首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
REASON FOR PERFORMING STUDY: There are no detailed studies describing a relationship between hindlimb lameness and altered motion of the back. OBJECTIVES: To quantify the effect of induced subtle hindlimb lameness on thoracolumbar kinematics in the horse. METHODS: Kinematics of 6 riding horses were measured during walk and trot on a treadmill before and during application of pressure on the sole of the left hindlimb using a well-established sole pressure model. Reflective markers were located at anatomical landmarks on the limbs, back, head and neck for kinematic recordings. Ground reaction forces (GRF) in individual limbs were calculated from kinematics to detect changes in loading of the limbs. RESULTS: When pressure on the sole of the hindlimb was present, horses were judged as lame (grade 2 on the AAEP scale 1-5) by an experienced clinician. No significant unloading of this limb was found in the group of horses (unloading was observed in 4 animals, but was not detectable in the other 2), but statistically significant effects on back kinematics were detected. The overall flexion-extension (FE) range of motion (ROM) of the vertebral column was increased at walk, especially in the thoracic segments. Axial rotation (AR) ROM of the pelvis was also increased. At trot, the FE ROM was decreased only in the segment L3-L5-S3. During the stance phase of the lame limb, the segment T6-T10-T13 was more flexed and the neck was lowered at both gaits; the thoracolumbar segments were more extended at walk and trot. There were no significant changes in the stride length or protraction-retraction angles in any of the limbs. CONCLUSIONS: Subtle hindlimb lameness provoked slight but detectable changes in thoracolumbar kinematics. The subtle lameness induced in this study resulted in hyperextension and increased ROM of the thoracolumbar back, but also in decreased ROM of the lumbosacral segment and rotational motion changes of the pelvis. POTENTIAL RELEVANCE: Even subtle lameness can result in changes in back kinematics, which emphasises the intricate link between limb function and thoracolumbar motion. It may be surmised that, when chronically present, subtle lameness induces back dysfunction.  相似文献   

5.
6.
Reasons for performing study: Locomotion adaptation mechanisms have been observed in horses, but little information is available in relation to banked and nonbanked curve locomotion, which might be important to optimise training environments. Objectives: To determine if adaptation mechanisms in horses existed when moving on a banked compared to a flat curve and whether adaptation was similar in different gaits. Methods: Eight infrared cameras were positioned on the outside of a 10 m lungeing circle and calibrated. Retroreflective markers were used to define left and right metacarpus (McIII) and proximal phalanges (P1), metatarsus (MtIII), head and sacrum. Data were recorded at 308 Hz from 6 horses lunged at walk, trot and canter on a flat and 10° banked circle in a crossover design. Measurements extracted were speed, stride length, McIII inclination, MtIII inclination, relative body inclination and duty factor. Data were smoothed with a fourth order Butterworth filter with 30 Hz cut‐off. ANOVA was used to determine differences between conditions and limbs. Results: Adaptation mechanisms were influenced by gait. At canter inside forelimb duty factor was significantly longer (P<0.05) on a flat curve compared to a banked curve; at walk this was reversed. McIII inclination, MtIII inclination and relative body inclination were significantly greater (P<0.05) at trot and canter on a flat curve, so more inward tilt was found relative to the bearing surface. Conclusion: Adaptation to curved motion is gait specific. At faster gaits it appears that horses negotiate a banked curve with limb posture closer to body posture and probably with demands on the musculoskeletal system more similar to straight canter.  相似文献   

7.
8.
The objective of this study was to establish representative treadmill ground reaction force (GRF) and interlimb co-ordination time data of clinically sound horses at the trot. It was anticipated that these normative standards would provide a reference data base against which lame horses could be compared. GRF-time histories were collected from 30 Warmblood riding horses with easy, wide natural gaits. Data were recorded of all four limbs simultaneously by the use of an instrumented treadmill. A total of 912 stride cycles per limb were analysed for force, time and spatial parameters and were averaged. The shape and amplitude of the treadmill force curves were very similar to force traces recorded with a stationary force plate. The horses showed a high degree of symmetry in all investigated parameters (95% reference interval of left-right asymmetry +/-1.8-6.8%). No significant differences were found between left and right mean values. Intra-individual coefficients of variance of the various parameters did not exceed 2.7%. Inter-individual coefficients of variance were 2.5-3.5 times larger than the respective intra-individual coefficients. An instrumented treadmill provides a number of decisive advantages, such as time-efficient data acquisition of all four feet simultaneously over successive strides, or the high regularity of the horse's gait pattern at controlled velocities, which allow the clinical assessment of locomotor performance of horses.  相似文献   

