共查询到20条相似文献,搜索用时 29 毫秒
1.
High-yield (HY) areas of an agricultural cropland were characterized by different positions on a slope and lower silt and clay contents, compared to low-yield (LY) areas, and this was associated with differences in water regime and C and N turnover. To understand differences in N flows of HY and LY areas, a combination of 15N tracer techniques and physical fractionation procedures was applied. Within 570 d after application of 15N labelled mustard litter to an agricultural cropland, the distribution of 15N was measured in particulate organic matter (POM) fractions and in fine mineral fractions (fine silt- and clay-sized fractions). After 570 d, only 2.5% of the initial 15N amount was found in POM fractions, with higher amounts in POM occluded in aggregates than in free POM. After this period, stabilization of the initial 15N in fine silt- and clay-sized fractions amounts to 10% in HY, but 20% in LY soils. 70% to 85% of the added 15N were lost. Initial decomposition of labelled material was faster in HY than in LY areas during the first year, but the remaining 15N amounts in POM fractions of the different areas were similar after 570 d. 15N amounts and concentrations in mineral-associated fractions increased within 160 d after application. From 160 to 570 d, HY and LY areas showed different 15N dynamics, resulting in a decline of 15N amounts in HY, but constant 15N amounts in LY soils. The results indicate faster decomposition processes in HY than in LY areas, due to different soil conditions, such as soil texture and water regime. The higher silt and clay contents of LY areas seem to promote N stabilization in fine mineral fractions. As a whole, N flows were higher in HY compared to LY areas, thus supporting higher yields and accelerated organic matter degradation due to higher N supply. 相似文献
2.
Juliette M.G. Bloor Audrey Niboyet Paul W. Leadley Laure Barthes 《Soil biology & biochemistry》2009,41(3):544-552
Plant-plant and plant-soil interactions play a key role in determining plant community structure and ecosystem function. However, the effects of global change on the interplay between co-occurring plants and soil microbes in successional communities are poorly understood. In this study, we investigated competition for nitrogen (N) between soil microorganisms, grass plants and establishing tree seedlings under factorial carbon dioxide (CO2) and N treatments. Fraxinus excelsior seedlings were germinated in the presence or absence of grass competition (Dactylis glomerata) at low (380 μmol mol−1) or high (645 μmol mol−1) CO2 and at two levels of N nutrition in a mesocosm experiment. Pulse 15N labelling was used to examine N partitioning among plant and soil compartments. Dactylis exerted a strong negative effect on Fraxinus biomass, N capture and 15N recovery irrespective of N and CO2 treatment. In contrast, the presence of Dactylis had a positive effect on the microbial N pool. Plant and soil responses to N treatment were of a greater magnitude compared with responses to elevated CO2, but the pattern of Fraxinus- and microbial-N pool response to N and CO2 varied depending on grass competition treatment. Within the Dactylis competition treatment, decreases in Fraxinus biomass in response to N were not mirrored by decreases in tree seedling N content, suggesting a shift from below- to above-ground competition. In the Dactylis-sown pots, 15N recovery could be ranked Dactylis > microbial pool > Fraxinus in all N and CO2 treatment combinations. Inequalities between Fraxinus and soil microorganisms in terms of 15N recovery were exacerbated by N addition. Contrary to expectations, elevated CO2 did not increase plant-microbe competition. Nevertheless, microbial 15N recovery showed a small positive increase in the high CO2 treatment. Overall, elevated CO2 and N supply did not interact on plant/soil N partitioning. Our data suggest that the competitive balance between establishing tree seedlings and grass plants in an undisturbed sward is relatively insensitive to CO2 or N-induced modifications in N competition between plant and soil compartments. 相似文献
3.
