首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Large-scale argicultural development in high latitude regions could lead to large losses of soil C due to accelerated decomposition. Changes in decomposition rates of forest floor material upon land clearing in interior Alaska were simulated by measuring, over a 2-year period, changes in mass, cellulose, lignin, and N of forest floor materials and in mass of filter papers and wood in a forest floor and a fallowed field. All materials decomposed slowly at the surface, with about 90% of the original weight remaining after 2 years. Decomposition rates were higher for materials buried in the field than the forest. Cellulose loss in forest floor materials closely followed mass loss, whereas lignin loss was not significant. However, weight loss of wood was rapid when buried in the field, with about 20% of the initial mass remaining after 2 years. Relationships between mass loss of buried forest floor materials and soil degree days were significant (r=70%–80%). Temperature was a major, but not the only factor, controlling decomposition rates. Forest floor materials showed significant N losses, indicating net N mineralization and that N deficiency was not a factor affecting decomposition. C loss to the atmosphere due to decomposition of forest floor materials after forest clearing will be minimal and similar to that in the undisturbed forest if left on the soil surface, but will be substantial if incorportated into the soil. Incorporation is necessary for cropping; thus some accelerated decomposition is unavoidable in clearing subarctic forests for cultivation.  相似文献   

2.
《Geoderma》2007,137(3-4):253-268
We reviewed the experimental evidence for long-term carbon (C) sequestration in soils as consequence of specific forest management strategies. Utilization of terrestrial C sinks alleviates the burden of countries which are committed to reducing their greenhouse gas emissions. Land-use changes such as those which result from afforestation and management of fast-growing tree species, have an immediate effect on the regional rate of C sequestration by incorporating carbon dioxide (CO2) in plant biomass. The potential for such practices is limited in Europe by environmental and political constraints. The management of existing forests can also increase C sequestration, but earlier reviews found conflicting evidence regarding the effects of forest management on soil C pools. We analyzed the effects of harvesting, thinning, fertilization application, drainage, tree species selection, and control of natural disturbances on soil C dynamics. We focused on factors that affect the C input to the soil and the C release via decomposition of soil organic matter (SOM). The differentiation of SOM into labile and stable soil C fractions is important. There is ample evidence about the effects of management on the amount of C in the organic layers of the forest floor, but much less information about measurable effects of management on stable C pools in the mineral soil. The C storage capacity of the stable pool can be enhanced by increasing the productivity of the forest and thereby increasing the C input to the soil. Minimizing the disturbances in the stand structure and soil reduces the risk of unintended C losses. The establishment of mixed species forests increases the stability of the forest and can avoid high rates of SOM decomposition. The rate of C accumulation and its distribution within the soil profile differs between tree species. Differences in the stability of SOM as a direct species effect have not yet been reported.  相似文献   

3.
Summary Microbial biomass in the upper 7 cm of soil and needle decomposition on the forest floor were measured seasonally for 10 months in a mountain hemlock (Tsuga mertensiana) old-growth forest and in a regrowth forest after Phellinus weirii, a root-rot pathogen infection, had caused disturbance. The microbial biomass was higher in the old-growth forest soil than in the regrowth forest soil. However, T. mertensiana needle decomposition rates were higher in the regrowth than in the old-growth forest. Total N, Ca, Fe, Cu, and Zn concentrations in needles increased during the 1st year of decomposition in both the old and the regrowth forests, but P, K, Mg, Mn, and B concentrations decreased. N, P, K, Mg, Cu, and Zn concentrations were lower in regrowth than in old-growth decomposing needles. During mineralization, needles in the regrowth forests released more N, P, and K as a result of higher needle decomposition rates. Our results suggest that higher needle decomposition rates increased the mineralization of N, P, and K, which may lead to increased soil fertility and faster tree growth rates in the regrowth forest.  相似文献   

