共查询到20条相似文献,搜索用时 15 毫秒
1.
Sabine Ravnskov Inge M.B. Knudsen Dan Funck Jensen John Larsen 《Soil biology & biochemistry》2006,38(12):3453-3462
Interactions between the biocontrol fungus Clonostachys rosea IK 726 and a tomato/Glomus intraradices BEG87 symbiosis were examined with and without wheat bran, which served as a food base for C. rosea. In soil without wheat bran amendment, inoculation with C. rosea increased plant growth and altered shoot nutrient content resulting in an increase and decrease in P and N content, respectively. Inoculation with G. intraradices had no effect on plant growth, but increased the shoot P content. Dual inoculation with G. intraradices and C. rosea followed the pattern of C. rosea in terms of plant growth and nutrient content. Wheat bran amendment resulted in marked plant growth depressions, which were counteracted by both inoculants and dual inoculation increased plant growth synergistically. Amendment with wheat bran increased the population density of C. rosea and reduced mycorrhizal fungus colonisation of roots. The inoculants were mutually inhibitory, which was shown by a reduction in root colonisation with G. intraradices in treatments with C. rosea and a reduction in colony-forming units (cfu) of C. rosea in treatments with G. intraradices, irrespective of wheat bran amendment. Moreover, both inoculants markedly influenced soil microbial communities examined with biomarker fatty acids. Inoculation with G. intraradices increased most groups of microorganisms irrespective of wheat bran amendment, whereas the influence of C. rosea on other soil microorganisms was affected by wheat bran amendment. Overall, inoculation with C. rosea increased and decreased most groups of microorganisms without and with wheat bran amendment, respectively. In conclusion, despite mutual inhibition between the two inoculants this interaction did not impair their observed plant growth promotion. Both inoculants also markedly influenced other soil microorganisms, which should be further studied in relation to their plant growth-promoting features. 相似文献
2.
Plants colonized by arbuscular mycorrhizal (AM) fungi have been shown to respond positively to the application of insoluble forms of inorganic phosphorus (P) such as rock phosphates (RPs). The mechanism(s) underlying such responses remain(s) unknown and although it has been hypothesized, there is no experimental support for the production of chelating agents by AM fungal hyphae. Here we investigate whether AM fungi can solubilize P from RPs and transfer it to plant roots. Using root-organ cultures of Daucus carrota L. inoculated or not with Glomus intraradices Schenk & Smith and containing P from different RP sources, we predicted that: (1) roots inoculated with G. intraradices would take up more P than those uninoculated; that (2) the amount of P taken up by roots through G. intraradices would be positively correlated with the RP reactivity; and that (3) G. intraradices would have access to RP through localized alterations of pH and/or by the production of organic acid anions that may act as chelating agents. The RP reactivity was positively correlated with P uptake. However, mycorrhizal roots grew initially slower and did not respond differently to any P treatment than those uninoculated. There was no evidence of localized changes in pH in proximity of G. intraradices hyphae, indicating that responses to RP by mycorrhizal plants observed in previous studies do not appear to result from the release of H+ ions alone or in combination with organic acid anions. 相似文献
3.
Camilla WambergSøren Christensen I. JakobsenA.K. Müller S.J. Sørensen 《Soil biology & biochemistry》2003,35(10):1349-1357
Pea plants were grown in γ-irradiated soil in pots with and without addition of the AM fungus Glomus intraradices at sufficient N and limiting P. Depending on the growth phase of the plant presence of AM had negative or positive effect on rhizosphere activity. Before flowering during nutrient acquisition AM decreased rhizosphere respiration and number of protozoa but did not affect bacterial number suggesting top-down regulation of bacterial number by protozoan grazing. In contrast, during flowering and pod formation AM stimulated rhizosphere respiration and the negative effect on protozoa decreased. AM also affected the composition of the rhizosphere bacterial community as revealed from DNA analysis (DGGE). With or without mycorrhiza, rhizosphere respiration was P-limited on very young roots, not nutrient limited at more mature roots and C-limited at withering. This suggests changes in the rhizosphere community during plant growth also supported by changes in the bacteria (DGGE). 相似文献
4.
