首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Thirty crossbred wethers (60 kg avg initial wt) were used to study the time-dose response to dietary Se as sodium selenite (Na2SeO3). Sheep were fed a basal diet (.20 mg/kg Se, M basis) for 10 d; three wethers were killed and tissues were collected for controls. The remaining 27 sheep were assigned randomly to diets supplemented with either 3, 6 or 9 mg/kg Se (as-fed basis) from reagent grade Na2SeO3 and fed for 10, 20 or 30 d. Feed offered was restricted to 1,200 g daily and tap water was available ad libitum. Sheep were stunned and killed by exsanguination and liver, kidney, muscle, heart and spleen were removed and frozen for Se analysis. No toxic effects were noted as expressed by feed intake or hemoglobin concentration. Added dietary Se increased Se linearly (P less than .01) in liver, kidney, and serum. Selenium in liver, kidney and serum also increased (P less than .01) as time advanced. Serum, liver and kidney were more sensitive to dietary Se than were muscle, heart and spleen. Ten days appeared to be an adequate length of time for further Se bioassay studies of this nature. Reagent grade Na2SeO3 was nontoxic when fed to sheep for 30 d at levels up to 90 times the Se requirement.  相似文献   

2.
Cats (Felis catus) maintain greater blood Se concentrations compared with dogs (Canis familiaris) and, unlike dogs, show no signs of chronic Se toxicity (selenosis) when fed dietary organic Se (selenomethionine) concentrations of 10 μg/g DM. This study investigated the response of cats and dogs to high dietary concentrations of sodium selenite and organic Se to determine differences in metabolism between both species. In 2 consecutive studies, 18 adult cats and 18 adult dogs of with equal numbers of each sex were fed a control diet (0.6 μg Se/g DM) or the control diet supplemented to 8 to 10 μg Se/g DM from Na(2)SeO(3) or organic Se for 3 wk. All animals were fed the control diet 1 mo before the start of the study and blood samples were taken on d 0 and 21. The Se balance was assessed during the final week and a liver biopsy was obtained on the final day of the study. Measurements included plasma Se concentrations, plasma glutathione peroxidise (GPx) activities, plasma Se clearance, Se intake, and urinary Se excretion. No clinical signs of selenosis were observed in the cats or dogs, and apart from Se clearance, form of Se had no effect on any of the measurements. Apparent fecal Se absorption was greater in the dogs fed both forms of Se, while greater plasma Se concentrations were observed in the cats on both the control and supplemented diet (P = 0.034). Cats fed the supplemented diets had lower hepatic Se concentrations (P < 0.001) and excreted more Se in urine (P < 0.001) compared with dogs. Furthermore, cats fed the Na(2)SeO(3) supplement had greater Se clearance rates than dogs (P < 0.001). There was no effect of species on plasma GPx activity. We conclude that cats can tolerate greater dietary Se concentrations as they are more efficient at excreting excess Se in the urine and storing less Se in the liver.  相似文献   

3.
The effect of dietary riboflavin (B2) supplementation and selenium (Se) source on the performance and Se metabolism of weanling pigs was studied. Pigs fed a B2-supplemented (10 mg/kg) casein-glucose diet for 18 d gained faster than pigs fed the B2-unsupplemented diet. Percentage active erythrocyte glutathione reductase (GR) declined rapidly when pigs were placed on the B2-unsupplemented diet and was lower (P less than .01) than that of B2-supplemented pigs after 12 d on test. Percentage active erythrocyte GR values fell below 50% before other B2 deficiency signs became evident. Supplementation of diets with 10 mg B2/kg resulted in increased kidney and muscle glutathione peroxidase (GSH-Px) activity. The Se concentration of liver and heart increased and plasma Se levels decreased with dietary B2 supplementation. Riboflavin supplementation and Se source did not alter apparent Se absorption, but B2 supplementation decreased urinary Se and thus increased Se retention. Also, there was less urinary Se excretion when selenomethionine was the dietary Se source and consequently more Se was retained than when sodium selenite was the dietary Se source. In a final trial, B2 supplementation increased kidney, muscle, heart and brain GSH-Px activity when sodium selenite was the dietary Se source, but not when selenomethionine was the dietary Se source.  相似文献   