4.
海南岛河流底泥肥力和重金属污染特征及其风险评价   总被引:1,自引:0,他引:1  
特征分析及其评价是底泥资源化利用的重要前提,为了解海南岛热带玄武岩地区河流底泥特征及其资源化利用的可能性,选取典型河段塘柳塘为研究对象,采用典型断面布点采样法,对52个底泥样本的重金属和肥力进行检测和评价.结果表明:1)参照第2次全国土壤普查土壤养分分级指标,底泥中全氮质量分数指标达到Ⅰ级水平,全磷、全钾和有机质质量分数均为Ⅱ级水平,阳离子交换量达到Ⅳ级水平;各肥力指标的灰色关联度指数均大于对照区,说明河流底泥养分较为良好.2)采用HJ 332-2006《食用农产品产地环境质量评价标准》,评价底泥重金属污染状况,主要污染物Cd超标率为65.4%,超标幅度为14%;Hg超标率为59.6%,超标幅度为11%.3)地累积指数和内梅罗综合污染指数评价结果显示,该河段底泥中主要污染物为Cd和Hg,河段整体达到中度污染水平.4)潜在生态风险指数评价表明,Hg是最主要的潜在生态风险因子,河段整体达到“轻微生态危害”等级.该研究在海南省南渡江土地整治重大工程中,为疏浚底泥生态改造与土壤资源化利用,提供科学依据和技术支撑.  相似文献   

5.
The literature on the fluxes of six heavy metals in temperate forest ecosystems is reviewed. Special attention is given to wet and dry deposition and internal flux, to metal budgets for ecosystems and soils, to concentrations in aqueous compartments of the ecosystem and to speciation in soil solutions. Metal fluxes are discussed in relation to pollution load, soil type, tree species and land use. The mobility of Cu and Pb is strongly dependent on the solubility of organic matter. These metals are commonly accumulated in forest soils. Zinc, Cd and Ni are greatly influenced by soil acidity and are often lost in considerable amounts from acidified soils. Chromium is often at balance in forest ecosystems. Implications for metal solubility and budgets in forest soils are discussed in connection with an increase in soil acidification.  相似文献   

6.
An examination of tree phytomass and trace metal concentrations (w/w) and pools in the tree stratum and forest floor of a sugar maple-yellow birch forest was carried out at Turkey Lakes Watershed, Algoma District, Ontario. Estimated aboveground tree phytomass (167, 500 kg ha?1) was dominated by stemwood, branches > 2 cm, and stem bark. Highest trace metal concentrations were found in foliage (Cu, Fe, Mn, Ni) and stem bark (Cd, Pb, Zn). Concentrations of essential trace metals found in all sugar maple components followed the expected sequence of Mn>Fe>Zn>Cu. Lead and Ni concentations were always higher than those of Cd. Concentrations of essential elements in foliage and other components were comparable to those reported in the literature for other localities in North America. There was no indication that availability of essential trace elements (e.g., Cu) to vegetation had been increased as a result of increased atmospheric deposition. Lead, Ni and Cd levels in vegetation and forest floor were lower than those reported for similar forested areas of the northeastern United States.  相似文献   

7.
A regional study was conducted to assess current levels of trace metals in the forest floor, and to establish a baseline for future studies of metal accumulation. Quantitative forest floor samples collected from 78 sites in 9 states in the northeastern United States in 1978 and 1980 were analyzed for Zn, Cu, Ni, and Cd. Mean amounts present in the forest floor were 9.8 ± 1.9 (standard error of the mean), 1.7 ± 0.2, 0.86 ± 0.08, and 0.13 ± 0.01 kg ha?1, for Zn, Cu, Ni, and Cd, respectively. Mean concentrations were 133 ± 25, 19.5 ± 1.6, 11 ± 0.8, and 1.7 ± 0.1 mg kg?1, respectively. Differences in metal and organic matter concentrations and amounts among forest types were attributed to geographic location of specific forest types rather than to direct biotic influence. No element was strongly correlated with elevation for the entire sample area. Regional patterns of elemental amounts showed that trace metal levels are slightly higher in the southern part than in the northern part of the study region. Regional variation of Zn, Cu, Ni, and Cd in the forest floor was not indicative of atmospheric deposition except near point sources of pollution.  相似文献   