9.
We tested the hypothesis that repeatability of a standardised protocol for quantifying back kinematics is sufficiently high not to prevent its use in the clinical evaluation of horses with back problems. We investigated the extent to which differences between laboratories may affect the results when a standardised protocol is used. As a clinical tool, movement analysis techniques are helpful for the objective and quantitative assessment of kinematics. Knowledge about the repeatability of the kinematic data is very important. The present study investigates the repeatability of back kinematics in 10 sound horses over 5 successive days and in 2 laboratories (5 horses at each location). Measurements were performed on the treadmill during the walk and the trot. The between-stride, between-day and between-horse repeatability were determined. A high degree of between-stride and between-day repeatability was observed in the spatiotemporal parameters and in the time-angle diagrams of thoracic and lumbar vertebrae, the sacrum and the hindlimb during both the walk and trot. Much more variability was found between horses, with the highest degree of dissimilarity in the lateral bending rotation of the L1 vertebra. For range of motion values, the between-day coefficient of variability was <14% and the between-horse coefficient of variability was up to 4 times higher. Small differences were found in range of motion values between the 2 laboratories. It is concluded that an analysis of back kinematics in the horse can provide highly repeatable data, warranting clinical use.  相似文献   

10.
Reasons for performing study: Advances in gait analysis techniques have led to assessment tools that can aid in detecting and quantifying lameness; here, bilateral tuberà coxae and pelvic movement during over ground locomotion are compared in order to investigate a practical method to assess hindlimb lameness in the horse. Objectives: To evaluate which parameters from anatomical landmarks on trunk and proximal hindlimbs are the best indicators of degree and side of hindlimb lameness. Methods: Fifteen horses (age 11–23 years, 6 nonlame and 9 unilaterally hindlimb lame horses 1/10 to 2/10 lame) were fitted with 4 inertial sensors: tuber sacrale, left and right tubera coxae and withers; 889 strides were collected from 6 trot trials per horse. Horses were assessed for lameness by a qualified equine orthopaedic surgeon from videos. Vertical displacement data for each sensor were used to calculate symmetry indices as well as published Fourier analysis based parameters. Linear discriminant analysis was used to determine the most discriminative parameters for 2 scenarios: grading of severity of lameness and identification of the affected limb. Results: Pelvic energy ratio gave the best indication for the degree of lameness. Directional symmetry index of the tubera coxae sensors yielded the highest discriminative power for identification of the lame limb. Conclusions and potential relevance: A good indication of the degree of hindlimb lameness can be obtained from vertical displacement data of the pelvic midline, collected from inertial sensors during over ground locomotion. The trunk mounted inertial sensor system allows for a time efficient collection of a representative database from horses with differing grade and site of lameness in a clinical setting. This is crucial for future work on a robust definition of the best parameters for lameness classification under practical conditions.  相似文献   