Our aim was to study whether the in situ natural abundance 15N (δ15N)-values and N concentration of understory plants were correlated with the form and amount of mineral N available in the soil. Also to determine whether such differences were related to earlier demonstrations of differences in biomass increase in the same species exposed to nutrient solutions with both and or to alone. Several studies show that the δ15N of in soil solution generally is isotopically lighter than the δ15N of due to fractionation during nitrification. Hence, it is reasonable to assume that plant species benefiting from in ecosystems without significant leaching or denitrification have lower δ15N-values in their tissues than species growing equally well, or better, on We studied the δ15N of six understory species in oak woodlands in southern Sweden at 12 sites which varied fivefold in potential net N mineralisation rate The species decreased in benefit from in the following order: Geum urbanum, Aegopodium podagraria, Milium effusum, Convallaria majalis, Deschampsia flexuosa and Poa nemoralis. Four or five species demonstrated a negative correlation between and leaf δ15N and a positive correlation between and leaf N concentration. In wide contrast, only D. flexuosa, which grows on soils with little nitrification, showed a positive correlation between and the leaf N concentration and δ15N-value. Furthermore, δ15N of plants from the field and previously obtained indices of hydroponic growth on relative to were closely correlated at the species level. We conclude that δ15N may serve as a comparative index of uptake of among understory species, preferably in combination with other indices of N availability. The use of δ15N needs careful consideration of known restrictions of method, soils and plants. 相似文献
4.
A. V. Konarev I. O. Vvedenskaya E. A. Nasonova I. N. Perchuk 《Genetic Resources and Crop Evolution》1995,42(3):197-209
Summary Electrophoresis of single seed prolamines was used for the analysis ofLolium perenne L.,Festuca pratensis Huds., andDactylis glomerata L. populations. Identification and registration of populations was carried out according to the frequencies of occurrence
of genotypes with corresponding types of prolamine banding patterns. The publication sums up the problems of applied use of
molecular markers for identification and registration of world genetic resources of forage grasses, analysis of the dynamics
of population composition and other problems of plant growing, genetics, breeding and seed control. The approaches mentioned
in the article are promising for their use in genetic banks as well as at the institutions which store collections of genetic
resources of given crops and at universities and breeding stations. 相似文献
5.
A microcosm experiment was carried out for 56 days at 12 °C to evaluate the feeding effects of the endogeic geophagous earthworm species Aporrectodea caliginosa on the microbial use of 15N-labelled maize leaves (Zea mays) added as 5 mm particles equivalent to 1 mg C and 57 μg N g−1 soil. The dry weight of A. caliginosa biomass decreased in the no-maize treatment by 10% during the incubation and increased in the maize leaf treatments by 18%. Roughly 5% and 10% of the added maize leaf-C and leaf-N, respectively, were incorporated into the biomass of A. caliginosa. About 29% and 33% of the added maize leaf-C were mineralised to CO2 in the no-earthworm and earthworm treatments, respectively. The presence of A. caliginosa significantly increased soil-derived CO2 production by 90 μg g−1 soil in the no-maize and maize leaf treatments, but increased the maize-derived CO2 production only by 40 μg g−1 soil. About 10.5% of maize leaf-C and leaf-N was incorporated into the soil microbial biomass in the absence of earthworms, but only 6% of the maize leaf-C and 3% of the maize leaf-N in the presence of earthworms. A. caliginosa preferentially fed on N rich, maize leaf-colonizing microorganisms to meet its N demand. This led to a significantly increased C/N ratio of the unconsumed microbial biomass in soil. The ergosterol-to-microbial biomass C ratio was not significantly decreased by the presence of earthworms. A. caliginosa did not directly contribute to comminution of plant residues, as indicated by the absence of any effects on the contents of the different particulate organic matter fractions, but mainly to grazing of residue-colonizing microorganisms, increasing their turnover considerably. 相似文献
6.
