxytetracycline hydrochloride in rabbits   总被引:1,自引:0,他引:1  
Pharmacokinetics of oxytetracycline HCl (OTC) was studied in rabbits. After 10 mg of OTC/kg of body weight was administered IV, the distribution half-life was 0.06 hour, terminal half-life was 1.32 hours, volume of distribution area was 0.861 L/kg, and total body clearance was 0.434 L/kg/h. After 10 mg of OTC/kg was given IM, the absorption half-life was 2.09 hours, extent of absorption was 71.4%, and total body clearance of the absorbed fraction was 0.576 L/kg/h. Based on these kinetic data, a dosage of 15 mg of OTC/kg, every 8 hours was developed. This dose given IM for 7 consecutive days resulted in observed steady-state maximum and minimum concentrations (mean +/- SD) of 4.7 +/- 0.3 micrograms/ml and 3.2 +/- 0.6 micrograms/ml, respectively. Twice this dose (30 mg of OTC/kg, every 8 hours) given IM caused anorexia and diarrhea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号