首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Nutrient availability will partly regulate the response of high latitude ecosystems to climate warming, but phosphorus biogeochemistry is poorly understood in Arctic soils. We used NaOH-EDTA extraction and solution 31P nuclear magnetic resonance (NMR) spectroscopy to determine phosphorus compounds in subarctic soils from three locations in the Fennoscandian mountains contrasting in latitude and continentality. Soils were taken from open tundra and mountain birch (Betula pubescens Ehrh.) forest at each location. Between 87 and 95% of the total phosphorus was extracted from the surface 2 cm of the organic soil horizons. Most of the extracted phosphorus was orthophosphate monoesters (44-55%), with smaller concentrations of inorganic orthophosphate (15-24%), orthophosphate diesters (12-16%), pyrophosphate (3-18%), inorganic polyphosphate (0-15%) and phosphonates (0-4%). The orthophosphate diesters were further subclassified into DNA (9-13% extracted phosphorus) and phospholipids (1-6% extracted phosphorus), although strong signals in the orthophosphate monoester region of the spectra, consistent with the degradation of phosphatidyl choline in alkaline solution, suggested that phospholipid concentrations were substantially underestimated. The phosphorus composition was broadly similar among soils from the three locations, although no phosphonates were detected in tundra soils from the most southerly site. Deeper organic horizons tended to contain a greater proportion of orthophosphate monoesters than at the surface. The abundance of phosphorus compounds that would be considered readily degradable in temperate environments probably reflects the slow organic matter decomposition in these cold, acidic soils, and suggests that phosphorus availability is unlikely to limit ecosystem productivity on mesic soils at the birch-tundra ecotone during changes induced by climate warming.  相似文献   

2.
Agricultural management can affect soil organic matter chemistry and microbial community structure, but the relationship between the two is not well understood. We investigated the effect of crop rotation, tillage and stubble management on forms of soil phosphorus (P) as determined by solution 31P nuclear magnetic resonance spectroscopy and microbial community composition using fatty acid methyl ester analysis in a long-term field experiment (26 years) on a Chromic Luvisol in New South Wales, Australia. An increase in soil organic carbon, nitrogen and phosphorus compared to the beginning of the experiment was found in a rotation of wheat and subterranean clover with direct drill and mulching, while stubble burning in wheat–lupin and wheat–wheat rotations led to soil organic matter losses. Microbial biomass was highest in the treatment with maximum organic matter contents. The same soil P forms were detected in all samples, but in different amounts. Changes in organic P occurred mainly in the monoester region, with an increase or decrease in peaks that were present also in the sample taken before the beginning of the experiment in 1979. The microbial community composition differed between the five treatments and was affected primarily by crop rotations and to a lesser degree by tillage. A linkage between soil P forms and signature fatty acids was tentatively established, but needs to be verified in further studies.  相似文献   

3.
We examined the effects of conifers on the forms of P in low-fertility tussock grassland soils using 31P nuclear magnetic resonance (NMR) and soil P fractionation. Results from field and glasshouse experiments clearly demonstrated that conifers enhanced the mineralization of labile (and to a lesser extent more resistant) forms of soil organic P which, in turn, increased amounts of labile inorganic P in the soil. These findings have important implications for P availability and long-term sustainable management of grassland soils in New Zealand.  相似文献   