Below-ground transfer of nitrogen (N) fixed by legume trees to associated non-N2-fixing crops has received little attention in agroforestry, although the importance of below-ground interactions is shown in other ecosystems. We used 15N natural abundance to estimate N transfer from the legume tree Gliricidia sepium (Jacq.) Kunth ex Walp. to C4 grass Dichanthium aristatum (Poir.) C.E. Hubb. in a silvopastoral system, where N was recycled exclusively by below-ground processes and N2 fixation by G. sepium was the sole N input to the system. Finding a suitable reference plant, a grass without contact with tree roots or litter, was problematic because tree roots invaded adjacent grass monocrop plots and soil isotopic signature in soil below distant grass monocrops differed significantly from the agroforestry plots. Thus, we used grass cultivated under greenhouse conditions in pots filled with agroforestry soil as the reference. A model of soil 15N fractionation during N mineralization was developed for testing the reliability of that estimate. Experimental and theoretical results indicated that 9 months after greenhouse transplanting, the percentage of fixed N in the grass decreased from 35% to <1%, due to N export in cut grass and dilution of fixed N with N taken up from the soil. The effect of soil 15N fractionation on the estimate of the reference value was negligible. This indicates that potted grass is a suitable reference N transfer studies using 15N natural abundance. About one third of N in field-grown grass was of atmospheric origin in agroforestry plots and in adjacent D. aristatum grassland invaded by G. sepium roots. The concentration of fixed N was correlated with fine root density of G. sepium but not with soil isotopic signature. This suggests a direct N transfer from trees to grass, e.g. via root exudates or common mycorrhizal networks. 相似文献
7.
Christoph Müller R.J StevensR.J Laughlin J.C.G OttowH.-J Jäger 《Soil biology & biochemistry》2003,35(5):651-665
The assumption in using the chloroform fumigation technique for microbial biomass determination is that microbes are killed or at least inactivated by the treatment. Problems associated with transformations of the N released on or during fumigation have so far only been associated with the fumigation-incubation method. A laboratory and a field study were carried out to investigate the possible N transformations during biomass determination by the fumigation-extraction method. Labelled NH4NO3 (either the NO3−, NH4+ or both pools were 15N enriched) was applied to the soil and biomass determinations made at intervals subsequently. The size and enrichment of the ammonium (NH4+), and nitrate (NO3−) pools were determined before and after chloroform fumigation. The 15N enrichment of the NH4+ pool after fumigation could only be explained if immobilisation of ammonium occurred at some time during the 24 h fumigation period. The extent of this immobilisation was calculated. In addition, there was evidence that nitrification occurred during the fumigation procedure at the start of the laboratory study and throughout the field study. The laboratory and field study differed mainly in the dynamics related to NO3− uptake and release. There was evidence for uptake of NO3− by the microbial biomass with and without utilization. We conclude that the 15N enrichment in the microbial biomass cannot be accurately determined when N transformations and release of non-utilized N occurs during fumigation. The possible immobilisation of mineral N during fumigation will affect the magnitude of the factor used to convert measured microbial biomass N to actual microbial biomass N in soil. 相似文献
8.
9.
Soil organic carbon stocks,distribution, and composition affected by historic land use changes on adjacent sites 总被引:1,自引:0,他引:1
Historic alterations in land use from forest to grassland and cropland to forest were used to determine impacts on carbon
(C) stocks and distribution and soil organic matter (SOM) characteristics on adjacent Cambisols in Eastern Germany. We investigated
a continuous Norway spruce forest (F-F), a former cropland afforested in 1930 (C-F), and a grassland deforested in 1953 (F-G).
For C and N stocks, we sampled the A and B horizons of nine soil pits per site. Additionally, we separated SOM fractions of
A and B horizons by physical means from one central soil pit per pedon. To unravel differences of SOM composition, we analyzed
SOM fractions by 13C-CPMAS NMR spectroscopy and radiocarbon analysis. For the mineral soils, differences in total C stocks between the sites
were low (F-F = 8.3 kg m−2; C-F = 7.3 kg m−2; F-G = 8.2 kg m−2). Larger total C stocks (+25%) were found under continuous forest compared with grassland, due to the C stored within the
organic horizons. Due to a faster turnover, the contents of free particulate organic matter (POM) were lower under grassland.
High alkyl C/O/N-alkyl C ratios of free POM fractions indicated higher decomposition stages under forest (1.16) in relation
to former cropland (0.48) and grassland (0.33). Historic management, such as burning of tree residues, was still identifiable
in the subsoils by the composition and 14C activity of occluded POM fractions. The high potential of longer lasting C sequestration within fractions of slower turnover
was indicated by the larger amounts of claybound C per square meter found under continuous forest in contrast to grassland. 相似文献
10.