Stefano Bedini Luciano Avio Paolo Bazzoffi Manuela Giovannetti 《Soil biology & biochemistry》2009,41(7):1491-1496
Arbuscular mycorrhizal (AM) fungi are key organisms of the soil/plant system, influencing soil fertility and plant nutrition, and contributing to soil aggregation and soil structure stability by the combined action of extraradical hyphae and of an insoluble, hydrophobic proteinaceous substance named glomalin-related soil protein (GRSP). Since the GRSP extraction procedures have recently revealed problems related to co-extracting substances, the relationship between GRSP and AM fungi still remains to be verified. In this work the hypothesis that GRSP concentration is positively correlated with the occurrence of AM fungi was tested by using Medicago sativa plants inoculated with different isolates of Glomus mosseae and Glomus intraradices in a microcosm experiment. Our results show that (i) mycorrhizal establishment produced an increase in GRSP concentration - compared to initial values - in contrast with non-mycorrhizal plants, which did not produce any change; (ii) aggregate stability, evaluated as mean weight diameter (MWD) of macroaggregates of 1-2 mm diameter, was significantly higher in mycorrhizal soils compared to non-mycorrhizal soil; (iii) GRSP concentration and soil aggregate stability were positively correlated with mycorrhizal root volume and weakly correlated with total root volume; (iv) MWD values of soil aggregates were positively correlated with values of total hyphal length and hyphal density of the AM fungi utilized.The different ability of AM fungal isolates to affect GRSP concentration and to form extensive and dense mycelial networks, which may directly affect soil aggregates stability by hyphal enmeshment of soil particles, suggests the possibility of selecting the most efficient isolates to be utilized for soil quality improvement and land restoration programs. 相似文献
5.
Nico Eisenhauer Stephan König Alexander C.W. Sabais Francois Buscot 《Soil biology & biochemistry》2009,41(3):561-567
Earthworms and arbuscular mycorrhizal fungi (AMF) might interactively impact plant productivity; however, previous studies reported inconsistent results. We set up a three-factorial greenhouse experiment to study the effects of earthworms (Aporrectodea caliginosa Savigny and Lumbricus terrestris L.) and AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) on the performance (productivity and shoot nutrient content) of plant species (Lolium perenne L., Trifolium pratense L. and Plantago lanceolata L.) belonging to the three functional groups grasses, legumes and herbs, respectively. Further, we investigated earthworm performance and plant root mycorrhization as affected by the treatments. Our results accentuate the importance of root derived resources for earthworm performance since earthworm weight (A. caliginosa and L. terrestris) and survival (L. terrestris) were significantly lower in microcosms containing P. lanceolata than in those containing T. pratense. However, earthworm performance was not affected by AMF, and plant root mycorrhization was not modified by earthworms. Although AMF effectively competed with T. pratense for soil N (as indicated by δ15N analysis), AMF enhanced the productivity of T. pratense considerably by improving P availability. Remarkably, we found no evidence for interactive effects of earthworms and AMF on the performance of the plant species studied. This suggests that interactions between earthworms and AMF likely are of minor importance. 相似文献
6.
Two strains of Gluconacetobacter diazotrophicus (Pal 5, UAP5541) and the arbuscular mycorrhizal fungus Glomus intraradices increased both the shoot and root dry weight of sorghum 45 days after inoculation, whereas they had no effect on the shoot and root dry weight of maize. Co-inoculation (Gluconacetobacter diazotrophicus plus Glomus mosseae) did not increase the shoot and root dry weight of either plant. There was a synergistic effect of Gluconacetobacter diazotrophicus on root colonization of maize by Glomus intraradices, whereas an antagonistic interaction was observed in the sorghum root where the number of Gluconacetobacter diazotrophicus and the colonization by Glomus intraradices were reduced. Plant roots inoculated with Gluconacetobacter diazotrophicus and Glomus intraradices, either separately or together, significantly increased root endoglucanase, endopolymethylgalacturonase and endoxyloglucanase activities. The increase varied according to the plant. For example, in comparison with non-inoculated plants, there were higher endoglucanase (+328%), endopolymethylgalacturonase (+180%) and endoxyloglucanase (+125%) activities in 45-day old co-inoculated maize, but not in 45-day old sorghum. The possibility is discussed that hydrolytic enzyme activities were increased as a result of inoculation with Gluconacetobacter diazotrophicus, considering this to be one of the mechanisms by which these bacteria may increase root colonization by AM fungi. 相似文献
7.
