首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The body centre of mass (BCM) is a key factor in the analysis of equine locomotion, as its position and movement determines the distribution and magnitude of loads on the limbs. In this study, the three-dimensional (3D) movement of the BCM in walking and trotting horses was assessed using a kinematic, segmental method. Thirty markers representing 20 body segments were recorded in 12 sound horses while standing, walking and trotting on a treadmill using a high-speed video system. Based on segmental inertial data, 3D positions of the segmental centres of mass as well as the total BCM were calculated. The position within the trunk during square standing and the movements of the BCM were determined for the three planes.The position of the BCM in the standing horse is presented relative to external reference points. At the trot, vertical displacement amplitude of the BCM amounted to 53 (6) mm as mean (sd), which was 27% smaller than external trunk movement. Medio-lateral displacement amplitude of the BCM was 19 (4) mm, 34% less than trunk amplitude. Sagittal forward-backward oscillations of the BCM independent from general forward movement were 13 (3) mm, being 24% less than trunk movements. At the walk, vertical, medio-lateral and sagittal BCM movements were smaller than trunk movements by 43, 65 and 65% respectively.The results show reduced and efficient BCM movements compared to the trunk and form a basis for the assessment of various clinical conditions such as lameness, the influence of a rider and various dressage performances.  相似文献   

2.
Trotting a horse in circles is a standard and important part of the subjective equine lameness examination, yet objective data on this form of locomotion are sparse. The aim of this study was to investigate the effect of trotting in a circle on head and trunk movement symmetry. Vertical movements of the head, withers, os sacrum and left and right tuber coxae were measured using inertial sensors as 12 sound horses were trotted on a hard surface in a straight line and in a circle on both reins. Seven asymmetry measures and hip hike were calculated for each horse for at least nine strides of comparable stride duration across the three conditions (deviation on horse level ≤3.7% stride duration). Trotting in a circle introduced systematic changes to the movement pattern of all five body landmarks, affecting most asymmetry measures. On average the asymmetry magnitude was comparable for midline locations between reins and for the tuber coxae on opposite reins with few exceptions, although individual horses showed unsystematic differences between the two reins. The results from this study showed that the thresholds for objective discrimination between lame and non-lame horses will need adjustment on the circle due to the observed asymmetry bias.  相似文献   

3.
Reason for performing study: During trot, the rider can either rise from the saddle during every stride or remain seated. Rising trot is used frequently because it is widely assumed that it decreases the loading of the equine back. This has, however, not been demonstrated in an objective study. Objective: To determine the effects of rising and sitting trot on the movements of the horse. Hypothesis: Sitting trot has more extending effect on the horse's back than rising trot and also results in a higher head and neck position. Methods: Twelve horses and one rider were used. Kinematic data were captured at trot during over ground locomotion under 3 conditions: unloaded, rising trot and sitting trot. Back movements were calculated using a previously described method with a correction for trunk position. Head‐neck position was expressed as extension and flexion of C1, C3 and C6, and vertical displacement of C1 and the bit. Results: Sitting trot had an overall extending effect on the back of horses when compared to the unloaded situation. In rising trot: the maximal flexion of the back was similar to the unloaded situation, while the maximal extension was similar to sitting trot; lateral bending of the back was larger than during the unloaded situation and sitting trot; and the horses held their heads lower than in the other conditions. The angle of C6 was more flexed in rising than in sitting trot. Conclusions and clinical relevance: The back movement during rising trot showed characteristics of both sitting trot and the unloaded condition. As the same maximal extension of the back is reached during rising and sitting trot, there is no reason to believe that rising trot was less challenging for the back.  相似文献   

4.
5.
Objective-To validate an equine inertial measurement unit (IMU) system rigidly attached to a hoof against a 3-D optical kinematics system in horses during walking and trotting. Animals-5 clinically normal horses. Procedures-5 swing phases of the hooves of the right forelimb and hind limb were collected via both 3-D optical and IMU systems from 5 horses during walking and trotting. Linear and angular positions, velocities, and accelerations were compared between the 2 systems. Results-Of the 55 variables compared between the 2 systems, 25 had high correlations (r > 0.8) and 18 had moderate correlations (r > 0.5). Root mean squared errors were lowest in the sagittal plane and orientation (1.1 to 4.4 cm over a range of 1.5 to 1.9 m in the cranial-caudal direction and 2.5° to 3.5° over a range of 88° to 110° rotating around the medial-lateral axis). There were more differences between the 2 systems during small changes in motion, such as in the medial-lateral and proximal-distal directions and in the angular measures around the cranial-caudal and proximal-distal axes. Conclusions and Clinical Relevance-The equine IMU system may be appropriate for rigid attachment to a hoof of a horse and use in examination of linear and angular motion in the sagittal plane of the hoof during the swing phase while walking and trotting. Although promising in many respects, the IMU system cannot currently be considered clinically useful for lameness evaluation because of limitations in accuracy, attachment method, and lack of stance phase evaluation.  相似文献   

