首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological restoration is important in mitigating degradation and habitat loss of tallgrass prairie in North America. In 2002, we assessed the progress of a long-term tallgrass prairie restoration initiated in 1987 in southern Manitoba (Canada). Nine restoration and three reference sites were examined, as was a neighbouring site of future restoration that is now used for agriculture. Vegetation diversity, species composition, and associated soil properties were compared among restoration and reference sites, and changes associated with restoration identified. Restoration had a substantial effect on diversity and species composition, although restoration sites had significantly lower native and higher exotic diversity than reference sites. Overall and native diversity decreased over time, as both exotic and seeded native species were lost from the restoration sites. Particularly vulnerable were native forb species, which represent much of the diversity of prairie habitats. Forb presence was negatively associated with that of warm season native grasses, especially Andropogon gerardii (big bluestem). Similarity of restoration and reference vegetation increased over time, particularly for seeded native graminoids. When species that had been seeded elsewhere and had colonized restorations were examined, similarity between restoration and reference also increased with time, suggesting that older sites may be self-propagating. No significant differences in soil properties variables were observed among restoration sites, indicating that changes in these factors are slow relative to vegetation changes. Although time-since-restoration had a substantial impact on diversity and species composition, this habitat will require ongoing restoration.  相似文献   

2.
The determination of the phospholipid fatty acid (PLFA) pattern of soil organisms has become one of the most commonly used methods to study microbial community structure. Here we recapitulate the background of our work applying the PLFA method to soil in the early 1990s. We also stress that although the PLFA method was, and still is, a rapid and sensitive method to detect changes in the microbial community in soil, as with all popular methods it can be misused. We discuss problems in PLFA interpretation, the extent of turn-over of PLFAs in soil, and the flawed use of diversity indices to evaluate PLFA patterns.  相似文献   

3.
通过在石河子大学农学院试验站开展加工番茄连作定点微区试验,采用氯仿熏蒸和磷脂脂肪酸(PLFA)法相结合,研究了不同连作处理(种植1 a、连作3 a、5 a和7 a)对新疆加工番茄花果期和成熟期根际土壤微生物群落结构及土壤微生物量的影响。结果表明,连作导致土壤微生物量碳(SMBC)、微生物量氮(SMBN)和微生物熵(q MB)下降,SMBC/SMBN升高,而微生物量磷(SMBP)随连作年限和生育期的变化而不同。连作显著增加了真菌PLFAs含量,降低了细菌PLFAs含量、土壤PLFAs总量及细菌/真菌PLFAs的比值,而放线菌PLFAs含量变化无规律。连作7 a时,成熟期的细菌PLFAs含量、土壤PLFAs总量较对照分别减少62.9%、50.3%(P0.05),而真菌PLFAs含量较对照升高60.2%(P0.05)。从多样性指数分析看,Shannon-Wiener指数、Simpson指数、Brillouin指数和Pielou指数均随连作年限的延长呈先升后降的变化,其中连作3 a时各项指数最大,连作7 a时最小,表明在本试验年限范围内,连作使得微生物群落多样性与均匀程度皆出现了一定程度的降低。相关性分析表明,土壤微生物各类群PLFAs量、微生物量及土壤肥力之间存在相关性,说明土壤微生物量与土壤肥沃程度相关,可作为评价土壤肥力的生物学指标。可见,加工番茄连作改变了土壤微生物群落结构,降低了土壤微生物量,最终在根际土壤微生态系统和环境因子等因素的综合作用下产生连作障碍。  相似文献   

