首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plots of a tall fescue (Festuca arundinacea) sward in the south coastal region of BC, Canada, were treated with dairy manure slurry or fertilizer at 50 or 100 kg NH4-N ha−1 up to four times per year for six consecutive years; control plots received no manure or fertilizer. The length of fungal hyphae and abundance of bacterial cells were determined by direct counting at 19 sample dates during the fourth (1997), fifth (1998) and sixth (1999) application years. Bacterial abundance was significantly greater in manured soil than in fertilized and untreated soils. In contrast, hyphal length was significantly greater in untreated soil than in manured and fertilized soils. In subplots that ceased to receive manure in 1998, bacterial abundance remained greater through 1998 and 1999 than in previously fertilized plots, indicating that the 4 year cumulative effect of manure was detectable for at least two growing seasons after applications cease. The apparently negative effect of manure and fertilizer on fungal hyphae also appeared to persist through 2 years after applications ceased. Bacterial abundance increased after an initial application of manure for 1 year to previously untreated plots, but not to levels comparable to plots treated with manure continuously from 1994 to 1998.Increases in bacterial abundance, during the one to three week intervals immediately following individual applications of manure, were inconsistent and other factors, such as soil moisture, temperature and perhaps crop phenology appear to have had strong effects on the timing of these microbial responses. Annual means for bacterial abundance and total microbial biomass in the continuous manure treatment were similar for all 3 years. This suggested that the manure-induced increase in microbial biomass probably reached a plateau between one and 3 years after applications commenced. The large bacterial populations along with abundant carbon substrates in manured soil, relative to fertilized soil, were probably capable of immobilizing influxes of mineral N, explaining the observations that less leaching occured from manured than from fertilized soils.  相似文献   

2.
The effects of clearcut harvesting and fertilization of clearcuts on the structure of nematode communities were assessed at three sites in the southern interior of British Columbia. The Shannon-Weaver and Simpson indices of diversity were greater in clearcuts than in forests. The diversity of the bacterivorous and fungivorous trophic groups were not significantly different between clearcuts and forests, whereas the diversity of omnivorous and predacious nematodes was lower in clearcuts than in forests. The nematode maturity index (MI) was lower in clearcuts than in forests. Several ratios describing the prevalence of enrichment opportunists (the absolute abundance of Rhabditida, the relative abundance of Rhabditida, and the ratio of Aphelenchida/fungivorous nematodes) were greater in clearcuts than in forests. Nematode diversity tended to be lower in fertilizer treatments than in controls within clearcuts, but the effects were not consistent across sample dates. The MI was lower in fertilizer treatments than in controls. All ratios representing the relative abundance of enrichment opportunists were greater in fertilizer treatments than in controls. The MI was negatively correlated with N mineralization in data sets representing forests and fertilized and non-fertilized plots within clearcuts. None of the diversity indices were correlated with N mineralization. The absolute abundance of Rhabditida and the relative abundance of Rhabditida were both consistently positively correlated with N mineralization in the data set representing fertilized and non-fertilized plots within clearcuts, and the absolute abundance of Rhabditida was positively correlated with N mineralization in forests.  相似文献   

3.
Short-term vegetable crop production often involves frequent tillage and other farm activities that results in disturbed soil food web communities. A less disturbed soil community would have a more structured soil food web which contains soil fauna higher up in the food web hierarchy, thus higher integrity in soil nutrient cycling. The objective of this study is to examine if strip-till cover cropping and drenching soil with vermicompost tea could improve soil food web structure in a short-term agroecosystem. Two field trials were conducted in Waialua, HI, USA to evaluate the effect of strip-till planting of sunn hemp (SH, Crotalaria juncea) or crimson clover (Trifolium incarnatum) cover crops in a zucchini (Cucurbita pepo) cropping system. At zucchini planting, each cover crop plot was split to receive four soil treatments: fertilizer (F, chicken pellet), compost tea (CT), fertilizer plus compost tea (F + CT), and none. Compost tea was prepared from chicken manure based vermicompost aerated overnight in water at 1:10 (v:v). Planting of SH increased bacterivorous nematodes and suppressed plant-parasitic nematodes throughout both zucchini cropping cycles, but did not enhance the numbers of omnivorous or predatory nematodes. Crimson clover did not enhance beneficial nematodes nor suppress plant-parasitic nematodes. Adding CT to F suppressed the key plant-parasitic nematodes only at the initial stage of the zucchini growth, increased percentage of predatory or omnivorous nematodes only toward the end of zucchini crops, and increased the structure index at harvest in the first trial. Zucchini yield was increased by planting of SH but not by drenching of CT. Despite the benefits of CT in improving the soil food web structure, a correlation analysis revealed that zucchini yields were correlated to the reduction in the percentage of fungivorous nematodes at planting, an increase in the percentage of bacterivorous nematodes at harvest, and to reduction in the percentage of plant-parasitic nematodes at harvest.  相似文献   