4.
The ameliorating effects of Cu++ and SO4--ions on concurrent selenite toxicity were compared in two factorial experiments using 60 weanling rats each. In the first experiment, 0, 500 and 1,000 mg Cu (as CuCl2)/kg diet were fed in conjunction with 0, 5, 10 and 20 mg Se (as Na2SeO3)/kg diet. In the second experiment, the treatments were 0, 500 and 1,000 mg SO4 (as Na2SO4)/kg fed in conjunction with 0, 5, 10 and 20 mg Se/kg diet. A paired-feeding experiment using 10, 15 and 20 mg Se/kg diet was also conducted with 28 rats to compare the influence of inanition in control and selenite-fed rats. Cupric++ ion, but not SO4--ion, prevented mortality among selenite-intoxicated rats. There were significant Cu X Se interaction effects on feed intake, daily gain, packed cell volume (PCV), serum Cu and Fe, sperm counts, and weights of liver, kidney and testis. There were main effects of Cu and Se on serum Se and liver Cu. In Exp. 2 there were significant SO4 X Se interaction effects on feed intake, daily gain, serum Cu and testis weight. There were main effects of Se on PCV, sperm count, serum testosterone, liver Se, liver Cu and the absolute weights of liver and kidney. The only main effect of SO4 was that of increased liver Cu concentrations. Among the pair-fed rats, the selenite-fed rats, with one exception, died before their paired rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The purpose of this study was to determine the selenium (Se) requirement in kittens. Thirty-six specific-pathogen-free kittens (9.8 weeks old) were utilized in a randomized complete block design to determine the Se requirement in cats with gender and weight used as blocking criteria. Kittens were fed a low Se (0.02 mg/kg Se) torula yeast-based diet for 5 weeks (pre-test) after which an amino acid-based diet (0.027 mg Se/kg diet) was fed for 8 weeks (experimental period). Six levels of Se (0, 0.05, 0.075, 0.10, 0.20 and 0.30 mg Se/kg diet) as Na2SeO3 were added to the diet and were used to construct a response curve. Response variables included Se concentrations and Se-dependent glutathione peroxidase activities (GSHpx) in plasma and red blood cells (RBC) as well as plasma total T3 (TT3) and total T4 (TT4). No significant changes in food intake, weight gain or clinical signs of Se deficiency were noted. Estimates of the kitten's Se requirement (i.e. breakpoints) were determined for RBC and plasma GSHpx (0.12 and 0.15 mg Se/kg diet, respectively), but no definitive breakpoint was determined for plasma Se. Plasma TT3 increased linearly, whereas plasma TT4 and the ratio of TT4 : TT3 decreased in a quadratic fashion to dietary Se concentration. The requirement estimate determined in this study (0.15 mg Se/kg) for kittens is in close agreement with other species. As pet foods for cats contain a high proportion of animal protein with a Se bioavailability of 30%, it is recommended that commercial diets for cats contain 0.5 mg Se/kg DM.  相似文献   

6.
Sugarcane molasses is a widely used animal feed by-product, but is concentrated in S (approximately 1%, DM basis) and has been shown to reduce the Cu status of cattle. Dietary S may also antagonize Se; therefore, two 90-d studies were conducted with forage-fed, yearling steers (12 pens; 2 steers/pen for each study) to investigate the impact of molasses supplementation on measures of Se status. In Exp. 1, steers were assigned isonitrogenous supplements with equivalent amounts of TDN from 2 sources (molasses or corn). Supplemental Se was provided (3.0 mg of Se/d; Na selenite) to both treatments. After 90 d of supplementation, steers provided corn diets had greater (P = 0.02) liver Se concentrations and tended (P = 0.07) to have greater ADG compared with steers supplemented with molasses. Irrespective of treatment (P >/= 0.54), plasma Se concentrations decreased (P < 0.001) and plasma glutathione peroxidase activity increased (P < 0.001) from d 0 to 90. In Exp. 2, sources of supplemental Se (2.5 mg/ d), fed within molasses supplements, were compared. Treatments included 1) Na selenite, 2) Se-yeast (Sel-Plex, Alltech, Nicholasville, KY), or 3) no Se (control). Cattle provided supplemental Se, irrespective of source, had greater (P 相似文献   

