首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reasons for performing the study: The kinematics of the saddle and rider have not been thoroughly described at the walk. Objective: To describe saddle and rider movements during collected walk in a group of high‐level dressage horses and riders. Methods: Seven high‐level dressage horses and riders were subjected to kinematic measurements while performing collected walk on a treadmill. Movements of the saddle and rider's pelvis, upper body and head were analysed in a rigid body model. Projection angles were determined for the rider's arms and legs, and the neck and trunk of the horse. Distances between selected markers were used to describe rider position in relation to the horse and saddle. Results: During the first half of each hindlimb stance the saddle rotated cranially around the transverse axis, i.e. the front part was lowered in relation to the hind part and the rider's pelvis rotated caudally, i.e. in the opposite direction. The rider's seat moved forwards while the rider's neck and feet moved backwards. During the second half of hindlimb stance these movements were reversed. Conclusion: The saddles and riders of high‐level dressage horses follow a common movement pattern at collected walk. The movements of the saddle and rider are clearly related to the movements of the horse, both within and outside the sagittal plane. Potential relevance: The literature suggests that the rider's influence on the movement pattern of the horse is the strongest at walk. For assessment of the horse‐rider interaction in dressage horses presented for unsatisfactory performance, evaluations at walk may therefore be the most rewarding. Basic knowledge about rider and saddle movements in well‐performing horses is likely to be supportive to this task.  相似文献   

3.
Reason for performing study: During trot, the rider can either rise from the saddle during every stride or remain seated. Rising trot is used frequently because it is widely assumed that it decreases the loading of the equine back. This has, however, not been demonstrated in an objective study. Objective: To determine the effects of rising and sitting trot on the movements of the horse. Hypothesis: Sitting trot has more extending effect on the horse's back than rising trot and also results in a higher head and neck position. Methods: Twelve horses and one rider were used. Kinematic data were captured at trot during over ground locomotion under 3 conditions: unloaded, rising trot and sitting trot. Back movements were calculated using a previously described method with a correction for trunk position. Head‐neck position was expressed as extension and flexion of C1, C3 and C6, and vertical displacement of C1 and the bit. Results: Sitting trot had an overall extending effect on the back of horses when compared to the unloaded situation. In rising trot: the maximal flexion of the back was similar to the unloaded situation, while the maximal extension was similar to sitting trot; lateral bending of the back was larger than during the unloaded situation and sitting trot; and the horses held their heads lower than in the other conditions. The angle of C6 was more flexed in rising than in sitting trot. Conclusions and clinical relevance: The back movement during rising trot showed characteristics of both sitting trot and the unloaded condition. As the same maximal extension of the back is reached during rising and sitting trot, there is no reason to believe that rising trot was less challenging for the back.  相似文献   

4.
5.
6.
7.
Reasons for performing study: Dressage involves training of the horse with the head and neck placed in a position defined by the rider. The best position for dressage training is currently under debate among riders and trainers, but there are few scientific data available to confirm or disprove the different views. Objective: To evaluate the kinematic effects of different head and neck positions (HNPs) in elite dressage horses ridden at trot. Methods: Seven high‐level dressage horses were subjected to kinetic and kinematic measurements when ridden on a treadmill with the head and neck in 5 different positions. Results: Compared to free trot on loose reins the HNP desired for collected trot at dressage competitions increased T6 vertical excursion, increased sacral flexion and decreased limb retraction after lift‐off. Further increasing head or head and neck flexion caused few additional changes while an extremely elevated neck position increased hindlimb flexion and lumbar back extension during stance, increased hindlimb flexion during swing and further increased trunk vertical excursion. Conclusions: The movements of the horse are significantly different when ridden on loose reins compared to the position used in collected trot. The exact degree of neck flexion is, however, not consistently correlated to the movements of the horse's limbs and trunk at collected trot. An extremely elevated neck position can produce some effects commonly associated with increased degree of collection, but the increased back extension observed with this position may place the horse at risk of injury if ridden in this position for a prolonged period. Potential relevance: Head and neck positions influence significantly the kinematics of the ridden horse. It is important for riders and trainers to be aware of these effects in dressage training.  相似文献   