4.
Tropical regions are currently undergoing remarkable rates of land use change accompanied by altered litter inputs to soil. In vast areas of Southern Ecuador forests are clear cut and converted for use as cattle pastures. Frequently these pasture sites are invaded by bracken fern, when bracken becomes dominant pasture productivity decreases and the sites are abandoned. In the present study implications of invasive bracken on soil biogeochemical properties were investigated. Soil samples (0-5 cm) were taken from an active pasture with Setaria sphacelata as predominant grass and from an abandoned pasture overgrown by bracken. Grass (C4 plant) and bracken (C3 plant) litter, differing in C:N ratio (33 and 77, respectively) and lignin content (Klason-lignin: 18% and 45%, respectively), were incubated in soils of their corresponding sites and vice versa for 28 days at 22 °C. Unamended microcosms containing only the respective soil or litter were taken as controls. During incubation the amount of CO2 and its δ13C-signature were determined at different time intervals. Additionally, the soil microbial community structure (PLFA-analysis) as well as the concentrations of KCl-extractable C and N were monitored. The comparison between the control soils of active and abandoned pasture sites showed that the massive displacement of Setaria-grass by bracken after pasture abandonment was characterized by decreased pH values accompanied by decreased amounts of readily available organic carbon and nitrogen, a lower microbial biomass and decreased activity as well as a higher relative abundance of actinomycetes. The δ13C-signature of CO2 indicated a preferential mineralization of grass-derived organic carbon in pasture control soils. In soils amended with grass litter the mineralization of soil organic matter was retarded (negative priming effect) and also a preferential utilization of easily available organic substances derived from the grass litter was evident. Compared to the other treatments, the pasture soil amended with grass litter showed an opposite shift in the microbial community structure towards a lower relative abundance of fungi. After addition of bracken litter to the abandoned pasture soil a positive priming effect seemed to be supported by an N limitation at the end of incubation. This was accompanied by an increase in the ratio of Gram-positive to Gram-negative bacterial PLFA marker. The differences in litter quality between grass and bracken are important triggers of changes in soil biogeochemical and soil microbial properties after land use conversion.  相似文献   

5.
Characterizing phosphates in animal fecal and manure samples is of interest to environmental-monitoring research efforts. Acid extraction removes relatively mobile phosphates from samples, offering a better indicator of the mobility of phosphates in environment, but acidic extracts impose challenges to the solution phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy, which is commonly used for analyzing phosphates in environmental samples. Acid-extractable metals precipitate phosphates in the alkaline condition under which solution 31P NMR experiment runs, blurring the spectrum for adequate analysis. We found that neutralizing acid extracts with 0.5 M sodium hydroxide (NaOH) plus 50 mM ethylenediaminetetraacetic acid (EDTA) before freeze drying eliminated the chemical interferences otherwise observed. The resulting 31P NMR spectra can be used to quantify acid-soluble phytate and other phosphates in animal fecal and manure samples. The improvement in detection will support efforts to investigate the mobility of phosphates in feces and manures used as land amendments.  相似文献   

6.
The long-term (25 years) effect of using chemical fertilizers and animal manure on soil phosphorus (P) composition and phosphatase activities was investigated in this study. Results showed that pig manure applications significantly increased soil total P, Olsen P, and phosphatase activities, whereas chemical fertilizers had no significant effects on soil chemical properties and phosphatase activities. Manure applications doubled or tripled the orthophosphate concentrations as compared to chemical fertilizers. Analysis of solution 31P nuclear magnetic resonance (NMR) spectroscopy showed that P composition in sodium hydroxide (NaOH)–ethylenediamenetetraacetic acid (EDTA) extracts was dominated by orthophosphate (59–84%), followed by phosphomonoesters (15–40%). More organic P (Po), especially myo-inositol hexakisphosphate, was observed in soil treated with manure as compared with soil treated with chemical fertilizer.  相似文献   

7.
The relationship between organic P status of 4 soils, 20 microorganisms isolated from these soils (2 bacteria and 3 fungi for each soil) and 13 dominant plant species of typical natural ecosystems of these soils was evaluated. The soils used were represented by two pairs with different ratios of monoester and diester P, and of DNA and other diester P. A Dystric Podzoluvisol and an alpine Umbric Leptosol were characterized by a relatively high proportion of diester P including much DNA P, while a Calcic Chernozem and subalpine Umbric Leptosol had lower proportion of diesters containing relatively less DNA P. The proportions of P compounds in bacteria and plants were very similar on average, based on the monoester to diester P ratio and on the proportions of different diesters in alkaline extract, whereas fungi contained considerably higher proportions of monoesters and polyphosphates, and a higher proportion of phospholipids in the diester fraction. The results showed that the Porg composition of NaOH extracts from different soils was more similar to the composition of extracts from different groups of microorganisms. There was no clear correspondence between soil and microbial diester P proportion and composition. A high proportion of polyphosphate P including pyrophosphate P in soil extracts indicates a significant contribution of fungal P compounds in the soil while the monoester to diester P ratio, and DNA to non-DNA P ratio should be used with caution to interpret the origins of soil Porg. The relative contributions of microorganisms and plants to monoester and diester P in soils is only partially understood.  相似文献   

