首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
对糠醛渣制得的活性炭,采用S2Cl2回流负载,再微波焙烧的方法进行改性,采用Boehm滴定法和FT-IR分析了活性炭改性前后表面官能团的变化情况;对比了活性炭改性前后孔径分布情况;并探讨了改性活性炭对水体中的Hg2+吸附性能.Boehm滴定分析表明活性炭改性后的总酸度、羧基、内酯基皆有增加;FT-IR谱图上700~500 cm-1范围内出现了新的吸收峰说明了改性活性炭表面增加了C—S、S—S键,孔径分布分析表明改性后活性炭微孔更加发达.在Hg2+初始质量浓度1~6 mg/L、温度25℃、pH值6.0~7.0、吸附时间180 min的条件下,经S2Cl2改性后活性炭用量为2.5 g/L时,对水体中Hg2+去除率达93%以上.  相似文献   

2.
采用CuC l2溶液对椰壳活性炭进行改性,制备高容量甲醛吸附活性炭。以扫描电镜(SEM)观测改性前后活性炭的表面形貌;用低温液氮吸附(N2/77K)来表征铜盐浓度的改变对活性炭孔隙结构的影响;用X射线光电子能谱(XPS)分析活性炭表面元素组成及存在形式;用X射线衍射(XRD)研究载铜活性炭的晶形结构;以常温动态吸附评价活性炭对甲醛的吸附性能。研究结果表明:改性活性炭中铜以Cu、CuC l及CuC l23种形式存在,改性活性炭微孔数量减少,介孔比例提高;同时,随铜盐浓度增加,活性炭的比表面积和孔容减少,平均孔径变大;改性后活性炭表面含氧官能团数量增加。当CuC l2浓度为0.5 mol/L时,制备的改性活性炭对甲醛的吸附容量(4.28 mg/g)是原料活性炭(1.38 mg/g)的3.1倍,甲醛在改性活性炭上的吸附行为符合Freundlich吸附模型。  相似文献   

3.
改性活性炭对氨气吸附性能研究   总被引:1,自引:1,他引:0  
对活性炭进行改性,增加其表面酸性基团含量,提高活性炭对氨(NH3)的吸附量,以强化活性炭-NH3工质对的吸附制冷过程。筛选了活性炭改性试剂,考察改性工艺条件对表面基团含量的影响;用红外光谱和扫描电镜对改性前后活性炭进行表征;测定活性炭对NH3吸附量。结果表明:HNO3改性可显著增加活性炭表面酸性基团含量;HNO3改性活性炭较为适宜条件为:HNO3浓度4 mol/L,温度20℃,时间12 h;改性后活性炭表面酸性基团含量提高3.5倍,碘值降低9.2%,对NH3吸附量提高了36.98%。  相似文献   

4.
吸附性质的影响   总被引:9,自引:0,他引:9  
研究了臭氧化处理对活性炭表面官能团结构、孔径结构和Cr6 吸附的影响,以Boemh滴定法和傅立叶红外光谱法(FT-IR)分析了活性炭的表面官能团结构,以低温液氮吸附法分析了活性炭的比表面积和孔径结构变化。结果表明,适宜的臭氧化处理时间可有效提高活性炭的Cr6 吸附容量;臭氧化处理改变了活性炭的表面官能团结构和孔径结构;碱性位氧化为酸性位,活性炭表面含氧酸性官能团数量和表面酸度的增加是活性炭Cr6 吸附容量增加的主要原因。  相似文献   

5.
采用反相气相色谱技术(IGC)测定了甲烷分子在改性前后活性炭上的保留时间,计算出了改性前后的活性炭的表面吸附热变化,并对不同改性剂的改性效果进行了比较.结果表明,改性前活性炭吸附热为17.75 mol/L,改性后的活性炭吸附热分别为18.74(氧化改性)、18.96(还原改性)、18.43 mol/L(盐改性).改性前...  相似文献   

6.
采用氧化酰化法,通过共价键合反应在活性炭表面键合接枝了邻氨基、间氨基和对氨基3种氨基吡啶分子.借助FT-IR、XPS、元素分析和氮气吸附研究了活性炭键合改性前后表面化学与孔径结构的变化规律,考察了接枝分子结构差异与活性炭的反应效能.结果表明间氨基吡啶分子在活性炭表面键合效率最高,表面N/C值达到0.10,样品氮元素摩尔分数达到7.74%.这表明接枝分子电子效应的差异影响接枝键合的效率,为以酰胺键进行高效接枝改性活性炭提供了科学依据.  相似文献   

7.
微波加热对活性炭表面基团及吸附性能的影响   总被引:14,自引:0,他引:14  
通过在不同微波功率和作用时间条件下对不同粒径活性炭进行改性,研究了改性前后活性炭的表面基团和元素组成的变化,以及对吸附性能的影响。结果表明:经过微波改性后的活性炭的碘值增加幅度为0.68%-15.92%,微波功率是影响活性炭吸附性能的主要改性因素。活性炭经微波热处理后,酸性基团发生分解,碱性特征增强,表面含氧量减少,是吸附性能改善的主要原因。  相似文献   

8.
以棉花秸秆为原料,采用KOH活化法制备活性炭样品,探讨了炭化、活化及后处理过程中各实验条件对活性炭样品性能的影响。综合考虑活性炭样品的性能及得率,得出较优的实验条件为:炭化温度450~500℃、碱炭比值1.0、活化温度800℃、活化时间120 min;在较优条件下制得活性炭的比表面积2 312 m2/g,碘吸附值1 936 mg/g,亚甲基蓝吸附值392 mg/g;孔径分布以微孔为主;表面含有羟基(—OH)、活泼氢(—H)等基团。  相似文献   

9.
利用农业固体废物玉米芯作原料制备了活性炭,通过吸附热力学和吸附动力学过程,探讨了改性玉米芯活性炭对Cd2+模拟废水的吸附性能研究,以及考察了溶液pH值、活性炭投加量和温度对活性炭吸附Cd2+的影响。研究结果表明:磷酸改性600℃下裂解的活性炭吸附能力最好;改性玉米芯活性炭对Cd2+的吸附等温线更符合Freundlich模型;改性玉米芯活性炭对Cd2+的吸附动力学过程用准二级动力学模型能更好地拟合;经过单因素影响试验的研究表明,溶液初始pH值为6、活性炭投加量为0.01g、吸附温度为40℃时,活性炭的吸附效果最好。  相似文献   

10.
采用氧等离子体对竹炭进行了3种不同时间的改性,分析和评价改性前后竹炭的表面性质变化。扫描电镜照片显示改性前后竹炭的表面微观形貌没有发生明显的变化;红外光谱分析表明改性前后的竹炭表面基团种类未发生明显变化,但是在3 440 cm-1处的吸收峰强度明显提高;比表面积和孔径分布结果表明,改性时间为8和16 min的竹炭比表面积、总孔容积、微孔容积和微孔表面积相比未改性竹炭有较大幅度增加,提高幅度分别达到24.95%,19.50%,16.26%和14.92%;X射线光电子能谱分析表明,改性后竹炭的表面氧原子百分比从改性前的19%增加到45%左右,并且氧原子在竹炭表面的基团结合形式随着改性时间的延长而发生变化。Bohem滴定的结果表明,改性后竹炭表面的酸性明显增加,并且主要表现为羧基数量的增加。因此,氧等离子体对竹炭材料表面性质具有明显的改善作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号