《Soil biology & biochemistry》2003,35(5):701-707
The effect of the soil yeast, Rhodotorula mucilaginosa LBA, on Glomus mosseae (BEG n°12) and Gigaspora rosea (BEG n°9) was studied in vitro and in greenhouse trials. Hyphal length of G. mosseae and G. rosea spores increased significantly in the presence of R. mucilaginosa. Exudates from R. mucilaginosa stimulated hyphal growth of G. mosseae and G. rosea spores. Increase in hyphal length of G. mosseae coincided with an increase in R. mucilaginosa exudates. No stimulation of G. rosea hyphal growth was detected when 0.3 and 0.5 ml per petri dish of yeast exudates was applied. Percentage root length colonization by G. mosseae in soybean (Glycine max L. Merill) and by G. rosea in red clover (Trifolium pratense L. cv. Huia) was increased only when the soil yeast was inoculated before G. mosseae or G. rosea was introduced. Beneficial effects of R. mucilaginosa on arbuscular mycorrhizal (AM) colonization were found when the soil yeast was inoculated either as a thin agar slice or as a volume of 5 and 10 ml of an aqueous solution. R. mucilaginosa exudates (20 ml per pots) applied to soil increased significantly the percentage of AM colonization of soybean and red clover. 相似文献
8.
Avram Levy Adam J. Merritt Barbara J. Chang Timothy J.J. Inglis 《Soil biology & biochemistry》2009,41(8):1757-1759
Burkholderia pseudomallei, the bacterial cause of the potentially fatal infection known as melioidosis, has a facultative intracellular lifestyle. The intracellular presence of B. pseudomallei in various eukaryotes including arbuscular mycorrhizal fungus (AMF) spores can be demonstrated in vitro. AMF spores were isolated from soils in a melioidosis-endemic area. B. pseudomallei and other Burkholderia spp. DNA was detected in these AMF spore samples, confirming an AMF spore-Burkholderia spp. association in soils which did not yield Burkholderia spp. by culture. This association may explain the environmental persistence, difficulty of recovery and dispersal of Burkholderia spp. in specific environments. 相似文献
9.
The external hypha of arbuscular mycorrhizal (AM) fungi, extending from roots out into soil, is an important structure in the uptake of phosphate from the depletion zone around each root. In this paper, we analysed some phospholipid fatty acids (PLFAs) derived from external hyphae of four AM fungi (Glomus etunicatum, Glomus clarum, Gigaspora margarita and Gigaspora rosea) to find fatty acids which may be useful as specific markers for identifying and quantify the external hyphae of Gigaspora species. Leek (Allium porrum L.) seedlings inoculated with each AM fungus were grown in river sand. Sand samples were collected and four PLFAs (16:1ω5, 18:1ω9, 20:1ω9 and 20:4) in the sand were analysed. In addition, the hyphal biomass in the sand was determined by the direct microscopic method. PLFAs 18:1ω9 and 20:4 were found in all the AM-inoculated and non-inoculated sand samples. PLFA 16:1ω5 was detected in the sand inoculated with G. etunicatum, G. clarum and Gi. rosea. PLFA 20:1ω9 was detected only in the sand inoculated with Gi. rosea. PLFAs 16:1ω5 and 20:1ω9 were not found in the sand inoculated with Gi. margarita. The amount of PLFA 20:1ω9 was closely correlated with the amount of biomass of external hyphae of Gi. rosea (r=0.937, P<0.001), whereas no correlation was observed for PLFA 16:1ω5. The 20:1ω9 content of Gi. rosea was approximately 6.56 nmol mg−1 hyphal biomass. We suggest that PLFA 20:1ω9 can be used as a specific marker for identifying and quantifying the external hyphae of Gi. rosea, at least in controlled experimental systems. 相似文献
10.