8.
Changes in land use alter the natural cycling of phosphorus (P) in soil. Understanding the chemical nature of these changes is important when developing sustainable management practices for cultivated soils. In this study, we evaluated the ability of commonly used laboratory methods to characterize land use–induced changes in various P pools. Also, the characteristics of soil P revealed by different methods are discussed. Soil samples were taken from three differently managed field plots of the same clay soil: uncultivated grassland and organic and conventional crop rotations. Soil P reserves were characterized using Chang and Jackson and Hedley sequential fractionation procedures and by sodium hydroxide (NaOH)–ethylenediaminetetraacetic acid (EDTA) extraction followed by 31P NMR spectroscopy. Both of the tested fractionation methods identified differences in the P pools and provided evidence regarding land use–induced changes. However, the 31P NMR analysis suggests that the quality of organic P in this soil was not affected by the change in land use.  相似文献   

9.
    
Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy is widely used to identify and quantify phosphorus (P) forms in soil. This study aimed to determine whether narrowing the soil to extractant sodium hydroxide–ethylenediaminetetraacetic acid (NaOH-EDTA) ratio from 1:20 to values as low as 1:4 would improve sensitivity of solution 31P NMR spectroscopy without degrading resolution or quantitation. Four Australian soils were tested using four ratios. The narrowest ratio of 1:4 gave the best quality NMR spectra in terms of signal-to-noise ratio. Peak resolution was not degraded on narrowing the ratio. There was no clear effect of narrowing the extraction ratio on extraction efficiency or the distribution of signal among chemical shift regions (orthophosphate, monoester P, diester P, and pyrophosphate). We conclude that a ratio of 1:4 improved NMR analysis for these particular soils and should be considered for other soils, particularly low-P soils, where NMR sensitivity is limiting.  相似文献   

10.
Biserrula pelecinus is a pasture legume species new to Australian agriculture. The potential N benefit from B. pelecinus pastures in agricultural systems may not be realised if its symbiotic interactions with Mesorhizobium spp. are not well understood. This study evaluated the symbiotic interactions of four strains of Biserrula root-nodule bacteria (WSM1271, WSM1283, WSM1284, WSM1497) with four genotypes of B. pelecinus (cv. Casbah, 93GRC4, 93ITA33, IFBI1) and with a range of related legumes, including species known to be nodulated by strains of Mesorhizobium loti and other Mesorhizobium spp. Structures of root nodules were studied using light and electron microscopy enabling the ultrastructure of effective and ineffective nodules to be compared. B. pelecinus always formed typical indeterminate, finger-like nodules. The number of bacteroids inside symbiosomes varied between host×strain combinations, however, nodules formed by ineffective associations had well developed peribacteroid membranes and abundant bacteroids. Considerable variation was found in N2-fixing effectiveness of strains isolated from B. pelecinus on the four B. pelecinus genotypes. Strains WSM1271, WSM1284 and WSM1497 nodulated Astragalus membranaceus, only strains WSM1284 and WSM1497 nodulated Astragalus adsurgens. Strain WSM1284 also nodulated Dorycnium rectum, Dorycnium hirsutum, Glycyrrhiza uralensis, Leucaena leucocephala, Lotus edulis, Lotus glaber, Lotus maroccanus, Lotus ornithopodioides, Lotus pedunculatus, Lotus peregrinus, Lotus subbiflorus and Ornithopus sativus. The four strains from B. pelecinus did not nodulate Amorpha fruticosa, Astragalus sinicus, Cicer arietinum, Hedysarum spinosissimum, Lotus parviflorus, Macroptilium atropurpureum or Trifolium lupinaster. M. loti strain SU343 nodulated all four genotypes of B. pelecinus. However, M. loti strain CC829 only nodulated B. pelecinus genotypes 93ITA33 and IFBI1 and the nodules were ineffective. The root nodule isolates from H. spinosissimum (E13 and H4) nodulated B. pelecinus cv. Casbah whereas the commercial inoculant strain for Cicer (CC1192) could not nodulate any genotype of B. pelecinus. These results indicate that strains WSM1271, WSM1283 and WSM1497 isolated originally from B. pelecinus have a specific host range while strain WSM1284 is promiscuous in its capacity to nodulate with a broad range of related species. As B. pelecinus can be nodulated by Mesorhizobium spp. from other agricultural legumes, particularly Lotus, there is an opportunity to utilise this trait in cultivar development.  相似文献   