7.
The objectives of this 72-wk study were to evaluate and compare the effects of 6 dietary levels of inorganic Se on serum, whole blood, wool, and tissue Se concentrations and to determine the maximum tolerable level of Se for mature ewes during lamb production. Forty-one, 4-yr-old, range-type ewes (57.4 +/- 5.7 kg) were used in a completely randomized design with 6 dietary treatments. Sodium selenite was added to a corn and soybean meal-based diet to provide 0.2 (control), 4, 8, 12, 16, or 20 mg of dietary Se/kg to ewes during lamb production. Serum Se and ewe BW were measured at 4-wk intervals; whole blood Se and wool Se were measured every 12 wk; and samples of brain, diaphragm, heart, hoof, kidney, liver, and psoas major were collected at the termination of the experiment. Dietary Se did not affect ewe BW during the study (P = 0.69), and there was no treatment x time interaction. Serum Se increased linearly as dietary Se level increased (P < 0.001) and responded cubically (P = 0.02) over time. Selenium in whole blood increased linearly (P < 0.001) as supplemental Se increased. Wool Se increased linearly (P < 0.001) as dietary Se increased, and the response over time was quadratic (P < 0.001). Brain, diaphragm, heart, and psoas major Se increased (P < 0.05) linearly as dietary Se increased, liver Se responded quadratically (P < 0.05), and hoof and kidney Se increased cubicically (P < 0.05) as supplemental Se increased. In general, serum, whole blood, and tissue Se concentrations of ewes receiving 12, 16, or 20 mg of dietary Se/kg were greater (P < 0.05) than those of controls and ewes receiving less dietary Se. Although they were elevated in ewes receiving increased dietary Se, at no time did serum, whole blood, or wool Se concentrations reach levels previously reported as toxic, nor were clinical signs of Se toxicosis observed. Histopathological evaluation of liver, kidney, diaphragm, heart, and psoas major did not reveal evidence of Se toxicosis in ewes at any dietary Se level. Ewes under our experimental conditions and during the stresses of production were able to tolerate up to 20 mg of dietary Se/kg as sodium selenite for 72 wk. These findings suggest that the maximum tolerable level of inorganic Se for sheep is much greater than 2 mg/kg as was suggested previously. Experiments of longer duration and utilizing greater dietary Se concentrations are necessary to clearly define the maximum tolerable level.  相似文献   

8.
Groups af White Leghorn chicks obtained from dams deprived on selenium (Se), were fed from hatching a low-Se-vitamin E basal diet alone, or supplemented with 0.02, 0.04, 0.06 or 0.08 mg Se/kg diet, as sodium selenite (Na2SeO3 · 5H2O), wheat, barley or fish meal. Prevention of the Se-vitamin E deficiency responsive disease exudative diathesis (ED) as it was clinical observed, induction of the plasma Se dependent enzyme glutathione peroxidase (GSH-Px) activity, and Se concentration in the cardiac muscle were observed to be dietary Se level and source dependent. Slope ratio assay was applied to estimate the biological availability of Se in the natural sources relative to Se in sodium selenite. For the prevention of ED, the bioavailability of Se in wheat, barley and fish meal was 99, 85 and 80 %, respectively. The increase in the plasma GSH-Px activity revealed a bioavailability for Se in wheat, barley and fish meal of 79, 71 and 66 %, respectively. Using retention of Se in the cardiac muscle as the bioassay, a bioavailability of 108, 87 and 100 % was calculated for wheat, barley and fish meal Se, respectively.  相似文献   

