首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
Substrate quality and decomposition (measured as CO2 release in laboratory microcosms) of fresh leaf litter and fine roots of Cupressus lusitanica, Pinus patula, Eucalyptus grandis and native forest trees were studied. Changes in litter chemistry in each forest stand were analysed by comparing fresh leaf litter (collected from trees) and decomposed litter from the forest floor. Elemental concentrations, proximate fractions including monomeric sugars, and cross polarisation magic-angle spinning (CPMAS) 13C NMR spectra were analysed in leaf litters, decomposed litter and fine roots. Leaf litters and fine roots varied in their initial substrate chemistry with Ca concentration in leaf litters being higher than that in fine roots. In each stand, fine roots had a higher acid unhydrolysable residue (AUR) (except for the Pinus stand), higher holocellulose concentration and lower concentration of water-soluble extractives (WSE) and dichloromethane extractives (NPE) than fresh leaf litter. Likewise, 13C NMR spectra of fine roots showed lower alkyl and carboxyl C, and higher phenolic (except P. patula), aromatic and O-alkyl C proportions than leaf litters. Compared with fresh leaf litter, decomposed litter had lower concentrations of potassium, holocellulose, WSE, NPE, arabinose and galactose, similar or higher concentrations of Mg, Ca, S and P, and higher concentrations of N and AUR. CPMAS 13C NMR spectra of decomposed litter showed a higher relative increase in signal intensity due to methoxyl C, aromatic C, phenolic C and carboxylic C compared with alkyl C. In a microcosm decomposition study, the proportion of initial C remaining in leaf litter and fine roots significantly fitted an exponential regression model. The decomposition constants (k) ranged between 0.0013 and 0.0030 d−1 for leaf litters and 0.0010-0.0017 d−1 for fine roots. In leaf litters there was a positive correlation between the k value and the initial Ca concentration, and in fine roots there was an analogous positive correlation with initial WSE. Leaf litters decomposed in the order Cupressus>native forest>EucalyptusPinus, and fine roots in the order Pinus>native forest>CupressusEucalyptus. In each stand the fine root decomposition was significantly lower than the leaf litter decomposition, except for the P. patula stand where the order was reversed.  相似文献   

3.
Recent studies have demonstrated that mass loss, nutrient dynamics, and decomposer associations in leaf litter from a given plant species can differ when leaves of that species decay alone compared to when they decay mixed with other species’ leaves. Results of litter-mix experiments have been variable, however, making predictions of decomposition in mixtures difficult. It is not known, for example, whether interactions among litter types in litter mixes are similar across sites, even for litter mixtures containing the same plant species. To address this issue, we used reciprocal transplants of litter in compartmentalized litterbags to study decomposition of equal-mass litter mixtures of sugar maple (Acer saccharum Marshall) and red oak (Quercus rubra L.) at four forest sites in northwestern Connecticut. These species differ significantly in litter quality. Red oak always has higher lignin concentrations than maple, and here C:N is lower in oak leaves and litter, a pattern often observed when oak coexists with maple. Overall, we observed less mass loss and lower N accumulation in sugar maple and red oak litter mixtures than we predicted from observed dynamics in single-species litterbags. Whether these differences were significant or not depended on the site of origin of the leaves (P<0.02), but there was no significant interaction between sites of decay and the differences in observed and predicted decomposition (P>0.2) . Mixing of leaf litter types could have significant impacts on nutrient cycling in forests, but the extent of the impacts can vary among sites and depends on the origin of mixed leaves even when the species composition of mixes is constant.  相似文献   