11.
Sprays of commercial insecticidal preparations of the bacterium, Bacillus thuringiensis subsp. kurstaki (Btk), usually a mixture of cells, spores and parasporal crystals, have been used for the last 10 yr in Sardinia (Italy) to protect cork oak forests against the gypsy moth (Lymantria dispar L.). Until now, the protective antilepidopteran efficacies of each of the various spray treatments rather than their effects on the environment have been evaluated. Consequently, the persistence of Btk and its toxin, released in sprays (FORAY 48B®), in soils of cork oak stands, located in Orotelli, Tempio Pausania and Calangianus (Sardinia), were investigated. In the Calangianus soil, the numbers of Btk remained essentially constant for 28 months (the longest time studied) after spraying, indicating that Btk was able to compete with the indigenous microbial community; the toxin was detected 28 months after spraying by immunological assay, but at a reduced concentration; and the larvicidal activity decreased essentially linearly to 14 months and then decreased markedly between 14 and 28 months. In the Tempio Pausania and Orotelli soils, cells of Btk were detected, whereas the toxin was not detected by immunological and larvicidal assays, 52 and 88 months (the longest times studied) after spraying, respectively. The numbers of Btk cells detected were probably too low to account for the presence of the toxin in all of the soils studied, as there was no correlation between numbers of Btk and toxin detected by immunological assays (correlation coefficient of −0.66) in the Calangianus soil. Our results indicated that Btk and its toxin introduced into soils in sprays can persist for long periods (at least 88 months for Btk and at least 28 months for its toxin).  相似文献   

12.
To investigate the distribution and dynamics of phosphorus (P) in soils for environmental protection and agronomical usage, 31P nuclear magnetic resonance spectroscopy (31P NMR) was used to characterize the contents and chemical properties of P in sewage sludge from 13 wastewater treatment plants in Shanghai. The samples were extracted with 0.25 M sodium hydroxide (NaOH) / 0.05 M sodium ethylenediamietetraacetic acid (Na2EDTA) in ratio of 1:20 (w/v). Total P recovery in the extract ranged from 91 to 116% when compared to traditional chemical methods. The dominant forms of P in all samples were inorganic orthophosphates and orthophosphates monoesters. Orthophosphate diesters and pyrophosphates were present in only two and four samples, respectively. This study provides detailed information on the distribution, contents, and chemical properties of P in sewage sludge that may be of value in the utilization of sewage sludge for agronomic purposes.  相似文献   

13.
In our screening, we aimed to detect phosphonates and other forms of organic phosphorus in basidiocarps and vegetative mycelia of six common basidiomycetes. Organic phosphorus-containing compounds were extracted in alkali and analysed using 31P NMR. Monoesters, diesters, pyrophosphates and polyphosphates detected in high amounts reflected the high metabolic activity in basidiocarps (growth, production of basidiospores). Phosphonates were present in all samples, in concentrations ranging from 14 mg kg−1 of the extracted phosphorus in Boletus badius basidiocarp to 140 mg kg−1 in Amanita muscaria vegetative mycelium. Detection of phosphonates in basidiocarps together with our previous evidence from laboratory experiments support the fungal production of natural phosphonates in forest ecosystems.  相似文献   

14.
Although soil-dwelling Collembola can influence plant growth and nutrient cycling, their specific role in soil food webs is poorly understood. Soil-free microcosm studies suggest that Collembola are primarily fungivores where they feed preferentially on saprophytic fungi (SF) over other fungal types. We directly assessed collembolan consumption of arbuscular mycorrhizal fungi (AMF) and SF using plant-soil mesocosms and natural abundance stable carbon isotope techniques. Mycorrhizal Andropogon gerardii (C4 grass) seedlings were placed in pots containing Collembola and soil from a C3 plant dominated site, while mycorrhizal Pascopyrum smithii (C3 grass) seedlings were placed in pots with Collembola and soil collected at a C4 plant dominated site. After 6 weeks, collembolans assimilated carbon derived from C3 and C4 sources in both A. gerardii and P. smithii treatments. Comparing Collembola isotope values in AMF vs. AMF-suppressed treatments, our data show that both AMF and SF were consumed in these experimental soil environments.  相似文献   

