首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
2.
    
Primary care guidelines provide a reference point to guide clinicians based on a systematic review of the literature, contextualised by expert clinical opinion. These guidelines develop a modification of the GRADE framework for assessment of research evidence (vetGRADE) and applied this to a range of clinical scenarios regarding use of analgesic agents. Key guidelines produced by the panel included recommendations that horses undergoing routine castration should receive intratesticular local anaesthesia irrespective of methods adopted and that horses should receive NSAIDs prior to surgery (overall certainty levels high). Butorphanol and buprenorphine should not be considered appropriate as sole analgesic for such procedures (high certainty). The panel recommend the continuation of analgesia for 3 days following castration (moderate certainty) and conclude that phenylbutazone provided superior analgesia to meloxicam and firocoxib for hoof pain/laminitis (moderate certainty), but that enhanced efficacy has not been demonstrated for joint pain. In horses with colic, flunixin and firocoxib are considered to provide more effective analgesia than meloxicam or phenylbutazone (moderate certainty). Given the risk of adverse events of all classes of analgesic, these agents should be used only under the control of a veterinary surgeon who has fully evaluated a horse and developed a therapeutic, analgesic plan that includes ongoing monitoring for such adverse events such as the development of right dorsal colitis with all classes of NSAID and spontaneous locomotor activity and potentially ileus with opiates. Finally, the panel call for the development of a single properly validated composite pain score for horses to allow accurate comparisons between medications in a robust manner.  相似文献   

3.
Lack of willingness to go forward freely, lack of power, shortened steps, stiffness of the cervical or thoracolumbosacral regions are common nonspecific signs of musculoskeletal causes of poor performance in sports horses. Understanding musculoskeletal causes of poor performance requires knowledge of how normal horses move, the requirements of specific work disciplines, the nomenclature used by riders to describe how a horse is performing and the interactions between horses and riders. Determining the underlying causes needs an in‐depth history and clinical assessment, including in hand, on the lunge and ridden. Ridden exercise should include all aspects with which the rider is experiencing problems. Change of the rider can sometimes help to differentiate between horse and rider problems, but most normal horses are compliant and just because a horse goes better for a more skilled rider does not preclude an underlying pain‐related condition. Lungeing and ridden exercise should include not only trot but also transitions and canter which may highlight gait abnormalities not seen at trot. An accurate history combined with thorough clinical examination of the whole horse should permit the establishment of a list of problems requiring further investigation.  相似文献   

4.
Foot pain is an important cause of lameness in horses. When horses with foot pain have no detectable radiographic abnormalities, soft‐tissue assessment remains a diagnostic challenge without magnetic resonance (MR) imaging. Ultrasonography can provide an alternative to MR imaging when that modality is not available but the extent of changes that might be seen has not been characterized. We reviewed the ultrasonographic findings in 39 horses with lameness responding positively to anesthesia of the palmar digital nerves and without radiographically detectable osseous abnormalities. Thirty of the 39 horses had lesions affecting the deep digital flexor tendon (DDFT), 27 had abnormalities in the distal interphalangeal joint of which six had a visible abnormality in the collateral ligament. Ultrasonographic abnormalities were seen in the podotrochlear bursa in 22 horses and in the ligaments of the navicular bone in two horses. Abnormalities of the navicular bone flexor surface were detected in eight horses. In three of the 39 horses, only the DDFT was affected. The other 36 horses had ultrasonographic abnormalities in more than one anatomical structure. Based on our results, ultrasonographic examination provides useful diagnostic information in horses without radiographic changes.  相似文献   

5.
6.
7.
Distal sesamoidean ligament injury is a recognized cause of lameness but diagnosis using ultrasonography is sometimes difficult. Herein, we describe the normal appearance of the distal sesamoidean ligaments on magnetic resonance (MR) images and the changes that occur when the ligaments are injured. The appearance of the distal sesamoidean ligaments on MR images from 66 control horses and 58 horses with distal sesamoidean desmitis were described and the cross‐sectional area and signal intensity of the ligaments measured. In control horses, the ligaments had a characteristic appearance and strong left–right symmetry, and the lateral oblique sesamoidean ligament was larger and had higher signal intensity than the medial ligament. Cross‐sectional area and signal intensity were significantly greater in injured straight sesamoidean ligaments compared with the controls. Signal intensity increased significantly with oblique sesamoidean desmitis compared with the controls. Lesions of the distal sesamoidean ligaments were considered the sole cause of lameness in only 2 of 58 horses. Eighty percent of lesions in the distal sesamoidean ligaments were not detected using ultrasonography.  相似文献   