4.
Plant litter and fine roots are important carbon (C) inputs to soil and a direct source of CO2 to the atmosphere. Solid-state carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy was used to investigate the nature of C changes during decomposition of plant litter and fine roots of mulga (Acacia aneura F. Muell. Ex. Benth.), wheat (Triticum aestivum L.), lucerne (Medicago sativa) and buffel grass (Cenchrus ciliaris) over an 18-month period. Alkyl C was closely associated with total N concentrations in all litter materials during decay and as alkyl C increased so did total N, indicating an increase in refractory biomacromolecules. Mulga phyllodes had the greatest alkyl C concentration of all litter and fine root materials, and also exhibited the NMR peaks assigned to tannins that may slow or hinder decomposition rates and nitrification. Mulga litter and fine roots decomposed slower than all other litter materials and the soil under mulga had the highest soil C concentration, indicating slower CO2 release. The alkyl C-to-O-alkyl C ratio is generally used as an index of the extent of decomposition, but is not useful for the decay of woody components. Of all the NMR ratios studied that may indicate the extent of decomposition, the carbohydrate C-to-methoxyl C ratio proved to have the strongest and most consistent relationship with decay time, fraction of mass remaining and total C, even though increases in alkyl C were observed with decreases in carbohydrate C.  相似文献   

5.
Invasive earthworms can have significant impacts on C dynamics through their feeding, burrowing, and casting activities, including the protection of C in microaggregates and alteration of soil respiration. European earthworm invasion is known to affect soil micro- and mesofauna, but little is known about impacts of invasive earthworms on other soil macrofauna. Asian earthworms (Amynthas spp.) are increasingly being reported in the southern Appalachian Mountains in southeastern North America. This region is home to a diverse assemblage of native millipedes, many of which share niches with earthworm species. This situation indicates potential for earthworm-millipede competition in areas subject to Amynthas invasion.In a laboratory microcosm experiment, we used two 13C enriched food sources (red oak, Quercus rubra, and eastern hemlock, Tsuga canadensis) to assess food preferences of millipedes (Pseudopolydesmus erasus), to determine the effects of millipedes and earthworms (Amynthas corticis) on soil structure, and to ascertain the nature and extent of the interactions between earthworms and millipedes. Millipedes consumed both litter species and preferred red oak litter over eastern hemlock litter. Mortality and growth of millipedes were not affected by earthworm presence during the course of the experiment, but millipedes assimilated much less litter-derived C when earthworms were present.Fauna and litter treatments had significant effects on soil respiration. Millipedes alone reduced CO2 efflux from microcosms relative to no fauna controls, whereas earthworms alone and together with millipedes increased respiration, relative to the no fauna treatment. CO2 derived from fresh litter was repressed by the presence of macrofauna. The presence of red oak litter increased CO2 efflux considerably, compared to hemlock litter treatments.Millipedes, earthworms, and both together reduced particulate organic matter. Additionally, earthworms created significant shifts in soil aggregates from the 2000-250 and 250-53 μm fractions to the >2000 μm size class. Earthworm-induced soil aggregation was lessened in the 0-2 cm layer in the presence of millipedes. Earthworms translocated litter-derived C to soil throughout the microcosm.Our results suggest that invasion of ecosystems by A. corticis in the southern Appalachian Mountains is unlikely to be limited by litter species and these earthworms are likely to compete directly for food resources with native millipedes. Widespread invasion could cause a net loss of C due to increased respiration rates, but this may be offset by C protected in water-stable soil aggregates.  相似文献   

6.
We investigated contributions of leaf litter, root litter and root-derived organic material to tundra soil carbon (C) storage and transformations. 14C-labeled materials were incubated for 32 weeks in moist tussock tundra soil cores under controlled climate conditions in growth chambers, which simulated arctic fall, winter, spring and summer temperatures and photoperiods. In addition, we tested whether the presence of living plants altered litter and soil organic matter (SOM) decomposition by planting shoots of the sedge Eriophorum vaginatum in half of the cores. Our results suggest that root litter accounted for the greatest C input and storage in these tundra soils, while leaf litter was rapidly decomposed and much of the C lost to respiration. We observed transformations of 14C between fractions even when total C appeared unchanged, allowing us to elucidate sources and sinks of C used by soil microorganisms. Initial sources of C included both water soluble (WS) and acid-soluble (AS) fractions, primarily comprised of carbohydrates and cellulose, respectively. The acid-insoluble (AIS) fraction appeared to be a sink for C when conditions were favorable for plant growth. However, decreases in 14C activity from the AIS fraction between the fall and spring harvests in all treatments indicated that microorganisms consumed recalcitrant C compounds when soil temperatures were below 0 °C. In planted leaf litter cores and in both planted and unplanted SOM cores, the greatest amounts of 14C at the end of the experiment were found in the AIS fraction, suggesting a high rate of humification or accumulation of decay-resistant plant tissues. In unplanted leaf litter cores and planted and unplanted root litter cores most of the 14C remaining at the end of the experiment was in the AS fraction suggesting less extensive humification of leaf and root detritus. Overall, the presence of living plants stimulated decomposition of leaf litter by creating favorable conditions for microbial activity at the soil surface. In contrast, plants appeared to inhibit decomposition of root litter and SOM, perhaps because of microbial preferences for newer, more labile inputs from live roots.  相似文献   