8.
We estimated the contribution of dissolved organic matter (DOM) to cation leaching and the translocation of acidity in three acid forest soils. The analysis was based on monitored (2 years) concentrations of dissolved organic carbon (DOC) in the field, measured total acidities of DOM, and measured as well as predicted weighted mean dissociation constants of the organic acids. Although the forest floor solutions were strongly acidic (pH 3.47–4.10), a considerable proportion of the organic acids was dissociated and organic anions represented 22–40% of the total anions in the mineral soil input. The flux of DOM-associated exchangeable protons from the forest floor to the mineral soil ranged from 0.35 (Wülfersreuth) to 3.72 (Hohe Matzen) kmol ha?1 yr?1. In the subsoil, this organic acidity may be neutralized by microbial decomposition of the organic acids, but a part of the hydrogen ions may dissociate and contribute to acidification of the soil solution and to weathering processes. Due to the pronounced retention of DOM in the mineral subsoil horizons, the contribution of DOM to the output of cations and acidity from the soil is much lower than in the surface horizons but still significant.?  相似文献   

9.
砒砂岩区沙棘林生态工程减洪减沙作用分析   总被引:4,自引:0,他引:4       下载免费PDF全文
 通过"水保法"计算沙棘林在砒砂岩区的减洪减沙效益,分析晋陕蒙砒砂岩区沙棘林生态工程的减洪减沙量,以及对研究区直接入黄支流的减洪减沙作用。结果显示:研究区流域内沙棘林占流域内总林地面积的比例逐年增大,沙棘林的减洪减沙量也逐年增大,从2002年到2008年,皇甫川、孤山川、窟野河等三支流沙棘林平均每年总减洪量480.84万m3,总减沙量302.65万t。研究结果对砒砂岩区配置水土保持措施有重要的参考价值。  相似文献   

10.
The occurrence of aspen (Populus tremuloides Michx.) patches within stands dominated by black spruce (Picea mariana Mill. BSP) has been shown to increase litter decomposition and nutrient cycling rates by improving soil physical and chemical properties. It is well known, however, that these processes are also influenced by the structure of the soil biota, but this factor has received less attention. In this study, relationships between forest floor properties and soil invertebrates were studied along black spruce–trembling aspen gradients in three stands of the eastern boreal forest of Canada. The forest floor layer of 36 plots differing in aspen basal area was sampled and analyzed to determine physical and chemical properties, the rates of decomposition of standard substrates, net N mineralization, as well as microbial basal respiration and metabolic quotient. Soil invertebrates were also collected using funnel-extraction and pitfall trapping methods. Based on redundancy analyses, we found that forest floor properties, the abundance and composition of soil invertebrates, and the rates of belowground processes changed along the spruce–aspen gradient. The increase in aspen basal area was associated with a reduction in forest floor thickness, moisture content and microbial biomass, and with an increase in the concentration of nutrients. It was also accompanied by changes in soil faunal communities, as soil invertebrates were associated with specific soil properties. In general, macroinvertebrates (i.e., Lumbricidae, Formicidae, Carabidae, Staphylinidae and Gastropoda) were related to the nutrient-rich forest floor associated with aspen, whereas microarthropods and Enchytraeidae tended to be negatively related to aspen basal area. According to mixed linear models, decomposition rates of standard substrates and net ammonification significantly increased along the spruce–aspen gradient. Given the functional significance of macroinvertebrates in soils, these results suggest that aspen favours the elaboration of a macrofaunal community, which in turn accelerates the rate of soil processes by having either direct or indirect influence on microbial activity. Moreover, this study shows that the changes in soil processes and in the biodiversity of soil organisms related to the presence of mixed stands can operate only in the immediate surroundings of a given tree species. Therefore, coarse-scale tree species mixing in a forest stand may have a different effect on soil biodiversity and soil processes than fine-scale mixing.  相似文献   

11.
Singh  S. P.  Tack  F. M.  Verloo  M. G. 《Water, air, and soil pollution》1998,102(3-4):313-328
The objective of this study was to characterise pollution with heavy metals in surface soils sampled at various dredged sediment disposal sites in the Flemish region (Belgium). The sites selected varied in the period since sediment disposal ceased and in current vegetation and land use. Total metal contents (Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) in the surface soils varied widely. For some disposal sites Cd and Zn concentrations greatly exceeded reference values for clean soil. The distribution of the metals as determined by sequential extraction differed between elements, but was simular for all the soils. This suggested that metals in these sediment derived surface soils were accumulated and transformed in a similar way. Residual fractions were low compared to total contents (2 – 4% for Cd, 25% – 35% for Co, 7 – 18% for Mn, 4 – 22% for Zn, 12 – 41% for Ni, 11 – 42% for Pb, 20 – 45% for Cu, < 10% for Zn). High metal concentrations in the acid-extractable and reducible fractions may indicate pollution from anthropogenic sources. DTPA-extractable metals, which may be considered indicative of plant-available contents, were relatively high compared to the total contents. The relative extractability, expressed as the ratio of DTPA-extractable to total contents, decreased in the order Cd (38%) > Cu (28%) = Zn (26%) > Pb (13%) > Ni (10%) > Co (3%). Most of the sites studied would be of concern if they were used for agricultural activities. No trends in metal availability in the period following disposal were apparent from the data.  相似文献   