Plant wax compounds (n-alkanes and alcohols) were used to trace C from the dominant pasture species to different water-stable aggregate (WSA) size classes to investigate if changes in the plant community composition caused by grass ley age and N amendment were reflected in the dynamics of intra-aggregate SOM. Age of the ley influenced the formation of aggregates, and fertilizer N application decreased %C and %N of the macroaggregates. Although changes in the plant community composition due to N amendment and ley age were reflected in the concentrations of plant wax compounds in the different WSA classes, the results of this study are more indicative of the direct effect of N fertilizer, than of the effect of dominant plant species, on intra-aggregate OM dynamics. The results of this study were found to support the suggestion that N amendments increase intra-aggregate OM dynamics especially in the smaller WSA size classes. 相似文献
11.
S.A. Billings 《Soil biology & biochemistry》2006,38(9):2934-2943
In the grassland/forest ecotone of North America, many areas are experiencing afforestation and subsequent shifts in ecosystem carbon (C) stocks. Ecosystem scientists commonly employ a suite of techniques to examine how such land use changes can impact soil organic matter (SOM) forms and dynamics. This study employs four such techniques to compare SOM in grassland (Bromus inermis) and recently forested (∼35 year, Ulmus spp. and Quercus spp.) sites with similar soil types and long-term histories in Kansas, USA. The work examines C and nitrogen (N) parameters in labile and recalcitrant SOM fractions isolated via size and density fractionation, acid hydrolysis, and long-term incubations. Size fractionation highlighted differences between grassland and forested areas. N concentration of forested soils’ 63-212 μm fraction was higher than corresponding grassland soils’ values (3.0±0.3 vs. 2.3±0.3 mg gfraction−1, P<0.05), and N concentration of grassland soils’ 212-2000 μm fraction was higher than forested soils (3.0±0.4 vs. 2.3±0.2 mg gfraction−1, P<0.05). Similar trends were observed for these same fractions for C concentration; forested soils exhibited 1.3 times the C concentration in the 63-212 μm fraction compared to this fraction in grassland soils. Fractions separated via density separation and acid hydrolysis exhibited no differences in [C], [N], δ15N, or δ13C when compared across land use types. Plant litterfall from forested sites possessed significantly greater N concentrations than that from grassland sites (12.41±0.10 vs. 11.62±0.19 mg glitter−1). Long-term incubations revealed no differences in C or N dynamics between grassland and forested soils. δ13C and δ15N values of the smallest size and the heavier density fractions, likely representing older and more recalcitrant SOM, were enriched compared to younger and more labile SOM fractions; δ15N of forested soils’ 212-2000 μm fraction were higher than corresponding grassland soils (1.7±0.3‰ vs. 0.5±0.4‰). δ13C values of acid hydrolysis fractions likely reflect preferential losses of 13C-depleted compounds during hydrolysis. Though C and N data from size fractions were most effective at exhibiting differences between grassland and forested soils, no technique conclusively indicates consistent changes in SOM dynamics with forest growth on these soils. The study also highlights some of the challenges associated with describing SOM parameters, particularly δ13C, in SOM fractions isolated by acid hydrolysis. 相似文献
12.
Paul Dijkstra Ayaka Ishizu Stephen C. Hart Egbert Schwartz Bruce A. Hungate 《Soil biology & biochemistry》2006,38(11):3257-3266
Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is 13C, and especially 15N-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was 15N-enriched relative to the total (3.2 ‰) and extractable N pools (3.7 ‰), and 13C-enriched relative to the extractable C pool (2.5 ‰). The microbial biomass was also 13C-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 ‰), but 13C-depleted for soils with a C4 signature (−1.1 ‰). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation. 相似文献
13.