7.
We examined whether grass species and soil nitrogen (N) availability could enhance Carbon (C) and N turnover during root litter decay in grassland. Three species with increasing competitiveness (Festuca ovina, Dactylis glomerata and Lolium perenne) were grown at two N fertiliser levels in an undisturbed grassland soil, in which soil organic fractions derived for the last 9 years from Lolium root litter which was 13C-depleted. During the subsequent experimental year, the C turnover was calculated using the respective δ13C values of the old and new C in the root phytomass, in two Particulate Organic Matter (POM) fractions above 200 μm and in the lightest part of the aggregated soil fraction between 50 and 200 μm. Soil N availability was monitored during the regrowth periods with ion exchange resins (IER). The C decay rates of each particle size fraction were calculated with a simple mechanistic model of C dynamics. The N mineralisation immobilisation turnover (MIT) was characterised by dilution of 15N-labelled fertiliser in the N harvestThe C:N ratio and the residence time of C in the fractions decreased with particle size. The presence of a grass rhizosphere increased the decay rate of old C. Accumulation of new C in particle size fractions increased with species competitiveness and with N supply. Species competitiveness increased C turnover in the aggregated fraction, as a result of greater accumulation of new C and faster decay of old C. Fertiliser N increased N turnover and C mineralisation in the SOM. Species competitiveness decreased soil -N exchanged with the IER and increased dissolved organic C (DOC) content. The nature of the current rhizosphere is thus an important factor driving C and N transformations of the old root litter, in relation with grass species strategy. Plant competitiveness may stimulate the C and N turnover in the more evolved SOM fractions in a similar way to the mineral N supply.  相似文献   

8.
Due to current predictions for Central Europe that forecast higher frequencies of hot and dry summers, Mediterranean drought-tolerant oak species are being evaluated as future forest trees for German forest sites that are becoming increasingly damaged by water deficit. As a result of planting foreign tree species, the leaf litter composition and thus the food resources of native saprophagous macroarthropods will change, possibly altering primary decomposition processes. Therefore, experiments concerning the acceptance and palatability of introduced versus native litter for native isopods were undertaken. Consumption rates of four native isopod species (Porcellio scaber, Oniscus asellus, Trachelipus rathkii, Trachelipus ratzeburgii) were investigated in laboratory choice tests with introduced (Quercus pubescens, Quercus frainetto, Quercus ilex) and comparable native (Fagus sylvatica, Quercus robur) leaf litter. Litter was characterized by measurement of C/N-ratios and lignin content. Although species-specific preferences of isopods could be observed in the experiments, Mediterranean oak litter was consumed by all investigated species. Furthermore, two isopod species even preferred the leaf litter of the introduced Q. ilex. Compared to native beech or oak litter, litter from these introduced tree species thus apparently do not negatively influence the consumption rates of terrestrial isopods. Possible reasons for the determined preferences are discussed.  相似文献   