9.
Food and Drug Administration regulations currently permit addition of .3 mg of Se per kilogram of diet for chickens, turkeys, ducks, swine, sheep, and cattle. However, field reports indicate that this level may not be adequate for ruminants in all situations. Because sodium selenite is the most common supplemental form and is known to be readily absorbed to particles or reduced to insoluble elemental Se or selenides in acid, anaerobic environments, studies were conducted with dairy cattle, sheep, and horses fed sodium selenate to determine whether Se from this source was more bioavailable than Se from sodium selenite. A 2-wk period of no Se supplementation was followed by 49 or 56 d of Se supplementation at .3 mg/kg of dietary DM. Serum Se concentrations and glutathione peroxidase (GSHPx) activities measured initially and periodically thereafter revealed no difference between Se forms in sheep and horses and only a small (P less than .05) advantage for selenate in supporting serum Se concentration in dairy cattle. Selenium concentrations in skeletal muscle and liver of sheep were not different between Se forms. Serum Se, but not GSHPx, increased with time, and .3 mg of supplemental Se per kilogram of dietary DM from either sodium selenate or sodium selenite supported normal serum Se concentrations in sheep, dairy cattle, and horses.  相似文献   

10.
This study was conducted to determine the effects of either dietary Se source or dose on the Se status of horses. Twenty-five mature horses were blocked by BW and randomly allocated to 1 of 5 dietary treatments that comprised the same basal diet that differed only in Se source or dose. Treatments were as follows: negative control (0.085 mg of Se/kg of DM), 3 different dietary concentrations of supplemental organic Se (Se yeast; 0.2, 0.3, and 0.4 mg of total Se/kg of DM), and positive control (0.3 mg of total Se/kg of DM) supplemented with Na selenite. Horses initially received the control diet (6 kg of grass hay and 3 kg of concentrate per horse daily) for 56 d to allow diet adaptation. After the period of diet adaptation, horses were offered their respective treatments for a continuous period of 112 d. Jugular venous blood samples were collected before the morning feed on d 0, 28, 56, 84, and 112. Whole blood and plasma were analyzed for total Se, glutathione peroxidase activity in whole blood (GPX-1) and plasma, and thyroid hormones (thyroxine and triiodothyronine) in plasma. The proportion of total Se as selenomethionine (SeMet) or selenocysteine in pooled whole blood and plasma samples was determined on d 0, 56, and 112. Data were analyzed as repeated measures. Total Se in blood and plasma and GPX-1 activity were greater in all supplemented horses (P < 0.001, except P < 0.01 for GPX-1 in horses supplemented with the least dose of Se yeast) with a linear dose effect of Se yeast for whole blood and plasma Se (P < 0.001) and a quadratic dose effect (P < 0.05) for whole blood GPX-1 activity. A plateau for total Se in plasma was achieved within 75 to 90 d, although this was not observed in blood total Se or GPX-1 activity. On d 84 and 112, horses supplemented with Se yeast showed greater total Se in blood (P < 0.05) compared with horses supplemented with Na selenite, and a source effect (P < 0.05) was observed in the relationship between total blood Se and GPX-1 activity. Selenocysteine (the predominant form of Se in whole blood and plasma) increased in all horses supplemented with Se. The SeMet content of whole blood and plasma increased in horses supplemented with Se yeast, but it was not observed in those supplemented with selenite. The rate of increase in SeMet over time was greater in whole blood (P < 0.05) and plasma (P = 0.10) with the Se yeast product. In conclusion, Se yeast was more effective than Na selenite in increasing total Se in blood, mainly as consequence of a greater increase of the proportion of Se comprised as SeMet, but it did not modify GPX-1 activity.  相似文献   