4.
In the Prairie Pothole Region (PPR) of Canada, wetlands once utilized for agricultural purposes are restored through the placement of a ditch plug to return them to their pre-existing hydrological state. The overall objective of this research was to assess differences in riparian soil microbial community structure between reference wetlands, those which had never been utilized for agricultural purposes, and restored wetlands, of varying times since restoration. Soil samples (0-6 cm) were taken from 15 reference and 28 restored wetlands. The soil microbial community was characterized using phospholipid fatty acid (PLFA) analysis. Data were analyzed using non-metric multidimensional scaling, multivariate regression trees (MRT) and indicator species analysis. The microbial community of younger restored soils (1-3 and 4-6 yrs) differed significantly from the reference soils, with reference soils having higher microbial biomass, evenness, and diversity. Richness showed an increasing trend with time since restoration. Results from the MRT underlined the importance of climatic factors, specifically precipitation - potential evapotranspiration (P-PE) in explaining the variation found in the microbial community. More specifically, drier sites had strong indicator species values associated with PLFAs of actinomycetal origin and fungal origin. Within the wetter sites, it was found that the older restored sites (7-11 yrs) and reference sites had strong indicator species values associated with PLFAs of Gram negative and fungal origin. The similarities in microbial community composition and biomass of the older restored sites (7-11 yrs) and the reference sites indicate that this component of the wetland ecosystems begins to recover within this time period.  相似文献   

5.
Changes in the biomass and structure of soil microbial communities have the potential to impact ecosystems via interactions with plants and weathering minerals. Previous studies of forested long-term (1000s - 100,000s of years) chronosequences suggest that surface microbial communities change with soil age. However, significant gaps remain in our understanding of long-term soil microbial community dynamics, especially for non-forested ecosystems and in subsurface soil horizons. We investigated soil chemistry, aboveground plant productivity, and soil microbial communities across a grassland chronosequence (65,000-226,000 yrs old) located near Santa Cruz, CA. Aboveground net primary productivity (ANPP) initially increased to a maximum and then decreased for the older soils. We used polar lipid fatty acids (PLFA) to investigate microbial communities including both surface (<0.1 m) and subsurface (≥0.2 m) soil horizons. PLFAs characteristic of Gram-positive bacteria and actinobacteria increased as a fraction of the microbial community with depth while the fungal fraction decreased relative to the surface. Differences among microbial communities from each chronosequence soil were found primarily in the subsurface where older subsurface soils had smaller microbial community biomass, a higher proportion of fungi, and a different community structure than the younger subsurface soil. Subsurface microbial community shifts in biomass and community structure correlated with, and were likely driven by, decreasing soil P availability and Ca concentrations, respectively. Trends in soil chemistry as a function of soil age led to the separation of the biological (≤1 m depth) and geochemical (>1 m) cycles in the old, slowly eroding landscape we investigated, indicating that this separation, commonly observed in tropical and subtropical ecosystems, can also occur in temperate climates. This study is the first to investigate subsurface microbial communities in a long-term chronosequence. Our results highlight connections between soil chemistry and both the aboveground and belowground parts of an ecosystem.  相似文献   

6.
Rhizodeposit-carbon provides a major energy source for microbial growth in the rhizosphere of grassland soils. However, little is known about the microbial communities that mediate the rhizosphere carbon dynamics, especially how their activity is influenced by changes in soil management. We combined a 13CO2 pulse-labeling experiment with phospholipid fatty acid (PLFA) analysis in differently managed Belgian grasslands to identify the active rhizodeposit-C assimilating microbial communities in these grasslands and to evaluate their response to management practices. Experimental treatments consisted of three mineral N fertilization levels (0, 225 and 450 kg N ha−1 y−1) and two mowing frequencies (3 and 5 times y−1). Phospholipid fatty acids were extracted from surface (0-5 cm) bulk (BU) and root-adhering (RA) soil samples prior to and 24 h after pulse-labeling and were analyzed by gas chromatography-combustion-isotope ratio mass spectrometry (GC-c-IRMS). Soil habitats significantly differed in microbial community structure (as revealed by multivariate analysis of mol% biomarker PLFAs) as well as in gram-positive bacterial rhizodeposit-C uptake (as revealed by greater 13C-PLFA enrichment following pulse-labeling in RA compared to BU soil in the 450N/5M treatment). Mowing frequency did not significantly alter the relative abundance (mol%) or activity (13C enrichment) of microbial communities. In the non-fertilized treatment, the greatest 13C enrichment was seen in all fungal biomarker PLFAs (C16:1ω5, C18:1ω9, C18:2ω6,9 and C18:3ω3,6,9), which demonstrates a prominent contribution of fungi in the processing of new photosynthate-C in non-fertilized grassland soils. In all treatments, the lowest 13C enrichment was found in gram-positive bacterial and actinomycetes biomarker PLFAs. Fungal biomarker PLFAs had significantly lower 13C enrichment in the fertilized compared to non-fertilized treatments in BU soil (C16:1ω5, C18:1ω9) as well as RA soil (all fungal biomarkers). While these observations clearly indicated a negative effect of N fertilization on fungal assimilation of plant-derived C, the effect of N fertilization on fungal abundance could only be detected for the arbuscular mycorrhizal fungal (AMF) PLFA (C16:1ω5). On the other hand, increases in the relative abundance of gram-positive bacterial PLFAs with N fertilization were found without concomitant increases in 13C enrichment following pulse-labeling. We conclude that in situ13C pulse-labeling of PLFAs is an effective tool to detect functional changes of those microbial communities that are dominantly involved in the immediate processing of new rhizosphere-C.  相似文献   