4.
Many studies have examined how human-induced atmospheric changes will influence ecosystems. The long-term consequences of human induced climate changes on terrestrial ecosystems may be determined to a large extend by how the belowground compartment will respond to these changes. In a free-air ozone enrichment experiment running for 5 years, we reciprocally transplanted soil cores from ambient and elevated ozone rings to test whether exposure to elevated ozone results in persistent changes in the soil biota when the plant and soil are no longer exposed to elevated ozone, and how these legacy effects of elevated ozone influenced plant growth as compared to current effects of elevated ozone. After one growing season, the current ozone treatment enhanced plant growth, but in soil with a historical legacy of elevated ozone the plant biomass in that soil was reduced compared to the cores originated from ambient rings. Current exposure to ozone increased the phospholipid fatty acids of actinomycetes and protozoa, however, it decreased dissolved organic carbon, bacterivorous and fungivorous nematodes. Interestingly, numbers of bacterivorous and fungivorous nematodes were enhanced when soils with a legacy of elevated ozone were placed under elevated ozone conditions. We conclude that exposure to elevated [O3] results in a legacy effect in soil. This legacy effect most likely influenced plant growth and soil characteristics via responses of bacteria and fungi, and nematodes that feed upon these microbes. These soil legacies induced by changes in soil biotic community after long-term exposure of elevated ozone can alter the responses of ecosystems to current climatic changes.  相似文献   

5.
《Applied soil ecology》2003,22(1):39-54
A variety of organic materials (e.g. composts, paper recycling wastes, hay) can be used as in-row mulches in perennial horticultural cropping systems such as high density apple orchards. As organic materials with variable properties, such mulches can be expected to have variable effects on structure of the soil food web and mineralisation of N and P in the root zone. The overall objectives of this study were to: (1) assess the effects of a selection of organic mulches on the abundance of protozoa and nematode trophic groups; (2) use the model of Hunt et al. [Biol. Fertil. Soils 3 (1987) 393] to assess the implications of changes in microfaunal abundance for microbial turnover and N mineralisation; and (3) determine effects of the mulches on nematode indicators of increased microbial production/turnover and functional diversity of the soil food web. Organic mulch treatments commenced in 1994 and included shredded office paper, municipal biosolids, shredded paper applied over municipal biosolids, shredded paper applied over municipal compost, alfalfa hay, and black polyethylene fabric. The control was conventional tree-row weed management with glyphosate. Biosolids and municipal compost treatments were re-applied in 1997. Protozoan abundance was determined in 1998, 1999 and 2000. Nematode community structure was assessed in 1998, 1999, and twice in 2000. Nematode community parameters evaluated included: abundance of bacterivorous, fungivorous, omnivorous and predacious nematodes; abundance of the root-lesion nematode, Pratylenchus penetrans; absolute and relative abundances of enrichment opportunist nematodes (Rhabditidae+Diplogasteridae+Panagrolaimidae); Simpson’s diversity; evenness; and the indices of nematode community enrichment (EI) and structure (SI) described by Ferris et al. [Appl. Soil Ecol. 18 (2001) 13]. Measurements of the abundance of enrichment opportunists and the EI were evaluated as indicators of enhanced nutrient fluxes. Diversity and the SI were evaluated as indicators of changes in functional diversity of the soil food web.The abundance of protozoa and bacterivorous nematodes, and estimated fluxes of N and P through the microfauna, were greater under all combinations of biosolids or municipal compost and shredded paper than under the control and plastic mulch. The abundance of enrichment opportunist nematodes and the EI were also consistently greater under combinations of biosolids or municipal compost and shredded paper. The abundance of enrichment opportunists and EI were both also correlated with leaf P, providing additional evidence to support the use of these parameters as indicators of enhanced turnover of microbial biomass and nutrients. The SI was greatest under shredded paper and shredded paper applied over municipal compost, and least under municipal biosolids and alfalfa hay. Population densities of P. penetrans were reduced under shredded paper mulch relative to the control and biosolids alone.  相似文献   