11.
The objective was to compare growth and physiological responses in boars fed diets supplemented with organic or inorganic sources of Se. At weaning, crossbred boars (n = 117; 8.3 kg of BW) were placed in nursery pens (3 boars/pen) and assigned within BW blocks to receive on an ad libitum basis 1 of 3 dietary treatments: I) basal diets with no supplemental Se (controls), II) basal diets supplemented with 0.3 mg/kg of organic Se, and, III) basal diets supplemented with 0.3 mg/kg of sodium selenite (13 pens/dietary treatment). Average daily gain (470 g/d), ADFI (896 g/d), and G:F (0.54) were similar among groups. Blood Se concentrations were greater (P < 0.01) for boars consuming organic Se (107.5 ± 4.8 μg/L) or sodium selenite (114.7 ± 4.8 μg/L) compared with controls (28.4 ± 4.8 μg/L). Intact pens of boars (11 pens/dietary treatment) were moved to a grow-finish barn and continued to receive appropriate diets on an ad libitum basis. Average daily gain (1,045 g/d) and ADFI (2,716 g/d) were similar among groups. Gain:feed was affected by treatment (P = 0.02) and was greater (P < 0.06) for boars fed organic Se (0.378 ± 0.004) compared with boars fed sodium selenite (0.368 ± 0.004) or controls (0.363 ± 0.004). Blood Se concentrations were greater (P < 0.01) in grow-finish boars consuming organic Se (198.9 ± 5.5 μg/L) than boars consuming sodium selenite (171.4 ± 5.4 μg/L) or controls (26.7 ± 5.4 μg/L). Treatment did not affect (P > 0.15) HCW, dressing percent, carcass length, LM area, standardized fat-free lean, lean percentage, backfat thickness, visual color, firmness, marbling, or Minolta loin color scores. Selenium supplementation did not affect (P > 0.17) testis or accessory sex gland sizes. Concentrations of Se in loin, liver, kidney, testis, cauda epididymis, and accessory sex glands were greatest (P < 0.01) in boars receiving organic Se, intermediate in boars receiving sodum selenite, and least in control boars. Microarray analysis of testis gene expression did not detect differences (P > 0.05) due to dietary treatment. Testis gene expression of glutathione peroxidase 4, as determined using quantitative PCR, was increased (P < 0.01) in boars fed organic Se compared with those fed sodium selenite. In summary, dietary supplementation of boars with organic Se failed to alter ADG or ADFI but enhanced G:F during grow-finish. More research is needed to discern the mechanism by which organic Se improves feed efficiency in boars.  相似文献   

12.
Immunomodulation in weanling swine with dietary selenium   总被引:2,自引:0,他引:2  
The capability of dietary selenium (Se) to augment the immune response was evaluated in 96 crossbred weanling swine. Six groups of 16 pigs were fed diets with Se supplemented as sodium selenite at 0, 0.3, 0.6, 0.9, 1.2, and 1.5 mg/kg. The basal diet contained 0.068 mg of Se/kg. Weight gain, feed consumption, and feed efficiency were similar for all diets. Whole blood concentrations of Se linearly increased as the dietary concentrations of Se increased. The humoral response was monitored by immunoglobulin G titers to lysozyme and ribonuclease, using an enzyme-linked immunosorbent assay. Although no significant difference in immunoglobulin G titers to either antigen was detected among diets, a similar trend in antibody response was noted. The diet with 0.9 mg of added Se/kg produced the highest antibody response to both antigens, whereas the diet with 0.3 mg of added Se/kg produced the lowest titers for both antigens. Cell-mediated immunity was evaluated in the pigs by the dermal response to phytohemagglutinin. Significant difference was not detected in pigs fed the various diets in terms of the mean diameters of their dermal reactions to phytohemagglutinin injections. Although blood concentrations of Se were increased, rate and efficiency of weight gain and humoral and cell-mediated immunity were not significantly improved by adding 0.3 to 1.5 mg of Se/kg to diets.  相似文献   

13.
本试验旨在考察不同硒源及硒水平对大鼠生长性能、血清抗氧化能力及组织硒沉积的影响,并以亚硒酸钠和商品酵母硒(酵母硒B)为参比,对本课题组用糖蜜和尿素为发酵底物研制的酵母硒(酵母硒A)生物学效价进行评定.将硒耗竭2周后的70只8周龄左右Wistar雌性大鼠称重,随机分到10个处理,每个处理7个重复,每个重复1只大鼠,分别饲喂不同处理的饲粮21d.处理1不添加任何形式的硒源,处理2~9在基础饲粮中分别以亚硒酸钠或酵母硒A的形式添加0.1、0.2、0.3和0.4mg/kg硒,处理10以酵母硒B形式添加0.3mg/kg硒.结果表明:1)不同硒源及硒水平对大鼠生长性能、血清谷胱甘肽过氧化物酶(GSH-Px)和超氧化物歧化酶活性影响不显著(P>0.05);2)组织硒含量随饲粮硒水平的升高极显著增加(P<0.01),添加酵母硒A组大鼠组织硒含量显著高于亚硒酸钠组(P<0.05);3)以亚硒酸钠为参比,血清GSH-Px活性及肝脏、肾脏和肌肉硒含量作为判定指标,酵母硒A的相对生物学效价分别为95.9%、127.5%、114.5%和101.2%;4)添加酵母硒A和酵母硒B对大鼠生长性能、血清抗氧化能力的影响不显著(P>0.05),但添加酵母硒A组大鼠肾脏硒含量极显著高于酵母硒B组(P<0.01),而酵母硒B在肌肉中有更多的硒沉积(P<0.01).结果提示:1)硒源对大鼠组织硒沉积有较大影响,酵母硒相对于亚硒酸钠具有更高的生物学效价,但不同酵母硒之间存在一定的差异;2)饲粮硒水平对大鼠血清抗氧化能力影响较小,以血清GSH-Px活性为衡量标准,0.1mg/kg硒的酵母硒和亚硒酸钠都能满足大鼠的需要,但更高水平的酵母硒可以使大鼠组织中有更多硒的储备.  相似文献   