8.
A saddle that does not fit either a horse or a rider correctly has potentially far reaching consequences for both horse and rider health. The saddle should be assessed off and on the horse, without and with a rider. The fit of the saddle for both the horse and rider must be evaluated. A well‐fitted saddle should distribute weight evenly via the panels to the horse's thoracic region, with complete clearance of the spinous processes by the gullet. The saddle should remain fairly still during ridden exercise at all paces. The saddle must also fit the rider to enable them to sit in balance. Signs of an ill‐fitting saddle include equine thoracolumbar pain, focal swellings under the saddle, ruffling of the hair, dry spots under the saddle immediately after exercise surrounded by sweat, and abnormal hair wear. If a saddle does not fit the rider, the rider may not be able to ride in balance with the horse, and this may induce equine thoracolumbar pain. A saddle of inappropriate size and shape for the rider may induce rider back pain, ‘hip’ pain, sores under the ‘seat bones’ and perineal injuries.  相似文献   

9.
The aim of this study was to determine whether autonomic nervous activity of a rider with no disability was altered by one practical and applicable horse trekking (HT) exercise. Changes in autonomic nervous activity were analyzed by heart rate variability (HRV). Twenty‐three participants with no disability rode horses along a predetermined HT course at trotting and walking for 60 min. HRV was sampled at 60 min before and immediately, following 60 min, and 120 min after HT. As a control, the same measurements were performed for 22 age‐matched participants during their rest. Only in the HT group, the value of normalized unit in high frequency component (HF nu), an index of parasympathetic nervous activity, was higher at 120 min after treatment than before HT (P < 0.05). The low / high frequency ratio (LF / HF), believed to reflect sympathetic nervous activity, was lower in the HT group than those in the control group at 60 min (P < 0.05) and 120 min after treatment (P < 0.01). These findings suggest that a single HT shifted the autonomic nervous balance of a rider toward parasympathetic dominance. The results obtained by the present study could accelerate the use of horses for human health.  相似文献   

10.
11.
The effect of rider weight on equine welfare and performance requires further investigation. The objective of this prospective, cross-over, randomised trial was to assess gait and behavioural responses of horses to riders of similar ability, but different bodyweights. Six nonlame horses in regular work were ridden by each of four riders: Light (L), Moderate (M), Heavy (H) and Very Heavy (VH). Saddle fit was assessed subjectively throughout the study. Each horse was ridden twice by riders L and M, and once by rider H. Rider VH rode five horses once and one twice. Each horse-rider combination undertook a standardised, 30-min ‘dressage-test' which was abandoned if we observed lameness grade ≥ 3/8 in one limb, grade ≥ 2/8 in ≥ 2 limbs, or ≥ 10/24 behavioural markers of pain. Horses were reassessed in hand 45–60 min after any abandonment. Mean rider bodyweights, body mass index (BMI) values and rider:horse bodyweight percentages for the L, M, H and VH riders were respectively: 60.8, 77.8, 91.0, 142.1 kg; 23.2, 28.0, 26.3, 46.9 kg/m2; 10.0–11.7%, 12.8–15.0%, 15.3–17.9%, 23.6–27.5%. All 13 H and VH rider tests (lameness, n = 12; behaviour, n = 1) and one of 12 M rider tests (lameness) were abandoned. Lameness was confirmed using inertial measurement unit data. All horses trotted sound after test abandonment and completed the study moving well when ridden. Limitations of the study were saddle fit was not ideal in all horse-rider combinations and abandonment criteria were subjective. The conclusions and clinical relevance of the study were that large riders can induce temporary lameness and behaviours consistent with musculoskeletal pain. This may relate to rider bodyweight and/or weight distribution. Riders M and H had similar BMI but markedly different test abandonment rates, therefore bodyweight is likely to be more relevant than BMI. Further work is required to determine if horse fitness, adaptation to heavier weights and better saddle fit for heavier/taller riders will increase horses' weight-carrying capacity.  相似文献   