The growth of clover (Trifolium repens ) and its uptake of N, P and Ni were studied following inoculation of soil with Rhizobium trifolii, and combinations of two Ni-adapted indigenous bacterial isolates (one of them was Brevibacillus brevis) and an arbuscular mycorrhizal (AM) fungus (Glomus mosseae). Plant growth was measured in a pot experiment containing soil spiked with 30 (Ni I), 90 (Ni II) or 270 (Ni III) mg kg−1 Ni-sulphate (corresponding to 11.7, 27.6 and 65.8 mg kg−1 available Ni on a dry soil basis). Single inoculation with the most Ni-tolerant bacterial isolate (Brevibacillus brevis) was particularly effective in increasing shoot and root biomass at the three levels of Ni contamination in comparison with the other indigenous bacterial inoculated or control plants. Single colonisation of G. mosseae enhanced by 3 fold (Ni I), by 2.4 fold (Ni II) and by 2.2 fold (Ni III) T. repens dry weight and P-content of the shoots increased by 9.8 fold (Ni I), by 9.9 fold (Ni II) and by 5.1 fold (Ni III) concomitantly with a reduction in Ni concentration in the shoot compared with non-treated plants. Coinoculation of G. mosseae and the Ni-tolerant bacterial strain (B. brevis) achieved the highest plant dry biomass (shoot and root) and N and P content and the lowest Ni shoot concentration. Dual inoculation with the most Ni-tolerant autochthonous microorganisms (B. brevis and G. mosseae) increased shoot and root plant biomass and subtantially reduced the specific absorption rate (defined as the amount of metal absorbed per unit of root biomass) for nickel in comparison with plants grown in soil inoculated only with G. mosseae. B. brevis increased nodule number that was highly depressed in Ni I added soil or supressed in Ni II and Ni III supplemented soil. These results suggest that selected bacterial inoculation improved the mycorrhizal benefit in nutrients uptake and in decreasing Ni toxicity. Inoculation of adapted beneficial microorganisms (as autochthonous B. brevis and G. mosseae) may be used as a tool to enhance plant performance in soil contaminated with Ni. 相似文献
11.
Laura Fernández Bidondo Vanesa Silvani Roxana Colombo Mariana Pérgola Josefina Bompadre Alicia Godeas 《Soil biology & biochemistry》2011,43(9):1866-1872
Two indole-producing Paenibacillus species, known to be associated with propagules of arbuscular mycorrhizal (AM) fungi, were examined for their mycorrhization helper bacteria activity at pre-symbiotic and symbiotic stages of the AM association. The effects were tested under in vitro and in vivo conditions using an axenically propagated strain of the AM fungus Glomus intraradices and Glycine max (soybean) as the plant host. The rates of spore germination and re-growth of intraradical mycelium were not affected by inoculation with Paenibacillus strains in spite of the variation of indole production measured in the bacterial supernatants. However, a significant promotion in pre-symbiotic mycelium development occurred after inoculation of both bacteria under in vitro conditions. The Paenibacillus rhizosphaerae strain TGX5E significantly increased the extraradical mycelium network, the rates of sporulation, and root colonization in the in vitro symbiotic association. These results were also observed in the rhizosphere of soybean plants grown under greenhouse conditions, when P. rhizosphaerae was co-inoculated with G. intraradices. However, soybean dry biomass production was not associated with the increased development and infectivity values of G. intraradices. Paenibacillus favisporus strain TG1R2 caused suppression of the parameters evaluated for G. intraradices during in vitro symbiotic stages, but not under in vivo conditions. The extraradical mycelium network produced and the colonization of soybean roots by G. intraradices were promoted compared to the control treatments. In addition, dual inoculation had a promoting effect on soybean biomass production. In summary, species of Paenibacillus associated with AM fungus structures in the soil, may have a promoting effect on short term pre-symbiotic mycelium development, and little impact on AM propagule germination. These findings could explain the associations found between some bacterial strains and AM fungus propagules. 相似文献
12.