6.
Effects of fungivorous and predatory soil arthropods on free-living nematodes and tardigrades were studied in a factorial microcosm experiment. A stepwise increase in faunal complexity was obtained by adding soil arthropods to defaunated humus samples from an irrigated+fertilized and an untreated stand of Scots pine. The effects were assessed after 103 and 201 days at 15°C and a soil moisture content of 50% water-holding capacity. The study showed that a diverse community of fungivorous arthropods (collembola and oribatid mites), present in numbers similar to those in the field, reduced the abundance of nematodes. A complete community of fungivorous and predatory arthropods (e.g., gamasides, spiders, and cantharid larvae) further strengthened this repressive effect. Certain nematode genera were more affected than others. Tardigrades seemed to be efficient predators on nematodes, but their numbers were, in turn, strongly reduced by predatory arthropods. Because predatory arthropods fed on both nematodes and their tardigrade predators, the impact of arthropod predators on nematode regulation was greater than it appeared to be on the basis of nematode numbers. Humus type also interacted with the other factors. Nematode numbers were initially higher in the untreated humus than in the irrigated+fertilized humus. However, because tardigrade populations increased only in the untreated humus, nematode numbers decreased more in this humus than in the irrigated+fertilized humus. The study demonstrates that nematode abundance can be regulated by a number of types of interacting predators.  相似文献   

7.
Nematode body size is a trait that could be responsive to environmental changes, such as agricultural management practices, and adopted as a standard trait-based indicator in soil community analysis. Our study investigated how body size in the nematode community responded to fertilization in a double-cropping system with paddy rice and upland wheat. Four fertilizer treatments were examined: an unfertilized control (CK), chemical fertilizer (CF), manure plus chemical fertilizer (MCF) and manure plus straw plus chemical fertilizer (MSCF). The community-weighted mean (CWM) of body size was the trait-based indicator used for nematode community analysis. A trend of increasing body size in fertilized plots was observed for most genera, with a relatively small increase in the size of small-bodied bacterivores and fungivores and a relatively large increase in the size of large-bodied omnivores. Fertilized plots had significantly greater CWM of body size than the CK treatment, although total nematode abundance increased significantly in the MSCF treatment only. Discriminant and multiple regression analyses showed that CWM of body size was positively correlated with the soil organic C, total N, available P and available K concentrations, which responded to fertilizer inputs. In contrast, soil fertility was weakly related to total body size in the wheat phase and the following abundance-based indicators: Margalef's richness index, Shannon's diversity index, summed maturity index (∑MI) and enrichment index (EI) in both phases. Since fertilization resulted in larger body size but no other change in the nematode community (i.e. diversity and abundance were generally unaffected by fertilization), this implies that nematodes have a plastic growth habit that does not necessarily result in greater reproduction or fitness of offspring. We suggest that CWM of body size is a reliable trait-based indicator of the soil nematode community response to fertilization, but this requires further testing across a wider range of fertilized agroecosystems.  相似文献   

8.
The impacts of waste crumb rubber soil amendment on nematode abundance, community structure and soil characteristics were studied in pot grown Lolium perenne L. Three treatments, no crumb rubber (CK), 10% and 15% crumb rubber (CR), were arranged in a randomized complete design. After 3 months’ turfgrass growth, soil nematodes were extracted and identified to genus level, and populations of total, bacterivorous, fungivorous, omnivorous, predatory and plant parasite nematodes were counted. Genus diversity, richness, evenness, plant parasite index (PPI) and maturity index (MI) were calculated to compare nematode community structure. Thirteen genera of soil nematodes in all treatments were identified, of which Helicotylenchus was dominant. Crumb rubber incorporation significantly decreased plant parasite and omnivorous nematode populations, but increased the abundance of predatory nematodes. However, fungivorous and bacterivorous nematode populations were not significantly affected by crumb rubber amendment. Pots treated with 15% CR had the lowest number of plant parasite, omnivorous nematodes and the highest number of fungivorous, predatory nematodes. Shannon's diversity index (H′), evenness (J′), PPI and PPI/MI reduced in pots receiving crumb rubber, whereas dominace (λ) and maturity index (MI) increased in crumb rubber treatments. In addition, CR application decreased soil bulk density and pH value, but increased soil moisture.  相似文献   