12.
绥满公路路侧典型植被区土壤重金属污染特征及评价研究   总被引:4,自引:1,他引:3  
以绥满公路(301国道)黑龙江境内海林至亚布力段为研究区,对公路沿线三种典型植被下,距公路不同距离的297个样点表层土壤(0~20cm)中Pb、Cd、Cu、Zn、As元素含量的分析。结果表明,所调查公路旁侧土壤重金属平均含量与背景值相比,5种金属含量普遍较高,但三种不同类型植被土壤重金属平均含量无显著差异。各种类型土壤的单因子和综合污染指数计算数据显示,Cd类型Ⅰ为重污染,类型Ⅱ和类型Ⅲ为中度污染,Zn、Cu、Pb、As轻度污染,综合污染指数等级均达到中度污染。相关性分析结果显示公路建设营运是造成公路路侧土壤Pb、Cd、Cu等重金属污染的主要原因。复层结构的林带土壤主要污染区距公路约40~60m范围之内,纯乔木组成的林带土壤主要污染区距公路约70~100m范围之内,农田土壤主要污染区距公路约70~100m范围之内。复层结构的林带能阻止重金属污染物向更远处扩散,能缩小公路污染影响范围,纯乔木组成的林带阻止重金属污染物扩散效果不明显。  相似文献   

13.
How the mixture of tree species modifies short-term decomposition has been well documented using litterbag studies. However, how litter of different tree species interact in the long-term is obscured by our inability to visually recognize the species identity of residual decomposition products in the two most decomposed layers of the forest floor (i.e. the Oe and Oa layers respectively). To overcome this problem, we used Near Infrared Reflectance Spectroscopy (NIRS) to determine indirectly the species composition of forest floor layers. For this purpose, controlled mixtures of increasing complexity comprising beech and spruce foliage materials at various stages of decomposition from sites differing in soil acid-base status were created. In addition to the controlled mixtures, natural mixtures of litterfall from mixed stands were used to develop prediction models. Following a calibration/validation procedure, the best regression models to predict the actual species proportion from spectral properties were selected for each tree species based on the highest coefficient of determination (R2) and the lowest root mean square error of prediction (RMSEP). For the validation, the R2 (predictions versus true proportions) were 0.95 and 0.94 for both beech and spruce components in mixtures of materials at all stages of decomposition from the gradient of sites. The R2 decreased only marginally by 0.04 when models were tested on independent samples of similar composition. The best models were used to predict the beech-spruce proportion in Oe and Oa layers of unknown composition. They provided in most cases plausible predictions when compared to the composition of the canopy above the sampling points. Thus, tedious and potentially erroneous hand sorting of forest floor layers may be replaced by the use of NIRS models to determine species composition, even at late stages of decomposition.  相似文献   

14.
Transport and distribution of heavy metals were determined in soil and vegetation (Acer Rubrum) of intact forest microcosms. Litter from a contaminated forest and baghouse dust from a primary Pb smelter were applied to three of the microcosms, while three uncontaminated microcosms served as controls. Total dosages for Ph, Cd, Zn, and Cu on the treated microcosms were 11.0, 0.128, 0,748, and 0.161 mg cm?2, respectively. All metals were mobilized in soil and were enriched in at least one tissue component of Acer rubrum. Enrichment of Pb, Cd, and Zn occurred in all Acer tissues; Cu enrichment was found only in leaves. Uptake of metals by Acer rubrum was similar to a contaminated forest in southeastern Missouri and decreased in order: Zn, Cu, Cd, and Pb. Results of this experiment indicate that intact microcosms may be useful in assessing uptake and mobility of toxic chemicals which may be applied to forest ecosystems.  相似文献   