8.
9.
10.
Detailed clinical evaluation and diagnostic analgesia are crucial for accurate lameness diagnosis. This review discusses the ways in which local analgesic techniques can cause confusion and highlights how important it is to recognise that the majority of methods are less specific than was formerly thought. Interpretation of responses must be done together with the results of clinical examination and careful assessment of diagnostic images. With the knowledge of false negative and false positive results of local analgesic techniques and the recognition that there may be more than one focus of pain contributing to lameness, it is still possible to reach accurate diagnoses, provided that a logical, thoughtful approach is utilised.  相似文献   

11.
Reasons for performing study: The flexion test is routinely used in lameness and prepurchase examinations. There is no accepted standard for duration of flexion or evidence that interpretation of results would differ with different durations of flexion. Hypothesis: There will be no difference in interpretation of proximal hindlimb flexion for 5 or 60 s. Methods: Video recordings of lameness examinations of 34 client‐owned horses were performed that included: baseline lameness, proximal hindlimb flexion for 60 s, and flexion of the same limb for 5 s. Videos were edited to blind reviewers to the hypothesis being tested. The baseline lameness video from each horse was paired with each flexion to make 2 pairs of videos for each case. Twenty video pairs were repeated to assess intraobserver repeatability. Fifteen experienced equine clinicians were asked to review the baseline lameness video followed by the flexion test and grade the response to flexion as either positive or negative. Potential associations between the duration of flexion and the likelihood of a positive flexion test were evaluated using generalised linear mixed models. A kappa value was calculated to assess the degree of intraobserver agreement on the repeated videos. Significance level was set at P<0.05. Results: Proximal hindlimb flexion of 60 s was more likely to be called positive than flexion of 5 s (P<0.0001), with the likelihood of the same interpretation 74% of the time. The first flexion performed was more likely to be called positive than subsequent flexions (P = 0.029). Intra‐assessor agreement averaged 75% with κ= 0.49. Conclusions: Proximal hindlimb flexion of a limb for 5 s does not yield the same result as flexing a limb for 60 s. Potential relevance: Shorter durations of flexion may be useful for clinicians that have good agreement with flexions of 5 and 60 s.  相似文献   

12.
13.
    
The objectives of this study were to compare horses’ gaits in hand and when ridden; to assess static and dynamic saddle fit for each horse and rider; to apply the Ridden Horse Pain Ethogram (RHpE) and relate the findings to gait abnormalities consistent with musculoskeletal pain, rider position and balance and saddle fit; and to document noseband use and its relationship with mouth opening during ridden exercise. Data were acquired prospectively from a convenience sample of horses believed by their owners to be working comfortably. All assessments were subjective. Gait in hand and when ridden were evaluated independently, by two assessors, and compared using McNemar’s test. Static tack fit and noseband type were recorded. Movement of the saddle during ridden exercise, rider position, balance and size relative to the saddle was documented. RHpE scores were based on assessment of video recordings. Multivariable Poisson regression analysis was used to determine factors which influenced the RHpE scores. Of 148 horses, 28.4% were lame in hand, whereas 62.2% were lame ridden (P<0.001). Sixty per cent of horses showed gait abnormalities in canter. The median RHpE score was 8/24 (interquartile range 5, 9; range 0, 15). There was a positive association between lameness and the RHpE score (P<0.001). Riding School horses had higher RHpE scores compared with General Purpose horses (P = 0.001). Saddles with tight tree points (P = 0.001) and riders seated at the back of the saddle rather than the middle (P = 0.001) were associated with higher RHpE scores. Horses wearing crank cavesson compared with cavesson nosebands had higher RHpE scores (P = 0.006). There was no difference in mouth opening, as defined by the RHpE, in horses with a noseband with the potential to restrict mouth opening, compared with a correctly fitted cavesson noseband, or no noseband. It was concluded that lameness or gait abnormalities in canter may be missed unless horses are assessed ridden.  相似文献   

14.
15.
    