6.
OBJECTIVE: To determine movements of the vertebral column of horses during normal locomotion. ANIMALS: 5 young Dutch Warmblood horses that did not have signs of back problems or lameness. PROCEDURE: Kinematics of 8 vertebrae (T6, T10, T13, T17, L1, L3, L5, and S3) and both tuber coxae were determined, using bone-fixated markers. Measurements were recorded when the horses were trotting on a treadmill at a constant speed of 4.0 m/s. RESULTS: Flexion-extension and axial rotation were characterized by a double sinusoidal pattern of motion during 1 stride cycle, whereas lateral bending was characterized by 1 peak and 1 trough. Ranges of motion for all vertebrae were: flexion-extension, 2.8 degrees to 4.9 degrees; lateral bending, 1.9 degrees to 3.6 degrees; axial rotation, 4.6 to 5.8 degrees, except for T10 and T13, where the amount of axial rotation decreased to 3.1 degrees and 3.3 degrees, respectively. CONCLUSION AND CLINICAL RELEVANCE: During locomotion, 3 types of rotations are evident in the thoracolumbar vertebrae. Regional differences are observed in the shape and timing of the rotations. These differences are related to actions of the limbs. The method described here for direct measurement of vertebral column motion provides insights into the complex movements of the thoracolumbar portion of the vertebral column in trotting horses. Information on normal kinematics is a prerequisite for a better understanding of abnormal function of the vertebral column in horses.  相似文献   

7.
Reasons for performing study: The influence of training on stride parameters is controversial and to date there is no information on how training influences stride parameters during high‐speed locomotion in the field. Objective: To determine the influence of training on stride variables during high‐speed locomotion in Thoroughbred racehorses. Methods: Speed, stride frequency, stance and protraction times were quantified in 8 Thoroughbreds with foot mounted accelerometers and GPS sensors during their first week of canter after the summer break and 6 months into training. Results: At a speed of 11 m/s, stride frequency was (mean ± s.d.) 2.160 ± 0.120 strides/s pre‐ and 2.167 ± 0.083 strides/s post training; mean stance time was 125.3 ± 9 ms pre‐ and 125.9 ± 7 ms post training; protraction time was 340.7 ± 20.4 ms pre‐ and 337.2 ± 14.3 ms post training. The increase in stride frequency and the decrease in protraction time after training were significant. There was no statistically significant difference in the maximum speed reached by each horse pre‐ and post training. Conclusions: Stance time stayed constant throughout the training season in the tested horses. A significant decrease in protraction time and a corresponding significant increase in stride frequency were observed after training. Potential relevance: Training of racehorses could be adapted to maximise the effect on modifiable parameters and reduce the risk of training‐induced pathologies. Further research will be conducted to investigate the effect of different training protocols on a large number of horses.  相似文献   

8.
Locomotion analysis is increasingly used to assess the gait of horses in the selection and training of equine athletes. We have developed a specific locomotor test for fast trotting harnessed horses that uses an accelerometric device. We describe here the reproducibility of the locomotor test and the validation of its use to analyse trotters on the racetrack. We measured the performance of eight horses under the same conditions three times in a single week. We then tested the influence of five tracks on the variables measured using eight different trotters every two days. The horses trotted at three or four velocities (8.3, 10, 11.7 m/s and at maximal velocity) in a straight line for 20 s. The short-term reproducibility of the test was very good for 23/25 variables, with no significant difference in the 23 variables for the three measurements. The two less reproducible variables reflected human error. The different tracks did not alter the stride variables measured. We conclude that the test is an easy, accurate method for analysing gait, as it provides reproducible stride variables for trotting harness horse under field conditions.  相似文献   