9.
为探究蚓粪和益生菌互作对大棚番茄地土壤线虫数量和群落结构的影响,设置CF(单施化肥)、CF+BM(化肥配施巨大芽孢杆菌)、CF+BA(化肥配施解淀粉芽孢杆菌)、VC(单施蚓粪)、VC+BM(蚓粪配施巨大芽孢杆菌)和VC+BA(蚓粪配施解淀粉芽孢杆菌)6个处理。结果表明:与单施化肥相比,单施蚓粪有助于土壤线虫数量的提高,而蚓粪配施益生菌相比单施蚓粪对线虫数量的提高更加显著;化肥配施益生菌在盛花期时对土壤线虫数量提高不显著,收获期时有显著提高但效果不及蚓粪配施益生菌。单施化肥或蚓粪提高了植食性线虫短体属(Pratylenchus)的相对丰度,且单施蚓粪提高幅度显著高于单施化肥。与单施化肥相比,单施蚓粪显著降低了食细菌线虫比例,而化肥配施益生菌显著降低了食细菌线虫和植食性线虫比例,增加了食真菌线虫比例。蚓粪配施益生菌相比单施蚓粪显著增加了食细菌和食真菌线虫比例,降低了植食性和捕杂食性线虫比例。与单施化肥或蚓粪相比,蚓粪配施益生菌对瓦斯乐斯卡指数(WI)、食真菌线虫与食细菌线虫比率(F/B)和植食性线虫成熟指数(PPI)均能够产生积极影响,且效果优于化肥配施益生菌。综合比较可以发现,与单施化肥或蚓粪相比,蚓粪配施益生菌能够减缓植食性线虫增长,土壤环境和线虫群落趋于健康和稳定,是值得推荐的施肥方式。  相似文献   

10.
We studied the effect of five fertilizers (including two adjusted manure slurries) and an untreated control on soil biota and explored the effect on the ecosystem services they provided. Our results suggest that the available N (NO3 and NH4+) in the soil plays a central role in the effect of fertilizers on nematodes and microorganisms. Microorganisms are affected directly through nutrient availability and indirectly through grass root mass. Nematodes are affected indirectly through microbial biomass and grass root mass. A lower amount of available N in the treatment with inorganic fertilizer was linked to a higher root mass and a higher abundance and proportion of herbivorous nematodes. A higher amount of available N in the organic fertilizer treatments resulted in a twofold higher bacterial activity (measured as bacterial growth rate, viz. thymidine incorporation), a higher proportion of bacterivorous nematodes, a 30% higher potential N mineralization (aerobic incubation), and 25–50% more potentially mineralizable N (anaerobic incubation). Compared to inorganic fertilizer, organic fertilization increased the C total, the N total, the activity of decomposers, and the supply of nutrients via the soil food web. Within the group of organic fertilizers, there was no significant difference in C total, abundances of soil biota, and the potential N mineralization rate. There were no indications that farmyard manure or the adjusted manure slurries provided the ecosystem service “supply of nutrients” better than normal manure slurry. Normal manure slurry provided the highest bacterial activity and the highest amount of mineralizable N and it was the only fertilizer resulting in a positive trend in grass yield over the years 2000–2005. The number of earthworm burrows was higher in the treatments with organic fertilizers compared to the one with the inorganic fertilizer, which suggests that organic fertilizers stimulate the ecosystem service of water regulation more than inorganic fertilizer. The trend towards higher epigeic earthworm numbers with application of farmyard manure and one of the adjusted manure slurries, combined with the negative relation between epigeic earthworms and bulk density and a significantly lower penetration resistance in the same fertilizer types, is preliminary evidence that these two organic fertilizer types contribute more to the service of soil structure maintenance than inorganic fertilizer.  相似文献   