12.
Reasons for performing study: Research into kinematics of the healthy equine back, has been performed in the walk and trot. This study focuses on back kinematics during canter, over a range of velocities. Flexion extension (FE) movements in canter are greatest in the lumbosacral (LS) region. Previous research has focused on canter velocity of 7 m/s; therefore quantification of LS kinematics at varying velocities is required to understand LS functions in equine locomotion. Hypothesis: Range of flexion‐extension movement through the lumbosacral joint increases with increasing velocity. Methods: Six Thoroughbred horses (mean age 9.6 years) cantered on treadmill at 4 velocities (6.0, 6.5, 7.0 and 8.0 m/s, respectively). Reflective markers were placed over the 5th lumbar vertebra (L5), the lumbosacral junction (LS) and the 3rd sacral vertebra (S3). Lumbosacral angle (LS) was defined as the angle formed between L5, LS and S3. Flexion‐extension (FE) range of motion (ROM) was analysed using a 2 camera, 3D motion capture system ProReflex1. Linear regression was used to determine strengths of relationships between speed of canter and lumbosacral FE movements. Results: Range of FE ROM seen at the lumbosacral joint increased linearly with speed. FE ROM ranged 6.1°± 1.9 at 6 m/s, 6.3°± 1.9 at 6.5 m/s, 6.6°± 1.9 at 7 m/s and 7.2°± 1.9 at 8 m/s. Linear regression showed positive associations between speed and LS FE range of motion (r2= 0.993; P = 0.003). Conclusions and potential relevance: Results show linear relationships between LS FE movements and submaximal canter velocities. These results provide information on the LS joint at canter. Understanding the effects of velocity on the back of healthy horses may aid our understanding of the demands placed on this joint in sport horses at this gait.  相似文献   

13.
Reasons for performing study: It is believed that the head‐neck position (HNP) has specific effects on the loading pattern of the equine locomotor system, but very few quantitative data are available. Objective: To quantify the effects of 6 different HNPs on forelimb‐hindlimb loading and underlying temporal changes. Methods: Vertical ground reaction forces of each limb and interlimb coordination were measured in 7 high level dressage horses walking and trotting on an instrumented treadmill in 6 predetermined HNPs: HNP1 ‐ unrestrained; HNP2 ‐ elevated neck, bridge of the nose in front of the vertical; HNP3 ‐ elevated neck, bridge of the nose behind the vertical; HNP4 ‐ low and flexed neck; HNP5 ‐ head and neck in extreme high position; and HNP6 ‐ forward downward extension of head and neck. HNP1 served as a velocity‐matched control. Results: At the walk, the percentage of vertical stride impulse carried by the forehand (Izfore) as well as stride length and overreach distance were decreased in HNP2, HNP3, HNP4 and HNP5 when compared to HNP1. At the trot, Izfore was decreased in HNP2, HNP3, HNP4 and HNP5. Peak forces in the forelimbs increased in HNP5 and decreased in HNP6. Stance duration in the forelimbs was decreased in HNP2 and HNP5. Suspension duration was increased in HNP2, HNP3 and HNP5. Overreach distance was shorter in HNP4 and longer in HNP6. Conclusions: In comparison to HNP1 and HNP6, HNPs with elevation of the neck with either flexion or extension at the poll as well as a low and flexed head and neck lead to a weight shift from the forehand to the hindquarters. HNP5 had the biggest effect on limb timing and load distribution. At the trot, shortening of forelimb stance duration in HNP5 increased peak vertical forces although Izfore decreased. Potential relevance: Presented results contribute to the understanding of the value of certain HNPs in horse training.  相似文献   

14.
Pressure measurement devices in equine sports have primarily focused on tack (saddle pads and saddle fitting methods). However, saddle pressure devices may also be useful in evaluating the interaction and distribution of normal forces between the horse and rider, including rider position and riding technique. This study examined the validity, reliability, repeatability and possibilities of using a saddle pressure device to evaluate rider position. All measurements were performed using a standing horse. Validity was tested by calculating the correlation coefficient between measured normal force and the weight of the rider. Repeatability was tested by calculating intra-class correlation coefficients. The use of normal force measurements to evaluate horse–rider interaction was tested by adding a known weight to saddle or rider and collecting measurements with the rider sitting in four different positions.The device was found to be valid and reliable for force measurements when the measurement device was not replaced. The system could be used to determine the expected differences with added weight and in different rider positions. The normal force distribution measurement device proved to be a valid and reliable tool for studying the interaction between a rider and a static horse provided it is positioned carefully and consistently relative to both the horse and the saddle.  相似文献   