7.
Changes in soil carbon storage could affect and be affected by rising atmospheric CO2. However, it is unlikely that soils will respond uniformly, as some soils are more sensitive to changes in the amount and chemistry of plant tissue inputs whereas others are less sensitive because of mineralogical, textural, or microbial processes. We studied soil carbon and microbial responses to a preindustrial-to-future CO2 gradient (250–500 ppm) in a grassland ecosystem in the field. The ecosystem contains three soil types with clay fractions of 15%–55%: a sandy loam Alfisol, a silty clay Mollisol, and a black clay Vertisol. Soil and microbial responses to atmospheric CO2 are plant-mediated; and aboveground plant productivity in this ecosystem increased linearly with CO2 in the sandy loam and silty clay. Although total soil organic carbon (SOC) did not change with CO2 treatment after four growing seasons, fast-cycling SOC pools increased with CO2 in the two clay soils. Microbial biomass increased 18% and microbial activity increased 30% across the CO2 gradient in the black clay (55% clay), but neither factor changed with CO2 in the sandy loam (15% clay). Similarly, size fractionation of SOC showed that coarse POM-C, the youngest and most labile fraction, increased four-fold across the CO2 gradient in the black clay, but increased by only 50% across the gradient in the sandy loam. Interestingly, mineral-associated C, the oldest and most recalcitrant fraction, declined 23% across the gradient in the third soil type, a silty clay (45% clay). Our results provide evidence for priming in this soil type, as labile C availability and decomposition rate (measured as soil respiration and soil C mineralization) also increased across the CO2 gradient in the silty clay soil. In summary, CO2 enrichment in this grassland increased the fast-cycling SOC pool as in other CO2 studies, but only in the two high-clay soils. Priming in the silty clay could limit SOC accumulation after prolonged CO2 exposure. Because soil texture varies geographically, including data on soil types could enhance predictions of soil carbon and microbial responses to future CO2 levels.  相似文献   

8.
Prolonged intensive arable cropping of semiarid grassland soils in the South African Highveld resulted in a significant loss of C, N and associated living and dead microbial biomass. To regenerate their soils, farmers converted degraded arable sites back into secondary pastures. The objective of this study was to clarify the contribution of microorganisms to the sequestration of C and N in soil during this regeneration phase. Composite samples were taken from the topsoils of former arable land, namely Plinthustalfs, which had been converted to pastures 1-31 years ago. Amino sugars were determined as markers for microbial residues in the bulk soil and in selected particle-size fractions. The results showed that when C and N contents increased during the secondary pasture usage, the amino sugar concentration in the bulk soil (0-5 cm) recovered at similar magnitude and reached a new steady-state level after approximately 90 years, which corresponded only to 90% of the amino sugar level in the primary grassland. The amino sugar concentration in the clay-sized fraction recovered to a higher end level than in the bulk soil, and also at a faster annual rate. This confirms that especially the finer particles contained a high amount of amino sugars and were responsible, thus, for the restoration of microbially derived C and N. The incomplete recovery of amino sugars in bulk soil can only in parts be attributed to a slightly coarser texture of secondary grassland that had lost silt through wind erosion. The soils particularly had also lost the ability to restore microbial residues below 5 cm soil depth. Overall, the ratios of glucosamine to muramic acid also increased with increasing duration of pasture usage, suggesting that fungi dominated the microbial sequestration of C and N whereas the re-accumulation of bacterial cell wall residues was less pronounced. However, the glucosamine-to-muramic acid ratios finally even exceeded those of the primary grassland, indicating that there remained some irreversible changes of the soil microbial community by former intensive crop management.  相似文献   