9.
The soil animal food web has become a focus of recent ecological research but trophic relationships still remain enigmatic for many taxa. Analysis of stable isotope ratios of N and C provides a powerful tool for disentangling food web structure. In this study, animals, roots, soil and litter material from a temperate deciduous forest were analysed. The combined measurement of δ15N and δ13C provided insights into the compartmentalization of the soil animal food web. Leaf litter feeders were separated from animals relying mainly on recent belowground carbon resources and from animals feeding on older carbon. The trophic pathway of leaf litter-feeding species appears to be a dead end, presumably because leaf litter feeders (mainly diplopods and oribatid mites) are unavailable to predators due to large size and/or strong sclerotization. Endogeic earthworms that rely on older carbon also appear to exist in predator-free space. The data suggest that the largest trophic compartment constitutes of ectomycorrhizal feeders and their predators. Additionally, there is a smaller trophic compartment consisting of predators likely feeding on enchytraeids and potentially nematodes.  相似文献   

10.
We investigated the nitrogen source for main taxa of soil fauna in two beech forests of contrasted humus type using 15N-labelled beech litter and 15N analysis of soil fauna. 15N-labelled beech litter was deposited on the topsoil in December 2000 in four stands of different ages at Leinefelde (Germany) with mull humus and in one mature stand at Sorø (Denmark) with moder humus. The fate of the tracer isotope was measured in litter and soil, as well as in the soil fauna, and for each taxa, we calculated the proportion of N in the animal derived from the labelled substrate. Of the original N contained in the litter, 20-41% was lost after 9 months at Leinefelde, and only 10% at Sorø. This loss was counterbalanced by the incorporation of 24-31% external N at Leinefelde, and 31% at Sorø, partly originating from fungal colonisation of the added litter. The proportion of N assimilated from the labelled litter by the different soil animals varied in relation to their mobility and feeding preferences. Large and mobile soil animals, especially predators, derived on average less 15N because they were also able to feed outside the labelled litter boxes. Detritivores assimilated at most 15% of their nitrogen content at Leinefelde and 11% at Sorø from the decomposing labelled litter. The most labelled taxa at Leinefelde were small fungivorous and coprophagous species, mainly isotomid Collembola such as Isotomiella and Folsomia. At Sorø, best labelled taxa were saprophagous species such as Enchytraeidae, Glomeridae and Phthiracaroidea. These low rates of 15N assimilation indicate that fresh litter is not directly the main N source for soil animals. The results obtained suggest that soil fauna fed preferentially upon microorganisms colonising the litter at Leinefelde (mull) and from litter itself at Sorø (moder).  相似文献   

11.
The present study was designated to evaluate the relative effects of litter depth and decomposition stage of needles on fungal colonization of needle litter in field experiments. The experiment was carried out in coniferous temperate forests in central Japan. Needle litter of Chamaecyparis obtusa and Pinus pentaphylla var. himekomatsu at two decomposition stages (recently dead and partly decomposed) were placed into the organic layer at two depths (on the surface of and beneath the litter layer). Fungal colonization of needles after 1 year was examined in terms of hyphal abundance and frequency of fungal species. Total and live hyphal length on needles were affected by the litter depth and (or) the decomposition stage of needles. Length of darkly pigmented hyphae on needles was 1.7-2.6 times greater beneath the litter layer than on the litter surface regardless of the decomposition stage of needles. Length of clamp-bearing hyphae in Pinus pentaphylla was 5.0-5.2 times greater in partly decomposed needles than in recently dead needles regardless of the litter depth. Frequencies of Pestalotiopsis spp. and Cladosporium cladosporioides were higher on recently dead needles than on partly decomposed needles and (or) were higher on the litter surface than beneath the litter layer. Frequencies of Trichoderma, Penicillium, and Umbelopsis species generally were higher on partly decomposed needles than on recently dead needles and were higher beneath the litter layer than on the surface.  相似文献   