15.
Reasons for performing study: The load acting on the limbs and the load distribution between fore‐ and hindlimbs while performing specific dressage exercises lack objective assessment. Hypothesis: The greater a horse's level of collection, the more load is shifted to the rear and that during the passage the vertical load on the limbs increases in relation to the accentuated vertical movement of the centre of mass. Methods: Back and limb kinematics, vertical ground reaction force and time parameters of each limb were measured in 6 Grand Prix dressage horses performing on an instrumented treadmill at the trot and the passage. Horses were ridden by their own professional rider. Results: At the passage, horses moved at a slower speed (?43.2%), with a lower stride frequency (?23.6%) and, therefore, higher stride impulses (+31.0%). Relative stance duration of fore‐ and hindlimbs and suspension duration remained unchanged. While at the trot the diagonal limbs impacted almost simultaneously, the hindlimbs always impacted first at the passage; the time dissociation between landing and lift‐off remained unchanged. Because of the prolonged stride duration, stride impulse and consequently limb impulses were higher at the passage in the fore‐ as well as in the hindlimbs (+24.8% and +39.9%, respectively). Within the diagonal limb pair, load was shifted from the forehand to the hindquarters (percentage stride impulse carried by the forehand ?4.8%). Despite the higher impulses, peak vertical forces in the fore‐ and hindlimbs remained unchanged because of the prolonged absolute stance durations in fore‐ and hindlimbs (+28.1% and +32.2%, respectively). Conclusions: Based on the intralimb timing, the passage closely resembles the trot. Compared to other head‐neck positions, the higher degree of collection resulted in a pronounced shift in impulse towards the hindquarters. Despite the higher limb impulses, peak forces acting on the limbs were similar to those observed at the trot. Potential clinical relevance: An understanding of load distribution between fore‐ and hindlimbs in relation to different riding techniques is crucial to prevent wear‐and‐tear on the locomotor apparatus.  相似文献   

16.
Reason for performing study: Saddle pads are widely used in riding sports but their influence on saddle pressures is poorly understood. Objective: To evaluate the forces acting on the horse's back, and the eventual pressure distribution by using different saddle pads underneath a fitting saddle. Methods: Sixteen sound horses of different breeds and ages were ridden on a treadmill at walk and sitting trot. The horses were wearing a dressage saddle with a fitting saddle tree and 4 different saddle pads (gel, leather, foam and reindeer fur) successively. For comparison, measurements were made without any saddle pad. Right forelimb motion was used to synchronise the pressure data with the stride cycles. A pressure mat was used under the saddle pad to collect the kinetic data. Maximum overall force (MOF) and the pressure distribution in longitudinal and transversal direction were calculated to identify differences between the measurements with and without saddle pads. Results: A significant decrease in MOF was interpreted as improved saddle fit, and a significant increase as worsened saddle fit. Only the reindeer fur pad significantly decreased the MOF from 1005 N to 796 N at walk and from 1650 N to 1437 N at trot compared to without pad measurements. None of the saddle pads increased the MOF significantly when compared to the data without saddle pad. The pressure distribution in longitudinal and transversal direction was also improved significantly only by the reindeer fur pad at trot compared to no pad. Conclusion: This study demonstrated that a well chosen saddle pad can reduce the load on the horse's back and therefore improve the suitability of a fitting saddle.  相似文献   

17.
The objectives of this study were to compare horses’ gaits in hand and when ridden; to assess static and dynamic saddle fit for each horse and rider; to apply the Ridden Horse Pain Ethogram (RHpE) and relate the findings to gait abnormalities consistent with musculoskeletal pain, rider position and balance and saddle fit; and to document noseband use and its relationship with mouth opening during ridden exercise. Data were acquired prospectively from a convenience sample of horses believed by their owners to be working comfortably. All assessments were subjective. Gait in hand and when ridden were evaluated independently, by two assessors, and compared using McNemar’s test. Static tack fit and noseband type were recorded. Movement of the saddle during ridden exercise, rider position, balance and size relative to the saddle was documented. RHpE scores were based on assessment of video recordings. Multivariable Poisson regression analysis was used to determine factors which influenced the RHpE scores. Of 148 horses, 28.4% were lame in hand, whereas 62.2% were lame ridden (P<0.001). Sixty per cent of horses showed gait abnormalities in canter. The median RHpE score was 8/24 (interquartile range 5, 9; range 0, 15). There was a positive association between lameness and the RHpE score (P<0.001). Riding School horses had higher RHpE scores compared with General Purpose horses (P = 0.001). Saddles with tight tree points (P = 0.001) and riders seated at the back of the saddle rather than the middle (P = 0.001) were associated with higher RHpE scores. Horses wearing crank cavesson compared with cavesson nosebands had higher RHpE scores (P = 0.006). There was no difference in mouth opening, as defined by the RHpE, in horses with a noseband with the potential to restrict mouth opening, compared with a correctly fitted cavesson noseband, or no noseband. It was concluded that lameness or gait abnormalities in canter may be missed unless horses are assessed ridden.  相似文献   