9.
 Microbial biomass C (Cmic), C mineralization rate, phospholipid fatty acid (PLFA) profiles and community level physiological profiles (CLPPs) using Biolog were determined from the humus and mineral soil layers in adjacent stands of Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and silver birch (Betula pendula Roth) at two forest sites of different fertility. In addition, the Fourier-transformed infrared (FTIR) spectra were run on the samples for characterization of the organic matter. Cmic and C mineralization rate tended to be lowest under spruce and highest under birch, at the fertile site in all soil layers and at the less fertile site in the humus layer. There were also differences in microbial community structure in soils under different tree species. In the humus layer the PLFAs separated all tree species and in the mineral soil spruce was distinct from pine and birch. CLPPs did not distinguish microbial communities from the different tree species. The FTIR spectra did not separate the tree species, but clearly separated the two sites. Received: 3 December 1999  相似文献   

10.
Long-term continuous mixing at 40% water holding capacity (WHC) or as slurry at 400% WHC should result in increased soil organic matter decomposition rates in comparison to a control treatment at 40% WHC, but may have strong impacts on soil microbial indices for activity, biomass, and community structure. The amount of extractable inorganic N (NO3-N+NH4-N) accumulated in the soil solution after 40 weeks of incubation at 25 °C was 3% of total N in the control treatment and 4% in the two continuous mixing treatments. However, in the treatment mixing at 40% WHC, this 33% increase compared to the control treatment might be explained solely by the decrease in microbial biomass N. In the control treatment, microbial indices decreased in the order microbial biomass C (−10%), microbial biomass N (−40%), ergosterol (−45%) and ATP (−60%). In the treatment mixing at 40% WHC, all four microbial biomass indices were significantly lower than the respective index in the control treatment. This was especially true for microbial biomass N. In the treatment mixing as slurry, only the contents of microbial biomass C and ATP were significantly lower in comparison to the control treatment. The correspondence analysis ordination biplot of the phospholipid fatty acid (PLFA) profiles showed distinct clusters for the three treatments at the end of the incubation. The strongest relative decline of 64% was observed for the fungi-specific PLFA 18:3ω6 in the treatment mixing as slurry in comparison to the control treatment. The content of total bacterial PLFA decreased only by 23%. The differences between the control treatment and the treatment mixing at 40% WHC were less apparent. Fungi represent on average 21% of total microbial biomass C at the end of the incubation if the ergosterol content is recalculated into fungal biomass C. In accordance with this percentage, 22% of the group-specific PLFA could be attributed to fungi.  相似文献   

11.
Fen peatlands are specific wetland ecosystems containing high soil organic carbon (SOC). There is a general lack of knowledge about the microbial communities that abound in these systems. We examined the microbial activity and community structure in two fen soils differing in SOC content sampled from the Ljubljana Marsh under different seasonal conditions. Substrate-induced respiration and dehydrogenase activity were used as indicators of total microbial activity. Both methods indicated higher microbial activities in the fen soil with the higher SOC content on all dates of sampling. To determine whether the differences in microbial activity were associated with differences in the microbial community structures, terminal restriction fragment length polymorphism (T-RFLP) of bacterial 16S rRNA genes was performed. Comparison of the T-RFLP profiles revealed very similar community structures in both fens and in the two seasonal extremes investigated. This suggested a stable community structure in the two fens, which is not affected by the SOC content or seasonal variation. In addition, a bacterial 16S ribosomal RNA gene based clone library was prepared from the fen soil with the higher SOC content. Out of 114 clones analysed, approximately 53% belonged to the Proteobacteria, 23% to the Acidobacteria, 21% to a variety of other taxa, and less than 3% were affiliated with the Firmicutes.  相似文献   