Shigekazu Yamamuro Hideto Ueno Hiroshi Yamada Yumiko Takahashi Yoko Shiga Syuko Miyahara 《Soil Science and Plant Nutrition》2013,59(6):787-795
Nitrogen and carbon dynamics in paddy and upland soils for rice cultivation and in upland soil for corn cultivation was investigated by using 13C and 15N dual-labeled cattle manure compost (CMC). In a soil with low fertility, paddy and upland rice took up carbon and nitrogen from the CMC at rates ranging from 0.685 to 1.051% of C and 17.6–34.6% of N applied. The 13C concentration was much higher in the roots than in the plant top, whereas the 15N concentration differed slightly between them, indicating that organic carbon taken up preferentially accumulated in roots. The 13C recovery in the plant top tended to be higher in upland soil than in paddy soil, whereas 15N applied was recovered at the same level in both paddy and upland soils. In the experiment with organic farming soil, paddy rice took up C and N from the CMC along with plant growth and the final recovery rates of 13C and 15N were 2.16 and 17.2% of C and N applied. In the corn experiment, a very large amount of carbon from the CMC was absorbed, accounting for at least 7 times value for rice. The final uptake rates of 13C and 15N reached about 13 and 10% of C and N applied, respectively. Carbon emission from the CMC sharply increased by 2 weeks after transplanting and the nitrogen emission was very low. It is concluded that rice and corn can take up an appreciable level of carbon and nitrogen from the CMC through roots. 相似文献
14.
The possible effects of excreta of the Great Cormorant Phalacrocorax carbo on decomposition processes and dynamics of nutrients (N, P, Ca, K, Mg) and organic chemical components (lignin, total carbohydrates) were investigated in a temperate evergreen coniferous forest near Lake Biwa in central Japan. Two-year decomposition processes of needles and twigs of Chamaecyparis obtusa were examined at two sites, control site never colonized by the cormorants (site C) and colonizing site (site 2). Mass loss was faster in needles than in twigs. Mass loss of these litter types was faster at site C than at site 2, which was ascribed to the decreased mass loss rate of acid-insoluble ‘lignin’ at site 2. Net immobilization of N, P, and Ca occurred in needles and twigs at site 2; whereas at site C, mass of these elements decreased without immobilization during decomposition. Duration of immobilization phase of these nutrients at site 2 was estimated to be 1.6 to 2.5 years in needles and 19.6 to 23.5 years in twigs. Immobilization potential (maximum amount of exogenous nutrient immobilized per gram initial material) was similar between needles and twigs for N and Ca but was about 10 times higher in twigs than in needles for P. δ13C in needles was relatively constant during the first year and then increased during the second year, whereas δ13C in twigs was variable during decomposition. Acid-insoluble fraction was depleted in 13C compared to whole needles (1.6-2.1‰) and twigs (2.0-2.5‰). δ15N of needles and twigs and their acid-insoluble fractions approached to δ15N of excreta during decomposition at site 2. This result demonstrated the immobilization of excreta-derived N into litter due to the formation of acid-insoluble lignin-like substances complexed with excreta-derived N. No immobilization occurred in K and Mg and their mass decreased during decomposition at both sites. Based on these results of nutrient immobilization during decomposition and on the data of litter fall and excreta amount at site 2, we tentatively calculated stand-level immobilization potential of litter fall and its contribution to total amount of N and P deposited as excreta. Thus, the potential maximum amount immobilized into litter fall (needles and twigs) was estimated to account for 5-7% of total excreta-derived N and P. 相似文献
15.