11.
氮肥和羊粪对内蒙古典型草原土壤多糖含量及组成的影响   总被引:1,自引:0,他引:1  
采用三氟乙酸(TFA)水解、糖醇乙酸酯衍生、气相色谱法测定土壤多糖含量,研究了内蒙古羊草草原围栏封育并连续5年施用氮肥和羊粪的表层土壤的多糖含量和组成特征。结果表明:长期施用氮肥显著降低土壤多糖含量6%~19%;施用羊粪显著提高土壤多糖含量20%。施氮肥或羊粪都降低了(半乳糖+甘露糖)(/阿拉伯糖+木糖)(GM/AX)和甘露糖/木糖(M/X)的比例,表明施肥降低了微生物多糖对土壤多糖的贡献,但是施氮肥的土壤降低幅度大于施羊粪的土壤。这表明,长期施氮肥和羊粪都将改变土壤多糖含量和组成。  相似文献   

12.
The effect of soil microarthropods and enchytraeids on the decomposition of wheat straw in buried litterbags was studied by selective admission and exclusion. Litterbags with 20 m mesh size admitted nematodes, but excluded microarthropods, although temporarily. After 27 weeks of incubation part of these litterbags were colonized, probably through egg-deposition of mainly fungivorous Collembola and mites. When litterbags with a complete microarthropod community (1.5 mm mesh size) were compared to litterbags with strongly reduced microarthropod numbers (20 m mesh size), no differences between decomposition rates were found. However, in colonized 20-m mesh bags, we found reduced decomposition rates compared to the coarse mesh litterbags, probably due to overgrazing of the fungal population by large numbers of fungivorous microarthropods. These large numbers might be caused by the absence of predators. Extraction of microarthropods as well as enchytraeids and nematodes from the coarse mesh litterbags showed a distinct succession during decomposition. The decomposition process was dominated in the first phase by bacterivorous nematodes, nematophagous and bacterivorous mites, and in the later phase by fungivorous nematodes, fungivorous and omnivorous mites and Collembola, and predatory mites. This succession is indicative of a sequence from bacterial to fungal dominated decomposition of the buried organic matter. The results indicate that the decomposition rate is predator controlled.  相似文献   

13.
We tested a hypothesis that the effects of defoliation on plants and soil organisms vary with the number of successive defoliations. We established a 23-week greenhouse experiment using replicated grassland microcosms that were composed of three plant species, Trifolium repens, Plantago lanceolata and Phleum pratense, growing together in grassland soil with a diverse soil community. The experiment consisted of two treatment factors-defoliation and harvest time-in a fully factorial design. The defoliation treatment had two levels, i.e. no trimming and trimming of plants every 2 weeks, and the harvest time five levels, i.e. harvests after 1-3, 5 and 7 trimmings. Shoot production (trimmed plus harvested shoot mass), harvested shoot and root mass and root N and C concentrations increased with time but were reduced by defoliation. Colonization rates of arbuscular mycorrhizal (AM) fungi decreased with time in T. repens roots but were enhanced by defoliation, whereas AM colonization rates in P. pratense roots were not affected by harvest time or defoliation. The abundance of bacterivorous and fungivorous nematodes decreased and that of herbivorous and predatory nematodes increased with time, while the abundance of omnivorous nematodes and detritivorous enchytraeids varied in time without a linear trend. Defoliation had no effect on fungivores and predators but increased the abundance of bacterivores. Defoliation also increased the abundance of herbivores, omnivores and detritivores after 2 trimmings and that of omnivores and detritivores after 5 trimmings, but had a negative effect on omnivores after 3 trimmings and on herbivores after 7 trimmings. Among nematode genera, some deviation from the trophic group responses existed: for instance, defoliation reduced the abundance of bacterivorous Acrobeloides spp. and did not affect the abundance of herbivorous Filenchus spp. and Paratylenchus spp. Our results show that the effects of defoliation on plants, AM fungi and some soil animal trophic groups may remain constant all the way through several defoliations, whereas other animal trophic groups may have different and even opposite responses to defoliation depending on the length of the defoliation period before monitoring. This shows how separate studies with defoliation periods of different length can produce contradictory results of the effects of defoliation on the abundance of soil animals.  相似文献   