12.
Chemical characteristics and some parameters related to biological components were determined in 16 soils from a fairly homogeneous area in the north of Italy, contaminated with different levels of heavy metals. Correlation analysis of the parameters studied showed close positive relationships among the metals and with the organic C content in the soils studied. Negative relationships were observed among the heavy metals, soil respiration, and the ratio between evolved CO2–C and microbial biomass C per unit time (specific respiratory activity). This was ascribed to an adverse heavy metal effect on the soil microflora, which appeared to increase the accumulation of organic matter as the heavy metal content increased, probably because the biomass was less effective in mineralising soil organic matter under these conditions.  相似文献   

13.
The soil microbial biomass and activity were estimated for seven field (intensive and extensive management), grassland (dry and wet), and forest (beech, dry and wet alder) sites. Three of the sites (wet grassland, dry and wet alder) are located on a lakeshore and are influenced by lake water and groundwater. Four different methods were selected to measure and characterize the microbial biomass. Values of microbial biomass (weight basis) and total microbial biomass per upper horizon and hectare (volume basis) were compared for each site.Fumigation-extraction and substrate-induced respiration results were correlated but dit not give the same absolute values for microbial biomass content. When using the original conversion factors, substrate-induced respiration gave higher values in field and dry grassland soils, and fumigation-extraction higher values in soils with low pH and high water levels (high organic content). Results from dimethylsulfoxide reduction and arginine ammonification, two methods for estimating microbial activity, were not correlated with microbial biomass values determined by fumigation-extraction or substrate-induced respiration in all soils examined. In alder forest soils dimethylsulfoxide reduction and arginine ammonification gave higher values on the wet site than on the dry site, contrary to the values estimated by fumigation-extraction and substrate-induced respiration. These microbial activities were correlated with microbial biomass values only in field and dry grassland soils. Based on soil dry weight, microbial biomass values increased in the order intensive field, beech forest, extensive field, dry grassland, alder forest, wet grassland. However, microbial biomass values per upper horizon and hectare (related to soil volume) increased in agricultural soils in the order intensive field, dry grassland, extensive field, wet grassland and in forest soils in the order beech, wet alder, dry alder. We conclude that use of the original conversion factors with the soils in the present study for fumigation-extraction and substrate-induced respiration measurements does not give the same values for the microbial biomass. Furthermore, dimethylsulfoxide reduction and arginine ammonification principally characterize specific microbial activities and can be correlated with microbial biomass values under specific soil conditions. Further improvements in microbial biomass estimates, particularly in waterlogged soils, may be obtained by direct counts of organisms, ATP estimate, and the use of 14C-labelled organic substrates. From the ecological viewpoint, data should also be expressed per horizon and hectare (related to soil volume) to assist in the comparison of different sites.  相似文献   

14.
In the mountain rainforest region of the South Ecuadorian Andes natural forests have often been converted to pastures by slash-and-burn practice. With advanced pasture age the pasture grasses are increasingly replaced by the tropical bracken leading to the abandonment of the sites. To improve pasture productivity a fertilisation experiment with urea was established. The effects of urea on soil organic matter (SOM) mineralisation and microbial community structure in top soil (0–5 cm depth) of an active and abandoned pasture site have been investigated in laboratory incubation experiments. Either 14C- or 15N-labelled urea (74 mg urea-N kg−1 dw soil) was added to track the fate of 14C into CO2 or microbial biomass and that of 15N into the KCl-extractable NH4-N or NO3-N or microbial biomass pool. The soil microbial community structure was assessed using phospholipid fatty acid analysis (PLFA). In a second experiment two levels of 14C-labelled urea (74 and 110 mg urea-N kg−1 dw soil) were added to soil from 5 to 10 cm depth of the respective sites. Urea fertilisation accelerated the mineralisation of SOC directly after addition up to 17% compared to the non-fertilised control after 14 days of incubation. The larger the amount of N potentially available per unit of microbial biomass N the larger was the positive priming effect. Since in average 80% of the urea-C had been mineralised already 1 day after amendment, the priming effect was strong enough to cause a net loss of soil C. Although the structure of the microbial community was significantly different between sites, urea fertilisation induced the same alteration in microbial community composition: towards a relative lower abundance of PLFA marker characteristic of Gram-positive bacteria and a higher one of those typical of Gram-negative bacteria and fungi. This change was positively correlated with the increase in NH4, NO3 and DON availability. In addition to the activation of different microbial groups the abolishment of energy limitation of the microbes seemed to be an important mechanism for the enhanced mineralisation of SOM.  相似文献   