The objective of this work was to investigate the usefulness of near infrared reflectance spectroscopy (NIRS) in determining some C and N fractions of soils: labile compounds, microbial biomass, compounds derived from added 13C- and 15N-labelled straw. Soil samples were obtained from a previous experiment where soils were labelled by addition of 13C- and 15N-labelled wheat straw and incubated in coniferous forests in northern Sweden (64-60°N) and south France (43°N). The incubation lasted three years with 7-9 samplings at regular time steps and four replicates at each sampling (204 samples). Samples were scanned using a near infrared reflectance spectrophotometer (NIRSystem 6500). Calibrations were obtained by using a modified partial least squares regression technique with reference data on total C and N, 13C, 15N, control extract-C, -N, -13C and -15N, fumigated extract-C, -N, -13C and -15N, biomass-C, -N, -13C and -15N contents. Mathematical treatments of the absorbance data were first or second derivative with a gap from 4 to 10 nm. The standard error of calibration (SEC)-to-standard deviation of the reference measurements ratio was ≤0.2 for 10 models, namely total C and N, 13C, 15N, control extract-C, fumigated extract-C and -N, biomass-C and -N and biomass-15N models and therefore considered as very good. With an R2=0.955, the fumigated extract-15N model is also good. The standard error of performance calculated on the independent set of data and SEC were within 20% of each other for all the best equations except for the biomass-15N model. The ability of NIRS to detect 13C and 15N in total C and N and in the extracts is noteworthy, not because of its predictive function that is not really of interest in this case, but because it indicates that the spectra kept the signature of the properties of the organic matter derived from the straw even after two- or three-year decomposition. The incorporation of the 13C in the biomass was less well predicted than that of the 15N. This could indicate that the biomass derived from the straw was characterised by a particular protein or amino acid composition compared to the total biomass that includes a large proportion of dormant micro-organisms. The predictive ability of NIRS for microbial biomass-C and -N is particularly interesting because the conventional analyses are time consuming. In addition, NIRS allows detecting analytical errors. 相似文献
16.
Keke Hua Zhibin Guo 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2018,68(6):505-514
Current understanding of the effects of long-term application of various organic amendments on soil particulate organic matter (POM) storage and chemical stabilisation remains limited. Therefore, we collected soil samples from the soil profile (0–100?cm) under six treatments in a 31-year long-term fertilisation experiment: no fertiliser (CK), mineral fertilisers (NPK), mineral fertilisers plus 3.8 or 7.5?t?ha?1?year?1 (fresh base) the amount of wheat straw (1/2SNPK and SNPK) and mineral fertilisers plus swine or cattle manure (PMNPK and CMNPK). Long-term incorporation of wheat straw and livestock manure amendments significantly (p?<?0.05) increased crop yield and sustainable yield index, and POM storage compared with CK and NPK treatments. The mole ratios of H/C in the POM under organic amendment treatments significantly (p?<?0.05) decreased by 13.8% and 37.1%, respectively, compared with the NPK treatment. Similarly, solid state NMR spectroscopy showed that the O–alkyl carbon content of POM was greatly decreased, whereas aromatic carbon contents and alkyl to O–alkyl carbon ratios were substantially increased under PMNPK and CMNPK treatments. In conclusion, we recommend long-term livestock manure application as a preferred strategy for enhancing POM quantity and quality (chemical stability), and crop yield of vertisol soil in northern China. 相似文献
17.
Liz J Shaw 《Soil biology & biochemistry》2005,37(5):995-1002
Rhizosphere enhanced biodegradation of organic pollutants has been reported frequently and a stimulatory role for specific components of rhizodeposits postulated. As rhizodeposit composition is a function of plant species and soil type, we compared the effect of Lolium perenne and Trifolium pratense grown in two different soils (a sandy silt loam: pH 4, 2.8% OC, no previous 2,4-D exposure and a silt loam: pH 6.5, 4.3% OC, previous 2,4-D exposure) on the mineralization of the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). We investigated the relationship of mineralization kinetics to dehydrogenase activity, most probable number of 2,4-D degraders (MPN2,4-D) and 2,4-D degrader composition (using sequence analysis of the gene encoding α-ketoglutarate/2,4-D dioxygenase (tfdA)). There were significant (P<0.01) plant-soil interaction effects on MPN2,4-D and 2,4-D mineralization kinetics (e.g. T. pratense rhizodeposits enhanced the maximum mineralization rate by 30% in the acid sandy silt loam soil, but not in the neutral silt loam soil). Differences in mineralization kinetics could not be ascribed to 2,4-D degrader composition as both soils had tfdA sequences which clustered with tfdAs representative of two distinct classes of 2,4-D degrader: canonical R. eutropha JMP134-like and oligotrophic α-proteobacterial-like. Other explanations for the differential rhizodeposit effect between soils and plants (e.g. nutrient competition effects) are discussed. Our findings stress that complexity of soil-plant-microbe interactions in the rhizosphere make the occurrence and extent of rhizosphere-enhanced xenobiotic degradation difficult to predict. 相似文献
18.