Reasons for performing study: There is little scientific evidence to support the premise that poor foot conformation predisposes to foot pain and lameness. Objectives: To determine relationships between external characteristics of the hoof capsule and angles of the distal phalanx; to determine variability in shape of the distal phalanx; and to investigate association between distal phalanx angles and the injury causing lameness. Materials and methods: Feet were documented photographically and radiographically. Linear and angle measurements were obtained for the hoof capsule and distal phalanx and compared statistically. Horses were categorised according to injury group, and angles and linear ratios were compared between groups. Results: There was modest correlation between hoof wall and heel angles and angles of the distal phalanx. There was variation in shape of the distal phalanx. There was no significant association between injury type and angles of the distal phalanx, although there was a trend for the angle of the dorsal aspect of the distal phalanx with the horizontal to be smaller in horses with injuries of the podotrochlear apparatus or deep digital flexor tendon compared with other groups. Conclusions: There are variations in shape of the distal phalanx largely due to differences in orientation of the concave solar border and the solar border to the horizontal. Variations in shape of the distal phalanx were not accurately correlated with external characteristics of the hoof capsule. There were weak associations between injury groups and angles of the distal phalanx. Clinical relevance: Further work is required to elucidate risk factors for foot‐related lameness.  相似文献   

16.
17.
The equine limb has evolved for efficient locomotion and high‐speed performance, with adaptations of bone, tendon and muscle. However, the system lacks the ability seen in some species to dynamically adapt to different circumstances. The mechanical interaction of the limb and the ground is influenced by internal and external factors including fore–hind mass distribution, lead limb, moving on a curve, shoeing and surface properties. It is unclear which of the components of limb loading have the largest effect on injury and performance but peak load, impact and vibration all play a role. Factors related to the foot–ground interface that limit performance are poorly understood. Peak performance varies vastly between disciplines but at high speeds such as racing and polo, force and grip are key limits to performance.  相似文献   

18.
Our purpose was to describe the variation of the radiologic appearance of the carpus of horses of different breeds, discipline, and gender with lameness related to the carpus and control horses, with particular reference to the ulnar carpal bone. Two hundred and eighty‐six sets of carpal radiographs from 222 horses were analyzed. Breed, gender, discipline, and cause of lameness were recorded. Chi square tests were used to test for associations between radiologic findings and gender, breed and discipline, to test for associations between different radiologic findings, and to test for associations between radiologic findings and causes of lameness. Bonferroni correction was applied when necessary. The shape of the ulnar carpal bone and most of the anatomic variants, with the exception of the first carpal bone and a radiolucent area in the second carpal bone, were not breed or gender related. Radiolucent areas and associated fragments on the palmaromedial aspect of the ulnar carpal bone can be an incidental finding in horses from all disciplines.  相似文献   

19.
    
Reasons for performing study: Previous studies have suggested that agreement between equine veterinarians subjectively evaluating lameness in horses is low. These studies were limited to small numbers of horses, evaluating movement on the treadmill or to evaluating previously‐recorded videotape. Objectives: To estimate agreement between equine practitioners performing lameness evaluations in horses in the live, over ground setting. Methods: 131 mature horses were evaluated for lameness by 2–5 clinicians (mean 3.2) with a weighted‐average of 18.7 years of experience. Clinicians graded each limb using the AAEP lameness scale by first watching the horse trot in a straight line only and then after full lameness evaluation. Agreement was estimated by calculation of Fleiss' (κ). Evaluators agreed if they picked the same limb as lame or not lame regardless of the severity of perceived lameness. Results: After only evaluating the horse trot in a straight line clinicians agreed whether a limb was lame or not 76.6% of the time (κ= 0.44). After full lameness evaluation clinicians agreed whether a limb was lame or not 72.9% of the time (κ= 0.45). Agreement on forelimb lameness was slightly higher than on hindlimb lameness. When the mean AAEP lameness score was >1.5 clinicians agreed whether or not a limb was lame 93.1% of the time (κ= 0.86), but when the mean score was ≤1.5 they agreed 61.9% (κ= 0.23) of the time. When given the task of picking whether or not the horse was lame and picking the worst limb after full lameness evaluation, clinicians agreed 51.6% (κ= 0.37) of the time. Conclusions: For horses with mild lameness subjective evaluation of lameness is not very reliable. Potential relevance: A search for and the development of more objective and reliable methods of lameness evaluation is justified and should be encouraged and supported.  相似文献   

20.
    
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号