14.
A study was conducted to determine the efficacy of organic (Se-yeast, SelenoSource AF, Diamond V Mills Inc., Cedar Rapids, IA) and inorganic sources of Se on growth performance, tissue Se accretion, and carcass characteristics of growing-finishing pigs fed diets with high endogenous Se content. A total of 180 pigs at 34.4 +/- 0.06 kg of BW were allotted to 1 of 5 dietary treatments: a negative control without added Se (NC); 3 treatment diets with 0.1, 0.2, or 0.3 mg/kg of added Se from an organic source; and a diet with 0.3 mg/kg of added Se as sodium selenite. Each treatment had 6 pens, with 6 pigs per pen-replicate. Experimental diets were changed twice at 66.1 +/- 0.5 kg and 99.0 +/- 0.9 kg of BW, and were fed until the pigs reached market weight. Growth performance was measured at the end of each phase. Upon reaching 129.9 +/- 1.4 kg of BW, the pigs were transported to a local abattoir (Seaboard Foods, Guymon, OK), where carcass, loin, and liver samples were obtained. Hair and blood samples were obtained at the beginning and end of the study for Se analysis. Growth performance did not differ (P > 0.05) among treatments. Percent drip loss of the NC pigs was greater (2.41 vs. 1.75, P = 0.011) compared with pigs supplemented with Se. Pigs fed diets with added Se had greater Se concentrations in the liver (0.397 vs. 0.323 ppm, P = 0.015), loin (0.236 vs. 0.132 ppm, P < 0.001), serum (0.087 vs. 0.062 ppm, P = 0.047), and hair (0.377 vs. 0.247 ppm, P = 0.003) compared with the NC pigs. Percentage drip loss was linearly reduced [percent drip loss = 2.305 - (2.398 x Se), r2 = 0.29, P = 0.007] as dietary organic Se concentration increased. The Se concentration (ppm) in the liver [liver Se = 0.323 + (0.291 x Se), r2 = 0.33, P = 0.003], loin [loin Se = 0.122 + (0.511 x Se), r2 = 0.57, P < 0.001], serum [serum Se = 0.060 + (0.113 x Se), r2 = 0.33, P = 0.004] and hair [hair Se = 0.237 + (0.638 x Se), r2 = 0.56, P < 0.001] increased linearly as dietary organic Se concentration increased. Slope ratio analysis indicated that the relative bioavailability of organic Se for percent drip loss and loin and hair Se response was 306, 192, and 197% of that for inorganic Se, respectively. The results of the study show a potential advantage of organic Se supplementation in reducing drip loss even when the basal diet contains an endogenously high Se concentration of 0.181 ppm.  相似文献   