11.
REASON FOR PERFORMING STUDY: Although there is anecdotal evidence of clinical effectiveness of chiropractic in treatment of equine back pain, little scientific work has been reported on the subject. OBJECTIVES: To quantify the effect of chiropractic manipulations on back and limb kinematics in horse locomotion. METHODS: Kinematics of 10 Warmblood horses were measured over ground at walk and trot at their own, preferred speed before, and one hour and 3 weeks after chiropractic treatment that consisted of manipulations of the back, neck and pelvic area. Speed was the same during all measurements for each horse. RESULTS: Chiropractic manipulations resulted in increased flexion-extension range of motion (ROM) (P<0.05) at trot in the vertebral angular segments: T10-T13-T17 (0.3 degrees ) and T13-T17-L1 (0.8 degrees ) one hour after treatment, but decreased ROM after 3 weeks. The angular motion patterns (AMPs) of the same segments showed increased flexion at both gaits one hour after treatment (both angles 0.2 degrees at walk and 0.3 degrees at trot, P<0.05) and 3 weeks after treatment (1.0 degrees and 2.4 degrees at walk and 1.9 degrees and 2.9 degrees at trot, P<0.05). The lumbar (L3 and L5) area showed increased flexion after one hour (both angles 0.3 degrees at walk and 0.4 degrees at trot P<0.05), but increased extension after 3 weeks (1.4 degrees and 1.2 degrees , at trot only, P<0.05). There were no detectable changes in lateral bending AMPs. The inclination of the pelvis was reduced at trot one hour (1.6 degrees ) and 3 weeks (3 degrees ) after treatment (P<0.05). The mean axial rotation of the pelvis was more symmetrical 3 weeks after the treatment at both gaits (P<0.05). There were no changes in limb angles at walk and almost no changes at trot. CONCLUSIONS: The main overall effect of the chiropractic manipulations was a less extended thoracic back, a reduced inclination of the pelvis and improvement of the symmetry of the pelvic motion pattern. POTENTIAL RELEVANCE: Chiropractic manipulations elicit slight but significant changes in thoracolumbar and pelvic kinematics. Some of the changes are likely to be beneficial, but clinical trials with increased numbers of horses and longer follow-up are needed.  相似文献   

12.
Reasons for performing study: It is believed that the head‐neck position (HNP) has specific effects on the loading pattern of the equine locomotor system, but very few quantitative data are available. Objective: To quantify the effects of 6 different HNPs on forelimb‐hindlimb loading and underlying temporal changes. Methods: Vertical ground reaction forces of each limb and interlimb coordination were measured in 7 high level dressage horses walking and trotting on an instrumented treadmill in 6 predetermined HNPs: HNP1 ‐ unrestrained; HNP2 ‐ elevated neck, bridge of the nose in front of the vertical; HNP3 ‐ elevated neck, bridge of the nose behind the vertical; HNP4 ‐ low and flexed neck; HNP5 ‐ head and neck in extreme high position; and HNP6 ‐ forward downward extension of head and neck. HNP1 served as a velocity‐matched control. Results: At the walk, the percentage of vertical stride impulse carried by the forehand (Izfore) as well as stride length and overreach distance were decreased in HNP2, HNP3, HNP4 and HNP5 when compared to HNP1. At the trot, Izfore was decreased in HNP2, HNP3, HNP4 and HNP5. Peak forces in the forelimbs increased in HNP5 and decreased in HNP6. Stance duration in the forelimbs was decreased in HNP2 and HNP5. Suspension duration was increased in HNP2, HNP3 and HNP5. Overreach distance was shorter in HNP4 and longer in HNP6. Conclusions: In comparison to HNP1 and HNP6, HNPs with elevation of the neck with either flexion or extension at the poll as well as a low and flexed head and neck lead to a weight shift from the forehand to the hindquarters. HNP5 had the biggest effect on limb timing and load distribution. At the trot, shortening of forelimb stance duration in HNP5 increased peak vertical forces although Izfore decreased. Potential relevance: Presented results contribute to the understanding of the value of certain HNPs in horse training.  相似文献   

13.
14.
Reasons for performing study: Research into kinematics of the healthy equine back, has been performed in the walk and trot. This study focuses on back kinematics during canter, over a range of velocities. Flexion extension (FE) movements in canter are greatest in the lumbosacral (LS) region. Previous research has focused on canter velocity of 7 m/s; therefore quantification of LS kinematics at varying velocities is required to understand LS functions in equine locomotion. Hypothesis: Range of flexion‐extension movement through the lumbosacral joint increases with increasing velocity. Methods: Six Thoroughbred horses (mean age 9.6 years) cantered on treadmill at 4 velocities (6.0, 6.5, 7.0 and 8.0 m/s, respectively). Reflective markers were placed over the 5th lumbar vertebra (L5), the lumbosacral junction (LS) and the 3rd sacral vertebra (S3). Lumbosacral angle (LS) was defined as the angle formed between L5, LS and S3. Flexion‐extension (FE) range of motion (ROM) was analysed using a 2 camera, 3D motion capture system ProReflex1. Linear regression was used to determine strengths of relationships between speed of canter and lumbosacral FE movements. Results: Range of FE ROM seen at the lumbosacral joint increased linearly with speed. FE ROM ranged 6.1°± 1.9 at 6 m/s, 6.3°± 1.9 at 6.5 m/s, 6.6°± 1.9 at 7 m/s and 7.2°± 1.9 at 8 m/s. Linear regression showed positive associations between speed and LS FE range of motion (r2= 0.993; P = 0.003). Conclusions and potential relevance: Results show linear relationships between LS FE movements and submaximal canter velocities. These results provide information on the LS joint at canter. Understanding the effects of velocity on the back of healthy horses may aid our understanding of the demands placed on this joint in sport horses at this gait.  相似文献   