12.
Cellulose and lignin degradation dynamics was monitored during the leaf litter decomposition of three typical species of the Mediterranean area, Cistus incanus L., Myrtus communis L. and Quercus ilex L., using the litter bag method. Total N and its distribution among lignin, cellulose and acid-detergent-soluble fractions were measured and related to the overall decay process. The litter organic substance of Cistus and Myrtus decomposed more rapidly than that of Quercus. The decay constants were 0.47 year−1, 0.75 year−1 and 0.30 year−1 for Cistus, Myrtus and Quercus, respectively. Lignin and cellulose contents were different as were their relative amounts (34 and 18%, 15 and 37%, 37 and 39% of the overall litter organic matter before exposure, for Cistus, Myrtus and Quercus, respectively). Lignin began to decrease after 6 and 8 months of exposure in Cistus and Myrtus, respectively, while it did not change significantly during the entire study period in Quercus. The holocellulose, in contrast, began to decompose in Cistus after 1 year, while in Quercus and Myrtus immediately. Nitrogen was strongly immobilized in all the litters in the early period of decay. Its release began after the first year in Cistus and Myrtus and after 2 years of decomposition in Quercus. These litters still contained about 60, 20 and 90% of the initial nitrogen at the end of the experiment (3 years). Prior to litter exposure nitrogen associated with the lignin fraction was 65, 54 and 37% in Cistus, Myrtus and Quercus, while that associated with the cellulose fraction was 30, 24 and 28%. Although most of the nitrogen was not lost from litters, its distribution among the litter components changed significantly during decomposition. In Cistus and Myrtus the nitrogen associated with lignin began to decrease just 4 months after exposure. In Quercus this process was slowed and after 3 years of decomposition 8% of the nitrogen remained associated with lignin or lignin-like substances. The nitrogen associated with cellulose or cellulose-like substances, in contrast, began to decrease from the beginning of cellulose decomposition in all three species. At the end of the study period most of the nitrogen was not associated to the lignocellulose fraction but to the acid-detergent-soluble substance (87, 88 and 84% of the remaining litter nitrogen).  相似文献   

13.
The objective of this study was to determine whether differences in canopy structure and litter composition affect soil characteristics and microbial activity in oak versus mixed fir-beech stands. Mean litter biomass was greater in mixed fir-beech stands (51.9t ha−1) compared to oak stands (15.7t ha−1). Canopy leaf area was also significantly larger in mixed stands (1.96m2 m−2) than in oak stands (1.73m2 m−2). Soil organic carbon (C org) and moisture were greater in mixed fir-beech stands, probably as a result of increased cover. Soil microbial biomass carbon (C mic), nitrogen (N mic), and total soil nitrogen (N tot) increased slightly in the mixed stand, although this difference was not significant. Overall, mixed stands showed a higher mean C org/N tot ratio (22.73) compared to oak stands (16.39), indicating relatively low rate of carbon mineralization. In addition, the percentage of organic C present as C mic in the surface soil decreased from 3.17% in the oak stand to 2.26% in the mixed stand, suggesting that fir-beech litter may be less suitable as a microbial substrate than oak litter.  相似文献   

14.
The degree to which ectomycorrhizal fungi rely on decomposing litter as a carbon source in natural ecosystems is unknown. We used a radiocarbon (14C) tracer to test for uptake of litter carbon by ectomycorrhizal fungi as part of the Enriched Background Isotope Study (EBIS) in Oak Ridge Reservation, Tennessee. In EBIS, leaf litter from a highly 14C-labeled Quercus alba (white oak) forest was reciprocally transplanted with litter from a nearby low-labeled forest that had not been as strongly exposed to 14C. These litter transplants were conducted yearly. We measured Δ14C signatures of ectomycorrhizal fungi collected from each forest four months and 2.25 years after the first litter transplant. The ectomycorrhizas were associated with white oak trees. We found no significant differences in 14C signatures of ectomycorrhizal fungi exposed to low-labeled versus high-labeled litter, indicating that less than 2% of the carbon in ectomycorrhizal biomass originated from transplanted litter. In contrast, ectomycorrhizal Δ14C signatures from the high-labeled forest were 117-140‰ higher than those from the low-labeled forest. This pattern suggests that ectomycorrhizal fungi acquired most (or all) of their carbon from their host plants, probably via direct transfer of photosynthate through the roots.  相似文献   