15.
Phosphomonoesterase (PMEase) activity plays a key role in nutrient cycling and is a potential indicator of soil condition and ecosystem stress. We compared para-nitrophenyl phosphate (pNPP) and 4-methylumbelliferyl phosphate (MUP) as substrate analogues for PMEase in 7 natural ecosystem soils and 8 agricultural top soils with contrasting C contents (8.0-414 g kg−1 C) and pH (3.0-7.5). PMEase activities obtained with pNPP (0.05-5 μmol g−1 h−1) were significantly less than activities obtained with MUP (0.9-13 μmol g−1 h−1), especially in soils with a high organic matter content (>130 g kg−1). Only PMEase activities assayed with MUP correlated significantly with total C and total N (r=0.7, P<0.01 all), and pH (r=−0.71, P<0.01). PMEase activities obtained with the two substrate analogues were correlated when expressed on a C-content basis (r=0.8, P<0.001), but not when expressed on an oven-dry soil weight basis. This indicated that interference by organic matter is related to the quantity rather than to the quality of organic matter. Overall, assaying with MUP was more sensitive compared to assaying with pNPP, particularly in the case of high organic and acid soils.  相似文献   

16.
Rhizosphere enhanced biodegradation of organic pollutants has been reported frequently and a stimulatory role for specific components of rhizodeposits postulated. As rhizodeposit composition is a function of plant species and soil type, we compared the effect of Lolium perenne and Trifolium pratense grown in two different soils (a sandy silt loam: pH 4, 2.8% OC, no previous 2,4-D exposure and a silt loam: pH 6.5, 4.3% OC, previous 2,4-D exposure) on the mineralization of the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). We investigated the relationship of mineralization kinetics to dehydrogenase activity, most probable number of 2,4-D degraders (MPN2,4-D) and 2,4-D degrader composition (using sequence analysis of the gene encoding α-ketoglutarate/2,4-D dioxygenase (tfdA)). There were significant (P<0.01) plant-soil interaction effects on MPN2,4-D and 2,4-D mineralization kinetics (e.g. T. pratense rhizodeposits enhanced the maximum mineralization rate by 30% in the acid sandy silt loam soil, but not in the neutral silt loam soil). Differences in mineralization kinetics could not be ascribed to 2,4-D degrader composition as both soils had tfdA sequences which clustered with tfdAs representative of two distinct classes of 2,4-D degrader: canonical R. eutropha JMP134-like and oligotrophic α-proteobacterial-like. Other explanations for the differential rhizodeposit effect between soils and plants (e.g. nutrient competition effects) are discussed. Our findings stress that complexity of soil-plant-microbe interactions in the rhizosphere make the occurrence and extent of rhizosphere-enhanced xenobiotic degradation difficult to predict.  相似文献   

17.
The natural 15N abundance (δ15N) of different ecosystem compartments is considered to be an integrator of nitrogen (N) cycle processes. Here we investigate the extent to which patterns of δ15N in grassland plants and soils reflect the effect of different management practices on N cycling processes and N balance. Investigations were conducted in long-term experimental plots of permanent montane meadows with treatments differing in the amount and type of applied fertilizer (0-200 kg N ha−1 yr−1; mineral fertilizer, cattle slurry, stable manure) and/or the cutting frequency (1-6 cuts per season). The higher δ15N values of organic fertilizers compared to mineral fertilizer were reflected by higher δ15N values in soils and harvested plant material. Furthermore, δ15N of top soils and plant material increased with the amount of applied fertilizer N. N balances were calculated from N input (fertilization, atmospheric N deposition and symbiotic N2 fixation) and N output in harvest. ‘Excess N’—the fraction of N input not harvested—was assumed to be lost to the environment or accumulated in soil. Taking fertilizer type into account, strong positive correlations between δ15N of top soils and the N input-output balance were found. In plots receiving mineral N fertilizer this indicates that soil processes which discriminate against 15N (e.g. nitrification, denitrification, ammonia volatilization) were stimulated by the increased supply of readily available N, leading to loss of the 15N depleted compounds and subsequent 15N enrichment of the soils. By contrast, in plots with organic fertilization this correlation was partly due to accumulation of 15N-enriched fertilizer N in top soils and partly due to the occurrence of significant N losses. Cutting frequency appeared to have no direct effect on δ15N patterns. This study for the first time shows that the natural abundance of 15N of agricultural systems does not only reflect the type (organic or mineral fertilizer) or amount of annual fertilizer amendment (0-200 kg ha−1 yr−1) but that plant and soil δ15N is better described by N input-output balances.  相似文献   