9.
Reasons for performing study: Advances in gait analysis techniques have led to assessment tools that can aid in detecting and quantifying lameness; here, bilateral tuberà coxae and pelvic movement during over ground locomotion are compared in order to investigate a practical method to assess hindlimb lameness in the horse. Objectives: To evaluate which parameters from anatomical landmarks on trunk and proximal hindlimbs are the best indicators of degree and side of hindlimb lameness. Methods: Fifteen horses (age 11–23 years, 6 nonlame and 9 unilaterally hindlimb lame horses 1/10 to 2/10 lame) were fitted with 4 inertial sensors: tuber sacrale, left and right tubera coxae and withers; 889 strides were collected from 6 trot trials per horse. Horses were assessed for lameness by a qualified equine orthopaedic surgeon from videos. Vertical displacement data for each sensor were used to calculate symmetry indices as well as published Fourier analysis based parameters. Linear discriminant analysis was used to determine the most discriminative parameters for 2 scenarios: grading of severity of lameness and identification of the affected limb. Results: Pelvic energy ratio gave the best indication for the degree of lameness. Directional symmetry index of the tubera coxae sensors yielded the highest discriminative power for identification of the lame limb. Conclusions and potential relevance: A good indication of the degree of hindlimb lameness can be obtained from vertical displacement data of the pelvic midline, collected from inertial sensors during over ground locomotion. The trunk mounted inertial sensor system allows for a time efficient collection of a representative database from horses with differing grade and site of lameness in a clinical setting. This is crucial for future work on a robust definition of the best parameters for lameness classification under practical conditions.  相似文献   

10.
Reasons for performing study: The speed and position data collected by TurfTrax Racing Data Limited during UK Thoroughbred racing have potential to benefit equine science and welfare. The size (the 2006 data set alone consists of 30,932 individual horse starts across 2667 races) and nature (speed and 2D position for each horse at 4 updates per second) of the data make it a unique resource for questions in equine safety, welfare, performance, and animal locomotion. Objective: To determine the accuracy of the TurfTrax tracking system in estimating the speed and position of horses during racing. Methods: Measurements from the TurfTrax wireless tracking system were compared with those of a survey‐grade global positioning system (GPS) receiver. Results: The TurfTrax system was found to give position measurements to within ± 11 and ± 64 cm in the fore‐aft and lateral directions, respectively, averaging ± 38 cm (interquartile range) and speed to within 0.15 m/s. Potential relevance: The data collected by the TurfTrax system are of sufficient accuracy to inform new diagnoses, training regimens and basic locomotor scientific studies. The position data can provide the precise distance, going, inclination, rate of turn and pack positioning through which each horse has raced. The speed profile can be used to examine the level of exertion, effect of training regimens and influence of racecourse features on performance. A first clinical application would be to analyse retrospectively these factors on occurrence of injury to compare with past training regimens, levels of exertion, and/or racecourse conditions.  相似文献   

11.
OBJECTIVE: To evaluate pelvic movement over a large number of strides in sound horses and in horses with induced hind limb lameness by applying methods to the pelvis that have been described for evaluating vertical head movement in horses with induced forelimb lameness. ANIMALS: 17 adult horses. PROCEDURE: Horses were filmed while trotting on a treadmill before and after induction of transient mild and moderate hind limb lamenesses. Vertical pelvic movement was measured by a signal decomposition method. The vertical pelvic signal was decomposed into a periodic component (A1) that occurred at half the stride frequency (representing vertical pelvic movement caused by lameness) and another periodic component (A2) that occurred at stride frequency (representing normal vertical pelvic movement of a trotting horse). Vertical pelvic and foot positions were correlated for each stride to compare the difference between the minimum and maximum heights of the pelvis during and after stance of the right hind limb to the minimum and maximum heights of the pelvis during and after stance of the left hind limb. RESULTS: Maximum pelvic height difference and lameness amplitude (A1) differed significantly between sound and mild or moderate hind limb lameness conditions. Mean A1 value for vertical pelvic movement in sound horses was less than that previously reported for vertical head movement. CONCLUSION AND CLINICAL RELEVANCE: Pelvic height differences and signal decomposition of pelvic movement can be used to objectively evaluate hind limb lameness in horses over a large number of strides in clinical and research settings.  相似文献   

12.
Over the last 30 years, the increase in interest in horses for racing and riding activities has stimulated scientific research in equine locomotion. This paper presents a review of the measurement methods and their applications used to assess equine locomotion. After describing gaits and velocity-related changes in stride variables, the current applications of gait analysis are presented. The economic consequences of lameness justifies the great effort now being put into lameness quantification and prevention. To improve breeding and reduce the costs of training, early performance evaluation tests for each discipline are proposed. After extensive fundamental and methodological research on the various aspects of equine locomotion, the horse industry should benefit from the applications of gait analysis by improving the profitability of racing and riding activities.  相似文献   