15.
Low intensity control burns are a standard fuel reduction management tool used in pine barrens ecosystems. Periodic disturbances through fire can be an important influence on the cycling of nutrients within the ecosystem. Previous studies have shown that the inorganic chemistry of leaf litter residues differs with increasing temperature. Our study compared chemical changes in white oak (Quercus alba), pitch pine (Pinus rigida) and black huckleberry (Gaylussacia baccata), characteristic of the New Jersey pine barrens, during thermal decomposition using FT-IR spectroscopy. Three replicates of senescent leaf material were ground and separately heated for 2 h at: 100, 200, 300, 400 and 550 °C. These temperatures are representative of the range seen in fuel reducing prescribed burns in the pine barrens. Unburned litter of each species was used as a control. An optimization process using varying amounts of KBr and oak litter was performed to develop favorable FT-IR spectral conditions for a sample to KBr ratio of 0.75%. Chemometric analysis of the FT-IR spectra using principal component analysis (PCA) was used to analyze the changes in carbohydrate chemistry of each litter plant species (leaf litter species) at each temperature. In general, it appears that there is clear separation of leaf litter species at the different combustion temperatures. Infrared spectroscopy illustrated that all three species shared wavenumbers characteristic of the primary components of leaves such as cellulose, lignin and hemicellulose. Results from the PCA indicated separation of litter species and species by combustion temperature. PC axis 1 corresponds to the effects of temperature on leaf litter species and PC axis 2 separates the leaf litter species. At the low temperatures (control-200 °C), oak, pine and huckleberry litter species separated from each other. Wavenumbers that contributed to the separation of species at low temperatures belonged to functional group stretching frequencies of outer surface waxes, basic sugars, fatty acids and aldehydes. It appears that oak had more IR bands specific to suberin content. Convergence of these species occurs at 300 °C. Complexity of chemical composition decreases at this particular temperature as is shown by the decrease in wavenumber richness when compared to litters at low and high temperatures. Oak, pine and huckleberry had similar IR spectra showing bands belonging to outer surface wax content, pectin, lignin and hemicellulose. With increasing temperatures (400-550 °C), differences between litter species increased slightly. Plant material was reduced to similar composition due to thermal decomposition, which consisted of inorganic materials such as carbonate, phosphate and sulfate ions and possible fused aromatics.  相似文献   

16.
Nutrient transfer between decomposing leaves may explain non-additive species diversity effects on decomposition. The influence of the diversity of litter species on decomposition was compared in mixtures composed of large (>200 mm2) or small (<9 mm2) litter fragments. The increase in the number of species (aspen, oak, alder and pine, from monocultures to four species in all possible combinations) initially (at day 43) suppressed respiration, but eventually (after 142 days) did not affect the mass loss of the mixtures of small litter fragments. In contrast, the decomposition of litter in large fragments increased with increased diversity, and 93% of all mixtures decomposed faster than would be predicted from monocultures. The results suggest that the active transport of nutrients by fungal hyphae, rather than passive diffusion, drives positive effect of the litter species diversity on decomposition.  相似文献   