Arbuscular mycorrhizal (AM) fungi have been shown to induce the biocontrol of soilborne diseases, to change the composition of root exudates and to modify the bacterial community structure of the rhizosphere, leading to the formation of the mycorrhizosphere. Tomato plants were grown in a compartmentalized soil system and were either submitted to direct mycorrhizal colonization or to enrichment of the soil with exudates collected from mycorrhizal tomato plants, with the corresponding negative controls. Three weeks after planting, the plants were inoculated or not with the soilborne pathogen Phytophthora nicotianae growing through a membrane from an adjacent infected compartment. At harvest, a PCR-Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments amplified from the total DNA extracted from each plant rhizosphere was performed. Root colonization with the AM fungi Glomus intraradices or Glomus mosseae induced significant changes in the bacterial community structure of tomato rhizosphere, compared to non-mycorrhizal plants, while enrichment with root exudates collected from mycorrhizal or non-mycorrhizal plants had no effect. Our results support that the effect of AM fungi on rhizosphere bacteria would not be mediated by compounds present in root exudates of mycorrhizal plants but rather by physical or chemical factors associated with the mycelium, volatiles and/or root surface bound substrates. Moreover, infection of mycorrhizal or non-mycorrhizal plants with P. nicotianae did not significantly affect the bacterial community structure suggesting that rhizosphere bacteria would be less sensitive to the pathogen invasion than to mycorrhizal colonization. Of 96 unique sequences detected in the tomato rhizosphere, eight were specific to mycorrhizal fungi, including two Pseudomonas, a Bacillus simplex, an Herbaspirilium and an Acidobacterium. One Verrucomicrobium was common to rhizospheres of mycorrhizal plants and of plants watered with mycorrhizal root exudates. 相似文献
13.
Fragmented and degraded vegetation characterises agricultural landscapes across southern Australian. Remnant vegetation within these regions performs a number of vital ecological and hydrological roles, but little is known about whether or how fragmentation is affecting the long-term persistence of these critical landscape elements. Acacias are a significant component of many remnant vegetation communities across Australia, forming numerous integral faunal and floral relationships. Here, reproductive output of 11 fragmented Acacia dealbata (Mimosaceae) populations from across the southern tablelands of New South Wales was assessed over 2 years to identify reproductive constraints associated with increasing vegetation fragmentation. Fertilization success is the major reproductive constraint, particularly in small populations, and probably reflects a self-incompatible reproductive strategy. During 2002 larger and more dense populations produced more legumes (p = 0.014 and <0.001, respectively) while in 2003 these two variables were associated with increased fertilization success (p = 0.004 and 0.017, respectively). There was also some suggestion that populations with fewer exotic species also experienced increased fertilization success (p = 0.055). Assessment of plant performance within populations suggests that consistent reproductive output of particular individuals within small populations may limit reproductive compatibility within these populations over time. The long-term persistence of many small A. dealbata populations may be jeopardised by low seed set, and limited recruitment and aging stands. Immediate steps are now required to ensure that these populations continue contributing to landscape function by augmenting populations, improving connectivity, and allowing disturbance events that will stimulate recruitment. 相似文献
14.
A. Faye T. Krasova-Wade J. Thioulouse Y. Prin I. Ndoye B. Dreyfus 《Soil biology & biochemistry》2009,41(6):1245-1252
Many fast growing tree species have been introduced to promote biodiversity rehabilitation on degraded tropical lands. Although it has been shown that plant productivity and stability are dependent on the composition and functionalities of soil microbial communities, more particularly on the abundance and diversity of soil symbiotic micro-organisms (mycorrhizal fungi and rhizobia), the impact of tree introduction on soil microbiota has been scarcely studied. This research has been carried in a field plantation of Acacia holosericea (Australian Acacia species) inoculated or not with an ectomycorrhizal fungus isolate, Pisolithus albus IR100. After 7 year's plantation, the diversity and the symbiotic properties of Bradyrhizobia isolated from the plantation soil or from the surrounding area (Faidherbia albida (Del.) a. Chev. parkland) and able to nodulate F. albida, a native Sahelian Acacia species, have been studied. Results clearly showed that A. holosericea modified the structure of Bradyrhizobia populations and their effectiveness on F. albida growth. This negative effect was counterbalanced by the introduction of an ectomycorrhizal fungus, P. albus, on A. holosericea root systems.In conclusion, this study shows that exotic plant species can drastically affect genotypic and symbiotic effectiveness of native Bradyrhizobia populations that could limit the natural regeneration of endemic plant species such as F. albida. This effect could be counterbalanced by controlled ectomycorrhization with P. albus. These results have to be considered when exotic tree species are used in afforestation programs that target preservation of native plants and soil ecosystem rehabilitation. 相似文献
15.