15.
This research evaluated the efficacy of inorganic and organic Se sources for growing-finishing pigs, as measured by performance and various tissue, serum, carcass, and loin quality traits. A total of 351 crossbred pigs were allotted at an average BW of 20.4 kg to six replicates of a 2x4 factorial experiment in a randomized complete block design. Pigs were fed diets containing Se-enriched yeast (organic) or sodium selenite (inorganic), each at .05, .10, .20, or .30 mg Se/kg diet. A non-Se-fortified basal diet was a ninth treatment group. Five pigs per pen were bled initially and at 30-d intervals with serum analyzed for Se and glutathione peroxidase (GSH-Px) activity. At 55 kg BW, one pig per pen from each of three replicates was killed, and tissues were collected for Se analysis. At 105 kg BW, the remaining pigs in the three replicates were killed, carcass measurements were collected, tissues were analyzed for Se, and loin quality was evaluated for pH, drip loss, and lightness. No performance or carcass measurement benefit resulted from either Se source or dietary Se levels. Pigs had a lower serum Se concentration and GSH-Px activity when the basal diet was fed, but both increased as dietary Se level increased (P<.01). Serum GSH-Px activities were increased by pig age and reached a plateau when the diet contained approximately .10 mg Se/kg (P<.01) at d 30, and 60 of the trial, and at .05 mg Se/kg diet at d 90 of the trial. The organic Se group fed .05 and .10 mg Se/kg had serum GSH-Px activities that tended to be lower than those of pigs fed the inorganic Se source, but GSH-Px activities in both groups were similar at higher Se levels. Tissue Se contents increased linearly as the dietary Se level increased, but the increase was markedly higher when organic Se was fed, resulting in an interaction (P<.01) response. Loin drip loss, pH, and lightness were unaffected (P>.15) by organic Se source or level, but there was a trend for a higher drip loss (P = .11) and a linear (P<.01) increase in loin paleness when the inorganic Se level increased. These results indicate that neither Se source nor Se level had an effect on pig performance or carcass measurements, but organic Se source increased tissue Se concentrations. Inorganic Se may, however, have a detrimental effect on loin quality, as reflected by higher drip loss and a paler color. Using serum GSH-Px activity as the measurement criterion, the supplemental dietary Se requirement did not seem to exceed .10 and .05 mg Se/kg diet for the growing and finishing phases, respectively, when added to a basal diet containing .06 mg Se/kg.  相似文献   

16.
Eighty-three weaned beef calves severely deficient (less than 20 micrograms/L) in blood selenium (Se) were allotted by sex, weight and breed to one of six regimens of Se supplementation for 108 days to examine the efficacy of various Se supplementation programs and to monitor the repletion rate of blood Se concentrations. Cattle in treatment 1 received an IM injection of sodium selenite and an ad libitum feeding of 20 mg Se/kg salt-mineral mixture. Salt-mineral mixtures (treatments 2, 3, 4 and 5) were formulated to contain 20, 40, 80 and 160 mg Se/kg supplement, respectively, and were offered free-choice. Treatment 2 served as the selenium-treated control because 20 mg Se/kg supplement was the maximum permissible by FDA in commercial salt-mineral preparations at the time of this study. Cattle in treatment 6 received a salt-mineral supplement which contained no Se but dried brewers grain (434 micrograms Se/kg) was incorporated in the ration as an organic source of Se and fed at a rate of 1.1 kg/head/day. There was a within group time/treatment interaction (P less than 0.01) among all treatments as blood Se concentrations significantly increased over time. Final mean whole blood Se concentrations for treatments 1-6 were 87.8, 60.6, 95.1, 123.1, 154.2 and 91.4 micrograms/L, respectively. Treatments 1, 3, 4, 5 and 6 effectively increased and maintained whole blood Se concentrations at adequate levels (greater than 70 micrograms/L) by day 84. Treatment 2 (control) increased blood Se during the 108-day study, but blood Se concentrations never exceeded marginal levels (50-70 micrograms/L). Cattle consumed less salt-mineral supplement as the concentration of Na selenite increased from 20 to 160 mg Se/kg supplement.  相似文献   