14.
Cover crops are increasingly being used in agriculture, primarily for weed or erosion management. The addition of cover crops increases the primary productivity of the system and diversifies basal resources for higher trophic levels. How increases in the quality and quantity of basal resources affect bottom-up and top-down control remains a key question in soil food web ecology. We evaluated the response of the nematode community to the introduction of cover crops between rows of a banana plantation. We measured changes in nematode food web structure and inferred the prevalence of bottom-up and top-down effects on the abundance of phytophagous nematodes (i.e., plant-feeding and root-hair-feeding species) 1.5 years after plots with cover crops (Poaceae or Fabaceae species) or bare soil were established. The addition of a cover crop greatly affected the structure and the abundance of the soil nematode community 1.5 years after planting. The abundance of all trophic groups except for plant-feeding nematodes tended to increase with the addition of cover crops. The Shannon–Weaver diversity index and the enrichment index increased with the addition of cover crops, indicating that opportunistic, bacterivorous and fungivorous nematodes benefited from the added resources. Plant-feeding nematodes were least abundant in plots with Poaceae cover crops, while bacterivorous, omnivorous, and root-hair-feeding nematodes were more abundant with Fabaceae cover crops than with bare soil, indicating that cover crop identity or quality greatly affected soil food web structure. Bottom-up effects on all trophic groups other than plant-feeding nematodes were evident with Poaceae cover crops, suggesting an top-down control of plant-feeding nematodes by omnivorous nematodes. Conversely, plant-feeding nematodes were evidently not suppressed in Fabaceae cover crops, perhaps because bottom-up effects on omnivorous nematodes were weaker (hence, top-down control by omnivorous nematodes was weaker), and because Fabaceae cover crops probably served as good hosts for some plant-feeding nematodes.  相似文献   

15.
Summary Protozoa (testate amoebae, ciliates), small metazoa (rotifers, nematodes), and soil enzymes (catalase, cellulase) were investigated in a reafforested fertilized site at the alpine timberline. Side-dressings of mineral and organic fertilizers were applied alone (90 g NPK; 90, 180, 300, and 450 g dried bacterial biomass per spruce seedling) and in combination with magnesite (90 g NPK+300 g Mg; 90, 180, and 300 g bacterial biomass + 300 g Mg each; 30 g dried fungal biomass + 270 g Mg). One-third of each quantity was applied in 1986, and two-thirds in 1988. None of the treatments caused a significant decrease in the biological parameters investigated in comparison with untreated controls. The soil life was more or less stimulated depending on the amount of organic material contained in the fertilizers and the quantity; 180–270 g organic material per seedling proved to be the most effective. Dried bacterial biomass increased the pH by about 0.5 units, catalase activity by about 70%, and the number of ciliates and nematodes by 150–400%. The ciliate biomass and the number of ciliate species were likewise increased. The organomineral fertilizers increased pH by up to two units and also stimulated the soil life, but where the organic content was less than 180 g per seedling, efficiency decreased markedly. The least biological activity was observed in the control soil and in soil fertilized with NPK. Testaceans, rotifers, and cellulolytic activities were only slightly (insignificantly) affected by the treatments. A pooled evaluation of the data (organic versus organomineral versus mineral treatments) and community analyses showed that the organic fertilizer caused a more pronounced increase in the soil life and greater changes in community structure than the mineral combinations. Two years after application of the fertilizers, the differences between the treatments and the unfertilized controls had diminished.  相似文献   