J.M. Scervino A. Gottlieb V.A. Silvani M. Pérgola L. Fernández A.M. Godeas 《Soil biology & biochemistry》2009,41(8):1753-1756
Exudates of a dark septate endophyte (DSE) identified as Dreschlera sp., a common endophyte isolated by the inner cortical cells of the grass Lolium multiflorum, were put in contact with the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea. These exudates stimulated the hyphal length and the hyphal branching of the AMF. A negative effect on the extramatrical phase of the AMF was detected. This is the first report to show how exudates of DSE can affect the development of AMF. These results show that DSE could be modifying the mycorrhizal status of the plants, modulating a different symbiosis in the rhizosphere. 相似文献
16.
There is much concern over the high mortality of many populations of Acacia raddiana, a keystone tree species in the Negev desert of Israel. We used random amplified polymorphic DNA (RAPD) to assess patterns of genetic variation within and among 12 populations of A. raddiana from the Arava (Syrian-African Rift) valley and western Negev. A high level of genetic polymorphism was recorded within populations. An analysis of molecular variance (AMOVA) showed that about 59.4% of total genetic variance occurred among populations, which is considerably greater population differentiation than that recorded for other outbreeding species. Cluster and principal coordinates analyses and AMOVA indicate that the western Negev and Arava valley populations are highly differentiated. We suggest that there may have been two invasions of A. raddiana into Israel: one across the northern Sinai/Gaza Strip area into the western Negev, with some plants reaching the Dead Sea and a second invasion across the southern part of the Sinai peninsula, or even from Saudi Arabia, up to the Arava valley. From the conservation point of view, each population should be conserved separately because they are genetically highly differentiated and loss of any one population would lead to a dramatic loss of genetic variation. The mixing of genetically distinct populations may give rise to outbreeding depression (particularly because of GXE interactions). An obvious first step to the maintenance of this species' genetic diversity is the separate management of the western Negev and Arava valley populations because of their different evolutionary histories. 相似文献
17.
The influence of inoculation of olive trees with arbuscular mycorrhizal (AM) fungi, Glomus (G) intraradices, on microbial communities and sugar concentrations, were examined in rhizosphere of olive trees (Olea europaea L.). Analyses of phospholipid and neutral lipid fatty acids (PLFA and NLFA, respectively) were then used to detect changes in microbial community structure in response to inoculation of plantlets with G. intraradices.Microscopic observations studies revealed that the extraradical mycelium of the fungus showed formation of branched absorbing structures (BAS) in rhizosphere of olive tree. Root colonization with the AM fungi G. intraradices induced significant changes in the bacterial community structure of olive tree rhizosphere compared to non-mycorrhizal plants. The largest proportional increase was found for the fatty acid 10Me18:0, which indicated an increase in the number of actinomycetes in mycorrhizal rhizosphere soil, whereas the PLFAs i15:0, a15:0, i16:0, 16:1ω7 and cy17:0 which were used as indicators of bacteria decreased in mycorrhizal treatment compared to non-mycorrhizal control treatment. A highest concentration of glucose and trehalose and a lowest concentration of fructose, galactose, sucrose, raffinose and mannitol were detected in mycorrhizal rhizosphere soil. This mycorrhizal effect on rhizosphere communities may be a consequence of changes in characteristics in the environment close to mycorrhizal roots. 相似文献
18.
Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and bacteria from the genus Paenibacillus (P. macerans and P. polymyxa) were examined in a greenhouse pot experiment with Cucumis sativus with and without organic matter amendment (wheat bran). P. polymyxa markedly suppressed AM fungus root colonization irrespective of wheat bran amendment, whereas P. macerans only suppressed AM fungus root colonization in combination with wheat bran amendment. Dual inoculation with P. macerans and G. intraradices in combination with wheat bran amendment also caused severe plant growth suppression. Inoculation with G. intraradices was associated with increased levels of dehydrogenase activity and available P in the growth substrate suggesting that mycorrhiza formation accelerated the decomposition of organic matter resulting in mobilization of phosphorus. Inoculation with both Paenibacillus species increased all measured microbial fatty acid biomarkers in the cucumber rhizosphere, except for the AM fungus biomarker 16:1ω5, which was reduced, though not significantly. Similarly, inoculation with G. intraradices increased all measured microbial fatty acid biomarkers in the cucumber rhizosphere, except for the Gram-positive bacteria biomarker 15:0 anteiso, which was overall decreased by G. intraradices inoculation. In combination with wheat bran amendment G. intraradices inoculation caused a 39% reduction in the amount of 15:0 anteiso in the treatment with P. polymyxa, suggesting that G. intraradices suppressed P. polymyxa in this treatment. In conclusion, plant growth promoting species of Paenibacillus may have suppressive effects of AM fungi and plant growth, especially in combination with organic matter amendment. The use of an inert plant growth media in the present study allowed us to study rhizosphere microbial interactions in a relative simple substrate with limited interference from other soil biota. However, the results obtained in the present work mainly show potential interactions and should not be directly extrapolated to a soil situation. 相似文献
19.