15.
Forests cover one-third of the Earth’s land surface and account for 30-40% of soil carbon (C). Despite numerous studies, questions still remain about the factors controlling forest soil C turnover. Present understanding of global C cycle is limited by considerable uncertainty over the potential response of soil C dynamics to rapid nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application. Here, we present a 15-year-long field study and show an average increase of 14.6% in soil C concentration in the 0-5 cm mineral soil layer in N fertilized (defined as N+ hereafter) sub-plots of a second-rotation Pinus radiata plantation in New Zealand compared to control sub-plots. The results of 14C and lignin analyses of soil C indicate that N additions significantly accelerate decomposition of labile and recalcitrant soil C. Using an annual-time step model, we estimated the soil C turnover time. In the N+ sub-plots, soil C in the light (a density < 1.70 g cm−3) and heavy fractions had the mean residence times of 23 and 67 yr, respectively, which are lower than those in the control sub-plots (36 and 133 yr in the light and heavy fractions, respectively). The commonly used lignin oxidation indices (vanillic acid to vanillin and syringic acid to syringaldehyde ratios) were significantly greater in the N+ sub-plots than in the control sub-plots, suggesting increased lignin decomposition due to fertilization. The estimation of C inputs to forest floor and δ13C analysis of soil C fractions indicate that the observed buildup of surface soil C concentrations in the N+ sub-plots can be attributed to increased inputs of C mass from forest debris. We conclude that long-term N additions in productive forests may increase C storage in both living tree biomass and soils despite elevated decomposition of soil organic matter.  相似文献   

16.
The objectives of this study were to obtain information about trace metal levels in a montane ecosystem in western Maine, and to compare these results to levels of trace metals reported in the literature for other areas of New England. Forest floor samples were collected at Saddleback Mountain, Maine from sites along two elevational transects on the western and eastern slopes. Five sites were located on the western slope, each in a different vegetation zone, and three sites were selected on the eastern slope, each corresponding in elevation and vegetation type as closely as possible to three of the western sites. Forest floor samples were collected as 15 x 15 cm blocks to the surface of the underlying mineral soil and sectioned into 2 cm depth increments. Zinc and Cr concentrations in the forest floor were significantly greater on the western slope (118 and 3.7 mg kg?1, respectively), whereas Pb concentration was greater on the eastern slope (80 mg kg?1) Cadmium, Cr, Cu, Ni, V, and Zn contents were significantly greater on the western slope (45, 83, 79, 143, and 1432 mg in ?2, respectively). Copper, Ni, Cd, and Zn concentrations and contents in the forest floor decreased with increasing elevation, and no trends of increasing trace metal contents with increasing elevation were evident. Trace metal concentrations and contents were always lower in the deepest increment of the forest floor as compared to the surface increment (except for Cr), but concentration and content trends with depth varied. Chromium tended to increase with depth where a depth trend was evident. Overall, forest floor trace metal levels were strongly related to forest stand type and forest floor properties.  相似文献   

17.
In boreal forest lakes, high Hg concentrations in fish are common, even in remote areas. In this paper, the effects of atmospheric Hg pollution in Sweden are synthesized and related to a concept based on the strong interaction of Hg with biogenic matter (Hg/B). Based on this concept, a compartment model is developed to predict concentrations, pool sizes, flux rates and turnover times of Hg along the biogeochemical cycle, including atmosphere, forest soils, surface runoff, lake waters, and aquatic biota. The aim is to provide a conceptual framework, both for a comprehensive mechanistic model, and for predictions from readily available information, such as regional data on acid deposition, air temperature and surface runoff, and local data on the trophic status of lakes with respect to humus and nutrient concentrations. The model is in good agreement with observations from recent Swedish field studies in all compartments. It suggests a strong influence of climate on the susceptibility of soil and lake ecosystems in the boreal region to Hg contamination. The high Hg concentrations in fish from forest lakes can be largely attributed to the low productivity of both terrestrial and aquatic biota. The impact of historical point sources of Hg is considered, as well as the slow turnover of Hg in forest soils, both resulting in elevated fish Hg levels in humic lakes for centuries following atmospheric deposition.  相似文献   