16.
The introduction of N2-fixing white clover (Trifolium repens) in grassland is a management measure that may contribute to sustainable grassland systems by making them less dependent on inorganic fertilizers. However, little is known about the impact of this measure on soil biota and ecosystem services. We investigated earthworms, nematodes, bacteria and fungi in an experiment in which white clover-only and a mixture of grass and white clover without fertilization were compared with grass-only with and without fertilization.In comparison with grass-only, white clover-only had a lower total root biomass and a lower C/N-ratio in the above- and below-ground plant biomass. These plant characteristics resulted in a lower bacterial biomass, a lower fungal biomass, a higher proportion of bacterivorous nematode dauerlarvae, a lesser proportion of herbivorous nematodes and a greater abundance of earthworms in clover-only.The quantity and quality (C/N-ratio) of the above- and below-ground plant biomass in the mixture of grass and white clover (20–30% clover in the DM) was comparable with grass fertilized with 150 kg N ha−1 of inorganic fertilizer. Differences between these treatments might show specific clover effects in the grass–clover mixture on soil biota other than quantity and C/N-ratio of the litter. However, the only differences were a higher proportion of bacterivorous nematode dauerlarvae and a different nematode community composition in grass–clover.The soil structure in white clover-only showed a higher proportion of angular blocky elements, a lower penetration resistance, a higher number of earthworm burrows, a higher potential N-mineralization and respiration than the soil in grass-only. This suggests that clover stimulates the ecosystem services of water infiltration and supply of nutrients, but is less conducive to soil structure maintenance. The grass–clover mixture differed from grass-only in a higher respiration and from clover-only in a higher percentage of soil crumbs. We suggest that when clover is introduced in grassland to reduce the reliance on inorganic fertilizer, the mixture of grass and clover maintains the positive impact of grass roots on soil structure and increases the supply of nutrients via the soil food web. Thus, a grass–clover mixture combines the agronomic benefits of the two plant types.  相似文献   

17.
To test a hypothesis that the effects of defoliation on plant ecophysiology and soil organisms depend on the timing of defoliation within a growing season, we established a greenhouse experiment using replicated grassland microcosms. Each microcosms was composed of three plant species, Trifolium repens, Plantago lanceolata and Phleum pratense, growing in grassland soil with a diverse soil community. The experiment consisted of two treatment factors—defoliation and plant growth phase (PGP)—in a fully factorial design. Defoliation had two categories, i.e. no trimming or trimming a total of four times at 2 week intervals. The PGP treatment had four categories, i.e. 1, 3, 7 or 13 weeks growth following planting before the first defoliation (subsequently referred to as PGP1, PGP2, PGP3 and PGP4, respectively). In each PGP treatment category, microcosms were harvested 1 week after the final defoliation. Harvested shoot and root mass and total shoot production (including trimmed and harvested shoot mass) increased with time and were lower in defoliated than in non-defoliated systems. The fraction of root biomass of harvested plant biomass decreased with time but was increased by defoliation at PGP3 and PGP4. The proportion of T. repens in total shoot production increased and those of P. lanceolata and P. pratense decreased with time. Defoliation increased the proportions of P. lanceolata and P. pratense in total shoot production at PGP3 and PGP4. Root N and C concentrations increased and root C-to-N ratio decreased with time in non-defoliated systems. Defoliation increased root N concentration by 38 and 33% at PGP1 and PGP2, respectively, but decreased the concentration by 22% at PGP4. In contrast, defoliation reduced root C concentration on average by 1.5% at each PGP. As with the effects on root N concentration, defoliation decreased the root C-to-N ratio at PGP1 and PGP2 but increased the ratio at PGP4. Among soil animal trophic groups, the abundance of herbivorous nematodes was higher at PGP4 than at PGP1-3 and that of predacious nematodes higher at PGP2-4 than at PGP1, while the abundance of bacterivorous, fungivorous and omnivorous nematodes and that of detritivorous enchytraeids did not differ between the PGP categories. Among bacterivorous nematodes, however, Acrobeloides, Chiloplacus and Protorhabditis species decreased and that of Plectus spp. increased with time. Defoliation did not affect the abundance of soil animal trophic groups, but reduced the abundance of herbivorous Coslenchus spp. at each PGP and raised the abundance of herbivorous Rotylenchus spp. and bacterivorous Eucephalobus spp. at PGP4. Confirming our hypothesis, the results suggest that the effects of defoliation on the attributes of grassland plants, such as biomass allocation between roots and shoots and root quality, may depend on the timing of defoliation within a growing season. However, contradicting our hypothesis, the results suggest that significant changes in plant attributes after defoliation may not always lead to substantial changes in the abundance of belowground organisms.  相似文献   