Linda M. Broadhurst Andrew G. Young Robert Forrester 《Biological conservation》2008,141(11):2843-2856
Genetic and demographic studies of fragmented populations of common plant species often reveal negative impacts that are likely to constrain persistence. Examining species that are broadly representative of functional groups within fragmented landscapes is one approach to providing a better understanding of how these processes will influence vegetation persistence. Acacias are a significant component of the Australian flora, with Acacia dealbata being a common and representative species of fragmented landscapes across New South Wales. Previous reproductive assessments of fragmented A. dealbata populations indicated significant constraints for small populations through low reproductive output mediated by fertilisation success. This study examined genetic diversity, mating system, and progeny growth parameters of the seed crops produced by these populations to assess whether further constraints to persistence could be detected. Spatially explicit simulation studies were also conducted to assess the persistence likelihood of fragmented populations. Landscape parameters such as population size and plant density were useful predictors for some of the genetic and demographic responses, but a poor response signal was generally observed. Strong evidence for a self-incompatibility mechanism was observed in A. dealbata and is likely to be the major driver of population persistence. Self-incompatibility in small populations limits mate availability and eliminates inbred progeny early in the reproductive cycle leading to poor reproductive output. The simulation data provides further evidence that mate limitation in smaller populations (<200 plants and 40 S alleles) constrains reproductive output and persistence. These data indicate that introducing new germplasm to smaller populations can dramatically improve their persistence likelihood. 相似文献
20.
Elevated aluminum (Al) availability limits plant growth on acidic soils. Although this element is found naturally in soils, acidic conditions create an environment where Al solubility increases and toxic forms of Al impact plant function. Plant resistance to Al is often attributed to organic acid exudation from plant roots and the chelation of cationic Al in the rhizosphere. The association of arbuscular mycorrhizal (AM) fungi with the roots of plants may alleviate Al toxicity by altering soil Al availability or plant exposure through the binding of Al to fungal structures or through the influence of fungi on exudation from roots. Diverse communities of AM fungi are found in soil ecosystems and research suggests that AM fungi exhibit functional diversity that may influence plant performance under varying edaphic environments. In the present study, we evaluated acidic isolates of six AM species in their responses to Al. Andropogon virginicus (broomsedge), a warm-season grass that commonly grows in a range of stressful environments including acidic soils, was used as a plant host for Acaulospora morrowiae, Glomus claroideum, Glomus clarum, Glomus etunicatum, Paraglomus brasilianum, and Scutellospora heterogama. Fungal spores were germinated and exposed to 0 or 100 μM Al on filter paper in sand culture or were grown and exposed to Al in sand culture in association with A. virginicus. Short- and long-term responses to Al were evaluated using direct measurements of fungal spore germination, hyphal elongation, and measurements of A. virginicus colonization and plant growth as a phytometer of AM function in symbio. Spore germination and hyphal elongation varied among AM species in response to Al, but patterns were not consistent with the influences of these AM species on A. virginicus under Al exposure. Exposure to Al did not influence colonization of roots, although large differences existed in colonization among fungal species. Plants colonized by G. clarum and S. heterogama exhibited the least reduction in growth when exposed to Al, produced the highest concentrations of Al-chelating organic acids, and had the lowest concentrations of free Al in their root zones. This pattern provides evidence that variation among AM fungi in Al resistance conferred to their plant hosts is associated with the exudation of Al-binding organic acids from roots and highlights the role that AM fungal diversity may play in plant performance in acidic soil environments. 相似文献