18.
Rein cues have been used for millennia when controlling horses. Recent research has quantified the range of tensions exerted on the horse's mouth by bit and rein apparatus under a variety of conditions and investigating the tension horses will freely tolerate. Given the importance of rein tension in terms of controlling horses and the potential for welfare issues arising from use of apparatus in the horse's mouth, this study the tensions created by riders (n = 12) performing walk to halt gait transitions on a model horse. The mean tension when applying the deceleration cue of the left rein (mean tension, 8.58 N; standard deviation = 5.15; range = 3.14-28.92 N) was greater than the right rein (mean tension, 6.24 N; standard deviation = 4.1; range = 2.27-16.17 N). Little correlation was found between rider morphometry and rein tension. Although the deceleration cue was significantly higher than the resting tension by 51% for the right rein (P < 0.001) and by 59% for the left rein (P < 0.001), there was large variation between and within riders. These findings suggest the need for greater awareness of the potential for rein tensions to vary from principles of good horse welfare and training principles.  相似文献   

19.
Reasons for performing study: Locomotion adaptation mechanisms have been observed in horses, but little information is available in relation to banked and nonbanked curve locomotion, which might be important to optimise training environments. Objectives: To determine if adaptation mechanisms in horses existed when moving on a banked compared to a flat curve and whether adaptation was similar in different gaits. Methods: Eight infrared cameras were positioned on the outside of a 10 m lungeing circle and calibrated. Retroreflective markers were used to define left and right metacarpus (McIII) and proximal phalanges (P1), metatarsus (MtIII), head and sacrum. Data were recorded at 308 Hz from 6 horses lunged at walk, trot and canter on a flat and 10° banked circle in a crossover design. Measurements extracted were speed, stride length, McIII inclination, MtIII inclination, relative body inclination and duty factor. Data were smoothed with a fourth order Butterworth filter with 30 Hz cut‐off. ANOVA was used to determine differences between conditions and limbs. Results: Adaptation mechanisms were influenced by gait. At canter inside forelimb duty factor was significantly longer (P<0.05) on a flat curve compared to a banked curve; at walk this was reversed. McIII inclination, MtIII inclination and relative body inclination were significantly greater (P<0.05) at trot and canter on a flat curve, so more inward tilt was found relative to the bearing surface. Conclusion: Adaptation to curved motion is gait specific. At faster gaits it appears that horses negotiate a banked curve with limb posture closer to body posture and probably with demands on the musculoskeletal system more similar to straight canter.  相似文献   

20.
AIMS: To determine the frontal plane position of the ground reaction force vector at its centre of pressure under the hoof of walking horses, and its projection through the distal limb joints, and to relate this to hoof geometric measurements.

METHODS: Reflective markers were glued to the forelimb hooves and skin of 26 horses, over palpable landmarks representing centres of the coffin, fetlock and carpal joints, and the dorsal toe at its most distal point. A 4-camera kinematic system recorded the position of these markers as the horse walked in hand across a force platform, to generate a frontal plane representation of the ground reaction force vector passing between the markers at the joints. The position of the vector was calculated as the relative distance between the lateral (0%) and medial (100%) markers at each joint. Digital photos were taken of the hoof in frontal and sagittal views to determine hoof geometric measurements. Associations between these and the position of the force vector at each joint were examined using Pearson correlation coefficients.

RESULTS: Mean vector position for both forelimbs at the toe, coffin, fetlock and carpal joint was 50.1 (SD 8.9), 53.0 (SD 9.2), 54.6 (SD 11.4) and 50.5 (SD17.3)%, respectively, of the distance between the lateral and medial sides of the joint in the frontal plane. Across all four joints, the vector position was slightly more medial (2–4%) for the right than left limb (p>0.05). Medial hoof wall angle was correlated (p<0.05) with force vector position at the fetlock (r=?0.402) and carpal (r=?0.317) joints; lateral hoof wall angle with vector position at the toe (r=0.288) and carpal (r=?0.34) joint, and medial hoof wall height with vector position at the fetlock (r=?0.306) and carpal (r=?0.303) joints.

CONCLUSION: The position of the two-dimensional frontal plane ground reaction force vector at the toe, and at the fetlock and carpal joints was associated with hoof shape. Mediolateral hoof balance has been shown in vitro to affect articular forces, which may be a factor in development of joint disease. The effect of hoof shape needs to be evaluated at faster gaits to determine the potential for joint injury in the presence of larger forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号