18.
Most studies of the effects of manure amendment on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in soil employ the investigation of grab samples or short-term laboratory studies. However, the effects of long-term manure applications on antibiotics, ARGs and their vertical distribution in paddy soil in field experiments are lacking. We assessed the concentrations of antibiotics, ARGs and their vertical distribution in paddy soil receiving long-term manure applications in four field experiments. High concentrations of tetracyclines were detected in most manured soils, while sulfonamides were not detectable. Long-term manure amendments generally increased the antibiotic concentrations and ARGs abundances in the paddy soil over decades. However, in some sites such significant trends of ARGs could not be observed. The abundance of ARGs was statistically correlated with antibiotics and soil properties including pH and soil organic matter (SOM), indicating their importance in the selection of resistance genes. Tetracyclines could be detected in soil at different depths and the concentrations of tetracyclines and abundance of ARGs generally decreased with increasing soil depths.  相似文献   

19.
The quality of plant material affects the vigor of the decomposition process and composition of the decomposer biota. Root residues from hairy vetch (Vicia villosa Roth), rye (Secale cereale L.) and vetch+rye, packed in litterbags were placed in pots of soil at 15 C and the content of the bags was analyzed after 2, 4, 8 and 12 weeks. Bacterial biomass did not differ between residues with contrasting composition. Among bacterivores groups of nematodes that require high bacterial production dominated in fast decomposing resources whereas flagellates with smaller requirements prevail in slower decomposing resources. Biomass of bacterial feeding nematodes correlated positively with early phase (0-2 wk) decomposition that increased in the order: rye< vetch+rye<vetch. Bacterial biomass therefore seems to be under top-down (predation) control during early decomposition. In contrast, the fungal biomass differed between resources with highest values for rye. Moreover, this increase in fungal biomass occurred later during succession and was correlated with decomposition activity for rye in that period. Fungal biomass therefore seems to be under bottom-up (resource) control. The composition of the nematode assemblages (composed of 25 taxa) showed a clear relationship to initial plant resource quality as well as decomposition phase. Early successional microbivorous nematodes vary according to resource quality with demanding bacterivores+predators (Neodiplogasteridae) dominating in vetch and less demanding bacterivores (Rhabditidae) and fungivores (Aphelenchus) being equally common in vetch and rye. Later in the succession (2-4 wk) bacterivorous Cephalobidae and fungivorous Aphelenchoides prevailed similarly on the different root materials whereas bacterivorous protozoa and the amoebal fraction thereof dominated in rye. At week 12 no species dominated the nematode assemblages that were similar between the resources. The differences between nematode assemblages among plant resources at 2 week were similar to the results of a field study sampled after 6 weeks with the same soil and plant resources. This lends support to the relevance of the successional patterns observed in this incubation study.  相似文献   

20.
It has been well documented that organic amendment affects soil nematode community structure. However, little is known about the effect of organic amendment amount on soil nematodes. To assess the effect of the amount of organic amendments on soil nematode community structure and metabolic activity, the community composition, abundance, and metabolic footprints of soil nematodes were determined in a long-term field experiment with various amounts of organic amendment in Northeast China. Fertilization treatments included an unfertilized control (CK), chemical fertilizer without manure amendment (OM0), manure applied at 7.5 Mg ha-1 plus chemical fertilizer (OM1), and manure applied at 22.5 Mg ha-1 plus chemical fertilizer (OM2). A total of 46 nematode genera were found. Treatments with the largest amount of organic amendment had the smallest number of plant parasite genera (5), but a largest number of dominant genera (7). Soil nematodes, bacterivores, and fungivores were the most abundant in OM2, followed by OM1, and the lowest in OM0 and CK. Organic amendment increased the enrichment index (EI), and the large amount of organic amendment increased the metabolic footprints of bacterivore (Baf) and fungivore (Fuf) and enrichment footprint (Ef). The relationships between Baf (or Fuf) and the increases in soil organic carbon (ΔSOC) and total nitrogen (ΔTN) were stronger than those of bacterivore (or fungivore) abundance with ΔSOC and ΔTN, except for the relationship between bacterivore abundance and ΔSOC. The EI and Ef were positively correlated with ΔSOC and ΔTN. These findings suggest that the amount of organic amendment affects soil nematode activity and function at entry levels in soil food web, and that metabolic footprints of soil nematodes may be better indicators than their abundances in assessing their relationships with soil nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号