Schallhart N Tusch MJ Staudacher K Wallinger C Traugott M 《Soil biology & biochemistry》2011,43(7):1612-1614
Tracking the movement of soil-living herbivores is difficult, albeit important for understanding their spatial ecology as well as for pest management. In this study the movement of Agriotes obscurus larvae between plots harbouring isotopically different plants was examined. Neither between maize and wheat nor between maize and grassland movement could be detected. These data suggest that Agriotes larvae rarely disperse between crops as long as local food supply is sufficient. Moreover, the current approach provides a new means to study the dispersal of soil invertebrates in situ. 相似文献
19.
Mauricio Shoebitz Claudia M. Ribaudo Martín A. Pardo Luigi Ciampi 《Soil biology & biochemistry》2009,41(9):1768-4466
The capability of native bacterial strains isolated from Lolium perenne rhizosphere to behave as plant growth promoting bacteria and /or biocontrol agents was investigated. One strain (BNM 0357) over 13 isolates from the root tips of L. perenne resulted proved to be nitrogenase positive (ARA test) and an IAA producer. Conventional tests and the API 20E diagnostic kit indicated that BNM 0357 behaves to the Enterobacteriaceae family and to the Enterobacter genus. Molecular identification by 16S rRNA sequence analysis indicated that BNM 0357 had the highest similarity to Enterobacter ludwigii (EN-119). Isolate BNM 0357 had the capability to solubilize calcium triphosphate and to antagonize Fusarium solani mycelial growth and spore germination. Strain BNM 0357 also showed the ability to improve the development of the root system of L. perenne. This study disclosed features of E. ludwigii BNM 0357 that deserve further studies aimed at confirming its putative importance as a PGPR. 相似文献
20.
Forest soils contain a variable amount of organic N roughly repartitioned among particles of different size, microbial biomass and associated with mineral compounds. All pools are alimented by annual litter fall as main input of organic N to the forest floor. Litter N is further subject to mineralization/stabilization recognized as the crucial process for the turnover of litter N. Although it is well documented that different soil types have different soil N stocks, it is presently unknown how different soil types affect the turnover of recent litter N. Here, we compared the potential mineralization of the total soil organic N with that of recent litter-released N in three beech forests varying in their soil properties. Highly 15N-labelled beech litter was applied to stands located at Aubure, Ebrach, Collelongo, which differ in humus type, soil type and soil chemistry. After 4-5 years of litter decomposition, the upper 3 cm of the organo-mineral A horizon was sampled and the net N mineralization was measured over 112 days under controlled conditions. The origin of mineralized N (litter N versus soil organic N) was calculated using 15N labeling. In addition, soils were fractionated according to their particle size (>2000 μm, 200-2000 μm, 50-200 μm, <50 μm) and particulate organic matter (POM) was separated from the mineral fraction in size classes, except the <50 μm fraction. Between 41 and 69% of soil organic N was recovered as POM. Litter-released 15N was mainly to be found in the coarse POM fractions >200 μm. On a soil mass basis, N mineralization was two-fold higher at Aubure and Collelongo than at Ebrach, but, on a soil N basis, N mineralization was the lowest at Collelongo and the highest at Ebrach. On a soil N (or 15N) basis, mineralization of litter 15N was two to four-fold higher than mineralization of the average soil N. Furthermore, the δ15N of the mineral N produced was closer to that of POM than to that of the mineral-bound fraction (<50 μm). Highest rates of 15N mineralization happened in the soil with the lowest N content, and we found a negative relationship between accumulations of N in the upper A horizon and the mineralization of 15N from the litter. Our results show that mineral N is preferentially mineralized from POM in the upper organo-mineral soil irrespective of the soil chemistry and that the turnover rate of litter N is faster in soils with a low N content. 相似文献