17.
Temperature dependant mineralization dynamics during fire of litter species characteristic of the New Jersey pine barrens was determined. Senescent leaf material of pitch pine (Pinus rigida), white oak (Quercus alba) and black huckleberry (Gaylusssacia baccata) were collected at the time of abscission; sorted, ground and oven-dried at 70 °C. Replicate samples were then heated for 2 h at: 70, 100, 200, 300, 400, and 550 °C. Mass loss and total nitrogen and total phosphorus concentration of the heated material were determined. Additional samples of the residual material were extracted with deionized water, and the filtrate was assayed for the anions: , , ; and cations: , K+, Mg++, and Ca++.By heating leaf litter over a range of temperatures, to simulate the heterogeneous nature of forest litter burning, we identified patterns of nutrient mineralization characteristic of specific temperatures, some of which were common to all three litter species and others unique to individual species. In general, it appears that black huckleberry leaf litter was the most nutrient rich and the most labile. In huckleberry litter, there was a large reserve of soluble nitrogen, sulfur, phosphate, calcium and magnesium that became available upon heating to 200 °C. Pitch pine litter was the most nutrient poor, and the rates of nutrient mineralization were also generally the lowest of the three species studied. White oak litter nutrient concentration and rates of mineralization along the temperature gradient were intermediate. For all three litter species examined organic and inorganic nitrogen losses due to volatilization were >99% upon heating to 550 °C, and soluble magnesium concentrations declined significantly at temperatures of 300 °C, despite having a volatilization temperature greater than 1100 °C. Under the temperature range employed, heating of leaf litter resulted in little volatilization loss of phosphorus; however, the amount of soluble phosphate phosphorus was much lower in all three litter types at temperatures of 300 °C and above. With increasing temperatures, inorganic phosphate ions presumably became bound to cations in the ash, forming insoluble metal phosphates. The dramatic increase of the ratio of total phosphorus to soluble inorganic phosphate at higher temperatures, the loss of soluble magnesium above 300 °C, and the near complete loss of nitrogen at 550 °C suggests that after intense fires availability of these minerals may be dramatically reduced.  相似文献   

18.
Litter decomposition on the forest floor is an essential process in soil nutrient cycles and formation. These processes are controlled by abiotic factors such as climate and chemical litter quality, and by biotic factors such as microbial community diversity and activity. The aim of this study was to investigate the importance of litter depth with respect to (i) chemical litter quality as evaluated by solid-state 13C NMR, (ii) enzyme activities, and (iii) microbial functional diversity in four different litter layers (OLn, OLv, OF, and OH). A Mediterranean soil profile under an evergreen oak (Quercus ilex L.) forest was used as a model. The recalcitrant OM fraction, corresponding to the deepest layer, showed low enzyme activities. Peroxidases and fluorescein diacetate hydrolases (FDA) were more active in the OLn layer and probably originated largely from plants. High cellulase activity in the OLn and the OLv layers, which are rich in polysaccharides, corresponded with the high content of O-alkyl carbon compounds. Following polysaccharide degradation, laccases and lipases were much more evident in the intermediate layers. This spatial variation in nutrient demand reflected a preferential degradation of the specific plant polymers. Phosphatases were more active along the three upper layers and probably reflected a P limitation during litter degradation. Alkaline/acid (AcPAlP/AcP) ratio increased in the deepest layer, suggesting an increased participation of bacteria AlP in phosphatase pools. Results of BiologTM also indicated spatial variations in microbial functionality. Indeed, FF plates showed the highest functional diversity in the uppermost layer, while ECO plate functional diversity was highest in the intermediate layers. Finally, our results indicated that microbial activity and functional diversity of micro-organisms change with litter depth on a very small scale and vary with chemical organic matter (OM) composition. Thus, the observed increases in the biological variables studied were determined by the evolution of OM chemical structures, the nature and availability in C nutrients, and they ultimately resulted in a progressive accumulation of recalcitrant compounds.  相似文献   