17.
A total of 64 weanling pigs was used in a randomized complete-block experiment to evaluate the efficacy of various inorganic Se levels on weekly Se balance measurements over a 5-wk post-weaning period. Four-week-old weaned pigs were fed a 20% protein, corn-soybean meal diet supplemented with 0, .3, .5 or 1.0 ppm Se from sodium selenite. Eight pigs were allotted by weight, litter and sex to each metabolism crate. A 2-d preliminary period followed by a 5-d collection period was conducted for five weekly periods. Feed intake was provided ad libitum but was similar between dietary Se levels. Fecal Se excretion increased each week and with increasing dietary Se level. Apparent digestibility of Se was relatively constant for each period when inorganic Se was fed, averaging approximately 70%, whereas it ranged between 30 to 40% for pigs fed the basal diet during wk 2 through 5. Urinary Se decreased during the postweaning periods for pigs fed the basal diet, but increased linearly as dietary Se increased during the initial 2-wk postweaning period and then quadratically during wk 3 through 5. There was a net loss of Se from the body when the Se-unsupplemented basal diet was fed during the initial 2 wk postweaning, whereupon, it became positive. Selenium retention in pigs supplemented with inorganic Se increased each week of the trial. When Se retention was expressed in relation to Se intake, the resulting regression was linear (R2 = .99), suggesting that Se retention in the postweaning pig increased in direct proportion to the amount consumed when diets contained up to 1.0 ppm Se.  相似文献   

18.
Current selenium (Se) recommendations for the puppy are based on extrapolation from other species (0.11 mg Se/kg diet). The purpose of this study was to experimentally determine the Se requirement in puppies. Thirty beagle puppies (average = 8.8 weeks old) were utilized in a randomized complete block design with age, litter and gender used as blocking criteria. Puppies were fed a low Se (0.04 mg Se/kg diet) torula yeast-based diet for 14 days (pre-test period) after which this same diet was supplemented with five levels of Na2SeO3 for 21 days (experimental period) to construct a response curve (0, 0.13, 0.26, 0.39 or 0.52 mg Se/kg diet). Response variables included Se concentrations and Se-dependent glutathione peroxidase activities (GSHpx) in serum as well as serum total triiodothyronine (TT3), serum total thyroxine (TT4) and serum free T4 (FT4). No significant changes in food intake and body weight gain occurred, and no clinical signs of Se deficiency were observed. A breakpoint for serum GSHpx could not be determined in our study due to analytical difficulties. A broken-line, two-slope response in serum Se occurred with a breakpoint at 0.17 mg Se/kg diet. When Se from the basal diet was added to this estimate, the breakpoint for serum Se equated to 0.21 mg Se/kg diet. TT3 increased linearly with increasing Se intake, whereas TT4 was unchanged. However, the ratio of TT4 : TT3 decreased linearly in response to supplemental Se. In summary, although we estimated the selenium requirement for the puppy based on serum Se, our 0.21 mg Se/kg diet estimate is higher than that seen for adult dogs, kittens, rats or poultry (0.13, 0.15, 0.15 and 0.15 mg Se/kg diet respectively). This difference may be due to the fact that GSHpx was used as the biomarker of Se status.  相似文献   

19.
The effects of three dietary selenium (Se) levels (0.15, 0.35 and 0.5 mg/kg dry matter (dm) and of two Se-compounds (sodium selenite and Se-yeast) on the Se-status, liver function and claw health were studied using 36 fattening bulls in a two-factorial feeding trial that lasted 16 weeks. The claw health was assessed macroscopically and microscopically. Compared to the two control diets containing 0.15 mg Se/kg dm, the intake of the diets containing 0.35 and 0.50 mg Se/kg dm significantly (P < 0.05) increased the Se-concentration in serum, hair, liver and skeletal muscle. Compared to sodium selenite the intake of Se-yeast resulted in significantly (P < 0.05) higher Se-concentration in serum, liver and hair. Concerning the claw horn quality, there was no significant difference between the different groups; the animals receiving organic Se tended to have a better histological score (P = 0.06) at the coronary band than the groups fed with sodium selenite. The serum vitamin E level decreased significantly (P < 0.05) with increasing Se-intake, which had no influence (P > 0.1) on growth and liver function parameters. With the exception of the decrease of the serum vitamin E level indicating an oxidative stress caused by a high Se-intake, no negative effects of dietary selenium exceeding recommended levels for 4 months were observed.  相似文献   

20.
The current NRC dietary selenium (Se) requirement (0.15 mg/kg) of broilers from 22 to 42 d of age is primarily based on a previous study reported in 1986, which might not be applicable to modern classes of rapidly growing broilers. The present experiment was conducted to determine the optimal dietary Se level for meeting metabolic and functional Se requirements of broilers fed a corn-soybean meal diet from22 to 42 d of age. A total of 336 Arbor Acres male broilers at 22 d old were randomly assig...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号