13.
Reasons for performing the study: The kinematics of the saddle and rider have not been thoroughly described at the walk. Objective: To describe saddle and rider movements during collected walk in a group of high‐level dressage horses and riders. Methods: Seven high‐level dressage horses and riders were subjected to kinematic measurements while performing collected walk on a treadmill. Movements of the saddle and rider's pelvis, upper body and head were analysed in a rigid body model. Projection angles were determined for the rider's arms and legs, and the neck and trunk of the horse. Distances between selected markers were used to describe rider position in relation to the horse and saddle. Results: During the first half of each hindlimb stance the saddle rotated cranially around the transverse axis, i.e. the front part was lowered in relation to the hind part and the rider's pelvis rotated caudally, i.e. in the opposite direction. The rider's seat moved forwards while the rider's neck and feet moved backwards. During the second half of hindlimb stance these movements were reversed. Conclusion: The saddles and riders of high‐level dressage horses follow a common movement pattern at collected walk. The movements of the saddle and rider are clearly related to the movements of the horse, both within and outside the sagittal plane. Potential relevance: The literature suggests that the rider's influence on the movement pattern of the horse is the strongest at walk. For assessment of the horse‐rider interaction in dressage horses presented for unsatisfactory performance, evaluations at walk may therefore be the most rewarding. Basic knowledge about rider and saddle movements in well‐performing horses is likely to be supportive to this task.  相似文献   

14.
Reasons for performing study: Treadmill locomotion is frequently used for training of sport horses, for diagnostic purposes and for research. Identification of the possible biomechanical differences and similarities between the back movement during treadmill (T) and over ground (O) locomotion is essential for the correct interpretation of research results. Objectives: To compare the kinematics of the thoracolumbar vertebral column in treadmill and over ground locomotion in healthy horses. Methods: Six sound Dutch Warmblood horses trotted on a T and O during 10 s at their own preferred velocity (mean ± s.d. 3.6 ± 0.3 m/s T and 3.6 ± 0.1 m/s O), which was the same in both conditions. Kinematics of the vertebral column was captured by infrared cameras using reflective skin markers attached over the spinous processes of selected vertebrae and other locations. Flexion‐extension and lateral bending range of motion (ROM), angular motion pattern (AMP) and intravertebral pattern symmetry (IVPS) of 5 vertebral angles (T6‐T10‐T13, T10‐T13‐T17, T13‐T17‐L1, T17‐L1‐L3 and L1‐L3‐l5) were calculated. Neck angle, linear and temporal stride parameters and protraction‐retraction angles of the limbs were also calculated. Results: The vertical ROM (flexion‐extension) was similar in both conditions, but the horizontal ROM (lateral bending) of the lumbar angles T17‐L1‐L3 and L1‐L3‐L5 was less during T locomotion (mean ± s.d. difference of 1.8 ± 0.6 and 1.7 ± 0.9°, respectively, P>0.05). During O locomotion, the symmetry pattern of the lumbar vertebral angles was diminished from 0.9 to 0.7 (1 = 100% symmetry) indicating increased irregularity of the movement (P>0.05). No differences were found in the basic linear and temporal stride parameters and neck angle. Potential relevance: Vertebral kinematics during treadmill locomotion is not identical to over ground locomotion, but the differences are minor. During treadmill locomotion lumbar motion is less, and caution should be therefore taken when interpreting lumbar kinematics.  相似文献   

15.
16.
The aim of this study was to assess the influence of orthopaedic pain on the variation of stride length as a kinematic system-parameter in 21 horses with forelimb lameness. Data were collected while the horses were trotting on a treadmill during a minimum of 12 motion cycles, both before and after intra-articular or perineural anaesthesia. Stride length was assessed for each motion cycle, and the mean and standard deviation were calculated for each condition. Forelimb lameness was documented as percentage of asymmetry of vertical head movement. With significant decrease of forelimb lameness after regional anaesthesia, the SD of stride length increased significantly (+0.35%, P< 0.05). Our results show that in the presence of orthopaedic pain horses keep stride variability low, possibly because the lame horse employs an optimum compensatory mechanism to reduce the pain in the affected limb, and every deviation from this pattern increases pain.  相似文献   