18.
We report the first simultaneous measurements of δ15N and δ13C of DNA extracted from surface soils. The isotopic composition of DNA differed significantly among nine different soils. The δ13C and δ15N of DNA was correlated with δ13C and δ15N of soil, respectively, suggesting that the isotopic composition of DNA is strongly influenced by the isotopic composition of soil organic matter. However, in all samples DNA was enriched in 13C relative to soil, indicating microorganisms fractionated C during assimilation or preferentially used 13C enriched substrates. Enrichment of DNA in 15N relative to soil was not consistently observed, but there were significant differences between δ15N of DNA and δ15N of soil for three different sites, suggesting microorganisms are fractionating N or preferentially using N substrates at different rates across these contrasting ecosystems. There was a strong linear correlation between δ15N of DNA and δ15N of the microbial biomass, which indicated DNA was depleted in 15N relative to the microbial biomass by approximately 3.4‰. Our results show that accurate and precise isotopic measurements of C and N in DNA extracted from the soil are feasible, and that these analyses may provide powerful tools for elucidating C and N cycling processes through soil microorganisms.  相似文献   

19.
In extremely acidic mining sediments of the Lusatian mining district, the alkalinisation process relies on organic C, which can serve as electron donor for microbially induced sulfate reduction. Plant material of the pioneer plant Juncus bulbosus is an important organic matter source in lake sediments. Therefore, decomposition of the plant tissue was assessed during the exposure of litterbags for 30 months in the 0-5 cm layer of waterlogged mining sediments, which have a pH between 2.5 and 3. The ash free dry weight (AFDW) and elemental content of the plant tissue were recorded several times during the exposure. Changes in chemical structure were analyzed by solid-state 13C cross polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy and the lignin component characterized by wet-chemical CuO oxidation. The AFDW accounted for about 34% of initial biomass after field exposure for 30 months. Mass loss of biomass occurred in two phases with decomposition rates varying between 30 and 430 mg AFDW d−1. The mass loss increased considerably after 5-7 months when litterbags were invaded by fresh J. bulbosus plants. With respect to higher mass loss, 13C CPMAS NMR spectroscopy, showed slight changes of the bulk chemical composition after 11 months, indicating that microorganisms present in the sediments or in the rhizosphere degrade plant material as a whole, rather than selectively. During the second phase from about 11 months until the end of the exposure period, contribution of O-alkyl C most probably assignable to easily degradable polysaccharides decreased. In contrast, the contribution of alkyl, aromatic and carboxyl C increased. CuO oxidation showed that the lignin component of J. bulbosus is degraded oxidatively during field exposure. Our results indicate that the exposed plant material is decomposed in the sediment due to changes in sediment conditions that followed plant invasion of the litterbags. It is suggested that the rhizosphere of J. bulbosus by its influence on the redox potential, pH and the microbial component plays a crucial role in organic matter degradation in acidic mining sediments.  相似文献   

20.
We investigated the optical absorption properties (A 400/C and A 600/C values), elemental composition, weight-averaged molecular weight (Mw), and liquid-state carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy of DAX-8 adsorbed fulvic acid fractions (DAX-8 FAs) in various soils (n?=?36) to establish the general trends in their chemical characteristics. We also compared our results with those of humic acids (HAs) obtained from the same soils used in this study and other published data to discuss the differences between them. Our results clearly indicate that DAX-8 FAs with high carboxyl C content have small Mw and low hydrogen to carbon (H/C) ratio. In addition, DAX-8 FAs with high carbonyl C and alkyl C content have high A 400/C values and H/C ratios, respectively. These results strongly suggest that DAX-8 FAs with high aliphatic chemical properties have low carboxyl C content, large Mw and high H/C ratio. There are significant differences in chemical characteristics among the various soil types in almost all data; e.g., DAX-8 FAs from Podzols showed significantly higher A 400/C values, larger Mw, higher carbonyl C and O-aryl C content than those obtained from Andosols. However, these two C functional groups are relatively low values in the total C content among all soil types, suggesting that DAX-8 FAs may exhibit only small differences in chemical properties among the various soil types. The comparison with published data regarding soil HAs shows that DAX-8 FAs are characterized by smaller Mw; lower C, H, and nitrogen (N); higher oxygen (O) content; higher O/C; lower O/H ratios; higher carboxyl C content; and lower aryl C content in total C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号