18.
Concentrations of chemical elements in tree roots including heavy metals from air pollution Total concentrations of P, S, Na, K, Mg, Ca, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb were measured in roots from beech, spruce, ash, maple and a forest herb (Mercurialis perennis). The root samples were taken from a site with an acid soil type (Saure Braunerde) and from a site with calcareous soil (Rendzina). All elements except Mn, Zn and Pb (on acid soils) and Ca (on calcareous soils) showed higher concentrations in finest roots (<1 mm diameter) compared to fine roots (1–2 mm). In the case of the toxic heavy metals, this is interpreted as a consequence of reduced root uptake due to physiological processes or to organic complexing, followed by an accumulation at the root surface. Compared with aboveground plant parts, roots show accumulation of Al, Pb, Cd and Zn, indicating reduced translocation from roots to shoots. Roots from acid soil show higher concentrations of P, Mn, and Pb than in calcareous soil. The concentrations of Al and heavy metals in the roots are considered to be a consequence of the contamination of the investigated forest sites by long-range transported air pollutants, i.e. acid precipitation and deposition of heavy metals.  相似文献   

19.
This study was designed to examine whether or not specific tree species (Picea glauca, Picea mariana, Pinus banksiana, Populus tremuloides), their post-fire stand age, or their position in a successional pathway had any significant effect on the functional diversity of associated soil microbial communities in a typical mixed boreal forest ecosystem (Duck Mountain Provincial Forest, Manitoba, Canada). Multivariate analyses designed to identify significant biotic and/or abiotic variables associated with patterns of organic substrate utilization (assessed using the BIOLOG™ System) revealed the overall similarity in substrate utilization by the soil microbial communities. The five clusters identified differed mainly by their substrate-utilization value rather than by specific substrate utilization. Variability in community functional diversity was not strongly associated to tree species or post-fire stand age; however, redundancy analysis indicated a stronger association between substrate utilization and successional pathway and soil pH. For example, microbial communities associated with the relatively high pH soils of the P. tremuloides-P. glauca successional pathway, exhibited a greater degree of substrate utilization than those associated with the P. banksiana-P. mariana successional pathway and more acidic soils. Differences in functional diversity specific to tree species were not observed and this may have reflected the mixed nature of the forest stands and of their heterogeneous forest floor. In a densely treed, mixed boreal forest ecosystem, great overlap in tree and understory species occur making it difficult to assign a definitive microbial community to any particular tree species. The presence of P. tremuloides in all stand types and post fire stand ages has probably contributed to the large amount of overlap in utilization profiles among soil samples.  相似文献   

20.
Annual soil losses in southern Italy can exceed 100–150 t ha− 1 year− 1. Where erosion on agricultural land is particularly severe, land use change and afforestation are frequently seen as the most appropriate means of reducing erosion risk. However, the overall effectiveness of afforestation in reducing soil erosion remains uncertain, due to the poor development of the forest cover in some areas, leading to significant areas with sparse tree cover, and the erosional impact of forest harvesting, which commonly involves clearcutting. The study reported here addresses this uncertainty and focuses on two small catchments (W2 and W3) located in Calabria, southern Italy, for which measurements of suspended sediment yield are available. Both the catchments originally supported a rangeland vegetation cover and they were planted with eucalyptus trees in 1968. Currently, only catchment W3 supports a continuous forest cover. In catchment W2 the forest cover is discontinuous and there is a significant area of the catchment (ca. 20%) where the tree cover is sparse and the vegetation cover is dominated by natural grasses. Two additional erosion plots were established within catchment W2 in 1991, in order to explore the effect of the density of the tree cover on soil erosion. Information on the sediment yields from the two catchments and the plots for 10 storm events that occurred during the period December 2005–December 2006 and associated information on the 137Cs and excess 210Pb of the sediment, have been used to investigate the effectiveness of afforestation in reducing sediment mobilisation and net soil loss from the catchments involved. The results demonstrate that the areas of greatest soil loss are associated with the slopes where the tree cover is discontinuous, and that forest harvesting by clearcutting causes significant short-term increases in sediment mobilisation and sediment yield. These findings, which are consistent with previous work undertaken within the same area, emphasize the importance of vegetation cover density in influencing rates of soil loss in the study catchments. The study also provided a useful demonstration of the potential for using measurements of the 137Cs and 210Pbex content of sediment, in combination with more traditional sediment monitoring, to investigate sediment sources and to compare the sediment dynamics of catchments subjected to different land management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号