15.
16.
17.
Reasons for performing study: The load acting on the limbs and the load distribution between fore‐ and hindlimbs while performing specific dressage exercises lack objective assessment. Hypothesis: The greater a horse's level of collection, the more load is shifted to the rear and that during the passage the vertical load on the limbs increases in relation to the accentuated vertical movement of the centre of mass. Methods: Back and limb kinematics, vertical ground reaction force and time parameters of each limb were measured in 6 Grand Prix dressage horses performing on an instrumented treadmill at the trot and the passage. Horses were ridden by their own professional rider. Results: At the passage, horses moved at a slower speed (?43.2%), with a lower stride frequency (?23.6%) and, therefore, higher stride impulses (+31.0%). Relative stance duration of fore‐ and hindlimbs and suspension duration remained unchanged. While at the trot the diagonal limbs impacted almost simultaneously, the hindlimbs always impacted first at the passage; the time dissociation between landing and lift‐off remained unchanged. Because of the prolonged stride duration, stride impulse and consequently limb impulses were higher at the passage in the fore‐ as well as in the hindlimbs (+24.8% and +39.9%, respectively). Within the diagonal limb pair, load was shifted from the forehand to the hindquarters (percentage stride impulse carried by the forehand ?4.8%). Despite the higher impulses, peak vertical forces in the fore‐ and hindlimbs remained unchanged because of the prolonged absolute stance durations in fore‐ and hindlimbs (+28.1% and +32.2%, respectively). Conclusions: Based on the intralimb timing, the passage closely resembles the trot. Compared to other head‐neck positions, the higher degree of collection resulted in a pronounced shift in impulse towards the hindquarters. Despite the higher limb impulses, peak forces acting on the limbs were similar to those observed at the trot. Potential clinical relevance: An understanding of load distribution between fore‐ and hindlimbs in relation to different riding techniques is crucial to prevent wear‐and‐tear on the locomotor apparatus.  相似文献   

18.
To assess the repeatability of kinetic gait analysis with a treadmill, 28 sound adult dogs were made to trot on an instrumented system. Vertical ground reaction force variables (Peak PFz and Impulse IFz) were collected by 10-s recordings, once a week, 4 weeks in succession. Data were analysed using a repeated-measures two-way ANOVA to investigate habituation to treadmill locomotion. Recorded data were stabilized from the end of the first and second sessions for IFz and PFz, respectively. The percentages of variance attributable to dogs, weeks, minutes and repetitions were, respectively, 72%, 10%, 7%, and 11% for PFz and 84%, 7%, 3%, and 6% for IFz. Habituation occurred after a single training session. Good repeatability was determined by a low coefficient of variation (3.4-4.7%). Adding a treadmill to kinetic gait analysis deserves consideration: reliable data are easily recorded using appropriate habituation and statistical model.  相似文献   

19.
In 12 healthy warmblood horses and 10 horses with mitral valve insufficiencies (MVI) of various degrees heart rate and pulmonary artery wedge pressure (PWP) was measured at rest and during standardised exercise on a high speed treadmill. There was a significant increase in PWP with each change in speed of the treadmill (p < 0.01). The PWP of horses with mild mitral valve regurgitation under working conditions was not significantly different compared to the healthy horses. The horses with moderate mitral valve regurgitation showed a significant higher pulmonary artery wedge pressure at rest and during exercise compared to the healthy horses (p < 0.01) at rest and during treadmill velocity. The tendencies were seen that mild mitral valve regurgitation results only in mild hemodynamic changes during exercise, while moderate MVI have an important influence on haemodynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号