15.
Soil functions can be classified as supporting (nutrient cycling) and provisioning (crop production) ecosystem services (ES). These services consist of multiple and dynamic functions and are typically assessed using indicators, e.g. microbial biomass as an indicator of supporting services. Agricultural intensification negatively affects indicators of soil functions and is therefore considered to deplete soil ES. It has been suggested that incorporating leys into crop rotations can enhance soil ES. We examined this by comparing indicators of supporting soil services – organic carbon, nitrogen, water holding capacity and available phosphorous (carbon storage and nutrient retention); net nitrogen mineralisation rate and microbial biomass (nutrient cycling and retention) – in barley fields, leys and permanent pastures along a landscape heterogeneity gradient (100, 500 and 1000 m radii). In addition, barley yields (provisioning service) were analysed against these indicators to identify trade-offs among soil services. Levels of most indicators did not differ between barley and ley fields and were consistently lower than in permanent pastures. Leys supported greater microbial biomass than barley fields. Landscape heterogeneity had no effect on the indicators or microbial community composition. However, landscape heterogeneity correlated negatively with yield and soil pH, suggesting that soils in heterogeneous landscapes are less fertile and therefore have lower yields. No trade-offs were found between increasing barley yield and the soil indicators. The results suggest that soil ES are determined at the field level, with little influence from the surrounding landscape, and that greater crop yields do not necessarily come at the expense of supporting soil services.  相似文献   

16.
Soil erosion is the main process leading to soil degradation on the Loess Plateau of China. The effects of soil‐erosion intensity (sheet, rill, and gully erosion) and different land use (140 y–old secondary forest site, 16 y–old bare site, 6 y–old succession site, and 43 y–old arable site) on gross and net N mineralization, soil organic‐carbon (SOC) turnover, the size and structure of the soil microbial community (phospholipid fatty acid analysis) were assessed. Erosion intensity in the bare plot increased from top slope (sheet erosion) to down slope (gully erosion). The more severe the soil erosion the stronger was the decline of SOC, total N, and microbial biomass (MB). The MBC/SOC ratio decreased whereas the metabolic quotient (qCO2) increased. Differences in nutrient turnover in the different erosion zones of the bare plot were not significant. The microbial community changed towards less Gram negative bacteria and relative more fungi in the gully‐erosion zone. In forest soils, qCO2 and the MBC/SOC ratio demonstrate a higher substrate‐use efficiency of the microbial biomass than in bare soils. Gross N mineralization and gross NH consumption clearly indicated a higher microbial activity in forest than in bare soils. Arable land use shifted the soil microbial community towards a higher relative abundance of fungi and a lower one of actinomycetes. During 6 y of natural succession on former bare plots, soil nutrient content and turnover as well as microbial biomass and structure developed towards forest conditions.  相似文献   

17.
Microbial biomass and its activities in salt-affected coastal soils   总被引:2,自引:0,他引:2  
Seasonal fluctuations in salinity are typical in coastal soils due to the intrusion of seawater in the groundwater. We studied the effect of salinity on the microbial and biochemical parameters of the salt-affected soils of the coastal region of Bay of Bengal, Sundarbans, India. The average pH values and average organic C (OC) contents of soils from nine different sites cultivated with rice (Oryza sativa) ranged from 4.8 to 7.8 and from 5.2 to 14.1 g kg−1, respectively. The average electrical conductivity of the saturation extract (ECe) during the summer season was about five times higher than that during the monsoon season. Within the nine sites, three soils (S3, S4, and S5) were the most saline. The average microbial biomass C (MBC), average basal soil respiration (BSR), and average fluorescein diacetate hydrolyzing activity (FDHA) were lowest during the summer season, indicating a negative influence of soil salinity. About 59%, 50%, and 20% variation in MBC/OC, FDHA/OC, and BSR/MBC (metabolic quotient, qCO2), respectively, which are indicators of environmental stress, could be explained by the variation in ECe. The decrease in MBC and microbial activities with a rise in salinity is probably one of the reasons for the poor crop growth in salt-affected coastal soils.  相似文献   