19.
The addition of leaf litter to soil influences both the nutrients and polyphenols of soil. It is likely that contrasting nutrient and polyphenolic composition of different plant litters may affect plant growth, mycorrhizal and soil arthropod communities. We report results from a microcosm experiment of effects of incorporation of three single leaf litter species and a mixture of all three on pitch pine seedling growth, their ectomycorrhizal community and soil arthropod community. The three litter species (pine, oak and huckleberry) represent co-dominant species within the New Jersey pine barrens ecosystem. We show that the leaf litters have different composition of nutrients and polyphenols, with rooting matrix containing pine litter having lower inorganic nitrogen content (1.6 μg g−1) than oak (19.9 μg g−1) and huckleberry (4.4 μg g−1), but oak litter having the highest extractable phosphorus (13.3 cf. 0-0.08 μg g−1) and total phenol content and lowest condensed tannin content. These differences were imparted to rooting matrix of homogenized humic (Oa) layer of pine barrens soil to which milled leaf litter was added and used in the microcosms. Pitch pine seedlings grew significantly better in un-amended rooting matrix (0.33±0.02 g) than any of the litter treatments (0.15±0.02-0.17±0.01 g) and tissue P concentrations tracked phosphate concentrations in the rooting matrix. Total P accumulation into plant tissue was higher in oak than control, attributable to a significantly higher (P<0.05) accumulation in roots (3.3±0.19 mg g−1) compared to other species (1.1±0.04-2.3±0.08 mg g−1). No relationship was seen between tissue N concentration and soil N, but seedlings growing in huckleberry litter amended soil accumulated less N than control. The effect of leaf litters on the ectomycorrhizal community composition were determined by PCA (first two axes accounted for 81% of the variance) and stepwise multiple regression analysis. These analyses showed that huckleberry leaf litter had a significant impact on mycorrhizal community composition with morphotypes Cg and DB being more abundant in the presence of huckleberry litter (178±13 cf. 68±15-106±15 for Cg and 141±11 cf. 88±23-111±18 for DB) and its influence of elevating nitrate nitrogen, organic nitrogen, total phenols and protein precipitation content of the rooting matrix. Mycorrhizal morphotypes BS and SB were significantly more abundant in the community where these soil factors were low in the absence of leaf litter addition. Total ectomycorrhizal abundance was negatively related to hydrolysable tannin concentration in the rooting matrix (r2=0.132, P<0.05). There was no influence of leaf litter type on mite density (dominated by non-burrowing phthiracarids), but collembolan density (dominated by Folsomia spp) showed a greater than threefold reduction in population density in the presence of leaf litter (F=6.47, P<0.05). Collembolan density was positively correlated with mycorrhizal morphotypes GS and SB (P<0.05) and negatively related to morphotypes DB (P<0.05) and soil extractable NH4-N (P<0.05), suggesting a possible selection of fungal species in their diet and a relationship between collembola and nitrification.  相似文献   

20.
The possible effects of excreta of the Great Cormorant Phalacrocorax carbo on decomposition processes and dynamics of nutrients (N, P, Ca, K, Mg) and organic chemical components (lignin, total carbohydrates) were investigated in a temperate evergreen coniferous forest near Lake Biwa in central Japan. Two-year decomposition processes of needles and twigs of Chamaecyparis obtusa were examined at two sites, control site never colonized by the cormorants (site C) and colonizing site (site 2). Mass loss was faster in needles than in twigs. Mass loss of these litter types was faster at site C than at site 2, which was ascribed to the decreased mass loss rate of acid-insoluble ‘lignin’ at site 2. Net immobilization of N, P, and Ca occurred in needles and twigs at site 2; whereas at site C, mass of these elements decreased without immobilization during decomposition. Duration of immobilization phase of these nutrients at site 2 was estimated to be 1.6 to 2.5 years in needles and 19.6 to 23.5 years in twigs. Immobilization potential (maximum amount of exogenous nutrient immobilized per gram initial material) was similar between needles and twigs for N and Ca but was about 10 times higher in twigs than in needles for P. δ13C in needles was relatively constant during the first year and then increased during the second year, whereas δ13C in twigs was variable during decomposition. Acid-insoluble fraction was depleted in 13C compared to whole needles (1.6-2.1‰) and twigs (2.0-2.5‰). δ15N of needles and twigs and their acid-insoluble fractions approached to δ15N of excreta during decomposition at site 2. This result demonstrated the immobilization of excreta-derived N into litter due to the formation of acid-insoluble lignin-like substances complexed with excreta-derived N. No immobilization occurred in K and Mg and their mass decreased during decomposition at both sites. Based on these results of nutrient immobilization during decomposition and on the data of litter fall and excreta amount at site 2, we tentatively calculated stand-level immobilization potential of litter fall and its contribution to total amount of N and P deposited as excreta. Thus, the potential maximum amount immobilized into litter fall (needles and twigs) was estimated to account for 5-7% of total excreta-derived N and P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号