17.
Reasons for performing study: There are ethical concerns regarding the loss of horses from various equine industries and their corresponding slaughter. However, to date, no empirical evidence regarding the extent of this loss, nor of the condition of horses involved, exists within Australia. Objectives: To determine the approximate ages, brand type and condition of feet of horses relinquished to an export abattoir in Australia. Method: Data were collected from 340 horses processed at an Australian abattoir from November 2007‐January 2008. Foot abnormalities, injuries and hoof indicators of overgrown and untrimmed hooves were assessed together with a dental inspection. Observations of brand were used to determine horse origin. Results: The dental age of 60% of horses was ≤7 years, and 53% originated from the racing industry (40% Thoroughbred and 13% Standardbred). A total of 81% of the horses had overgrown or untrimmed hooves. Standardbred horses had fewer grass cracks and more injuries to the coronary band than Thoroughbreds, probably due to pacing and trotting activities. Conclusions: Just over half of the horses slaughtered at an Australian abattoir on 3 working days were aged ≤7 years and emanated from the racing industry. Foot problems were common. Potential relevance: Future research should identify means of reducing the number of horses slaughtered and preventative measures for foot disorders.  相似文献   

18.
Reasons for performing study: Dressage involves training of the horse with the head and neck placed in a position defined by the rider. The best position for dressage training is currently under debate among riders and trainers, but there are few scientific data available to confirm or disprove the different views. Objective: To evaluate the kinematic effects of different head and neck positions (HNPs) in elite dressage horses ridden at trot. Methods: Seven high‐level dressage horses were subjected to kinetic and kinematic measurements when ridden on a treadmill with the head and neck in 5 different positions. Results: Compared to free trot on loose reins the HNP desired for collected trot at dressage competitions increased T6 vertical excursion, increased sacral flexion and decreased limb retraction after lift‐off. Further increasing head or head and neck flexion caused few additional changes while an extremely elevated neck position increased hindlimb flexion and lumbar back extension during stance, increased hindlimb flexion during swing and further increased trunk vertical excursion. Conclusions: The movements of the horse are significantly different when ridden on loose reins compared to the position used in collected trot. The exact degree of neck flexion is, however, not consistently correlated to the movements of the horse's limbs and trunk at collected trot. An extremely elevated neck position can produce some effects commonly associated with increased degree of collection, but the increased back extension observed with this position may place the horse at risk of injury if ridden in this position for a prolonged period. Potential relevance: Head and neck positions influence significantly the kinematics of the ridden horse. It is important for riders and trainers to be aware of these effects in dressage training.  相似文献   

19.
REASONS FOR PERFORMING STUDY: A common opinion among riders and in the literature is that the positioning of the head and neck influences the back of the horse, but this has not yet been measured objectively. OBJECTIVES: To evaluate the effect of head and neck position on the kinematics of the back in riding horses. METHODS: Eight Warmblood riding horses in regular work were studied on a treadmill at walk and trot with the head and neck in 3 different predetermined positions achieved by side reins attached to the bit and to an anticast roller. The 3-dimensional movement of the thoracolumbar spine was measured from the position of skin-fixed markers recorded by infrared videocameras. RESULTS: Head and neck position influenced the movements of the back, especially at the walk. When the head was fixed in a high position at the walk, the flexion-extension movement and lateral bending of the lumbar back, as well as the axial rotation, were significantly reduced when compared to movements with the head free or in a low position. At walk, head and neck position also significantly influenced stride length, which was shortest with the head in a high position. At trot, the stride length was independent of head position. CONCLUSIONS: Restricting and restraining the position and movement of the head and neck alters the movement of the back and stride characteristics. With the head and neck in a high position stride length and flexion and extension of the caudal back were significantly reduced. POTENTIAL RELEVANCE: Use of side reins in training and rehabilitation programmes should be used with an understanding of the possible effects on the horse's back.  相似文献   

20.
Myanmar native horses are small horses used mainly for drafting carts or carriages in rural areas and packing loads in mountainy areas. In the present study, we investigated genotype distributions and allele frequencies of the LCORL/NCAPG, MSTN and DMRT3 genes, which are associated with body composition and locomotion traits of horses, in seven local populations of Myanmar native horses. The genotyping result of LCORL/NCAPG showed that allele frequencies of C allele associated with higher withers height ranged from 0.08 to 0.27, and 0.13 in average. For MSTN, allele frequencies of C allele associated with higher proportion of Type 2B muscular fiber ranged from 0.05 to 0.23, and 0.09 in average. For DMRT3, allele frequencies of A allele associated with ambling gait ranged from 0 to 0.04, and 0.01 in average. The presences of the minor alleles of these genes at low frequencies suggest a possibility that these horse populations have not been under strong selection pressure for particular locomotion traits and body composition. Our findings of the presence of these minor alleles in Southeast Asian native horses are also informative for considering the origins of these minor alleles associated with body composition and locomotion traits in horse populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号