18.
High rates of cattle slurry application induce NO inf3 sup- leaching from grassland soils. Therefore, field and lysimeter trials were conducted at Gumpenstein (Austria) to determine the residual effect of various rates of cattle slurry on microbial biomass, N mineralization, activities of soil enzymes, root densities, and N leaching in a grassland soil profile (Orthic Luvisol, sandy silt, pH 6.6). The cattle slurry applications corresponded to rates of 0, 96, 240, and 480 kg N ha-1. N leaching was estimated in the lysimeter trial from 1981 to 1991. At a depth of 0.50 m, N leaching was elevated in the plot with the highest slurry application. In October 1991, deeper soil layers (0–10, 10–20, 20–30, 30–40, and 40–50 cm) from control and slurry-amended plots (480 kg N ha-1) were investigated. Soil biological properties decreased with soil depth. N mineralization, nitrification, and enzymes involved in N cycling (protease, deaminase, and urease) were enhanced significantly (P<0.05) at all soil depths of the slurry-amended grassland. High rates of cattle slurry application reduced the weight of root dry matter and changed the root distribution in the different soil layers. In the slurry-amended plots the roots were mainly located in the topsoil (0–10 cm). As a result of this study, low root densities and high N mineralization rates are held to be the main reasons for NO inf3 sup- leaching after heavy slurry applications on grassland.  相似文献   

19.
The environmental impacts of herbicides on desirable plants and the soil biota are of public concern. The surfactants that are often used with herbicides are also under scrutiny as potentially harmful to soil biological systems. To address these concerns, we used two soils, a silt loam and a silty, clay loam from south central Missouri, to investigate the impacts of herbicides and surfactants on soil microbial communities using phospholipid fatty acid (PLFA) analysis. The surfactants used in this study were alkylphenol ethoxylate plus alcohol ethoxylate (Activator 90), polyethoxylate (Agri-Dex), and a blend of ammonium sulfate, drift reduction/deposition polymers and anti-foam agent (Thrust). The herbicides were glyphosate, atrazine and bentazon. Surfactants and herbicides were applied to soils at label rate, either alone or combined, to 4000 g soil per pot. The two soils differed in history, texture, some chemical characteristics and several microbial community characteristics. A few of the chemicals altered some of the components of the microbial community after only one application of the chemical at field-rate. The Cole County, MO silt loam showed larger changes in the microbial community with application of treatments. For the Boone County, MO silty clay loam, Activator 90, Agri-Dex and bentazon treatments increased microbial biomass determined by PLFA; Thrust decreased PLFA markers, bacteria to fungi ratio; and Agri-Dex at both rates decreased monounsaturated fatty acids. Changes in the microbial community due to herbicides or surfactants were minimal in this study of a single application of these chemicals, but could be indicators of potential long-term effects. Long-term studies are needed to determine the changes in the microbial community after several years of annual applications of herbicides and surfactants on a wide array of soil types and management practices.  相似文献   

20.
Summary The effects of heavy metals on microbial biomass and activity were investigated in 30 urban soils, contaminated mainly with Zn and Pb to different extents, in terms of the physicochemical and biological characteristics of the soils. Evaluated by simple and multiple regression analyses, the microbial biomass was not affected significantly by easily soluble Zn + Pb (extractable with 0.1 NHCI). The biomass was accounted for as a function of cation exchange capacity (CEC), total organic C and the numbers of fungal colonies present (R 2 = 0.692). Carbon dioxide evolution from soils, which reflected microbial activity, was studied on soils incubated with microbial-promoting substrates (glucose and ammonium sulfate) or without. Carbon dioxide evolution was negatively related to Zn+Pb, and this inhibitory effect of the metals was greater in the soils incubated with substrates. Carbon dioxide evolution in soils with substrates was closely related to Zn+Pb, bacterial numbers and the numbers of fungal colonies (R 2 = 0.718). Carbon dioxide evolution in soils without substrates was accounted for as a function of Zn + Pb, biomass and the C/N ratio (R 2 = 0.511). Using these relationships, the effects of heavy metals on soil microorganisms are discussed in terms of metabolically activated and dormant populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号